
Algorithmica
DOI 10.1007/s00453-011-9563-9

Fast Minor Testing in Planar Graphs

Isolde Adler · Frederic Dorn · Fedor V. Fomin ·
Ignasi Sau · Dimitrios M. Thilikos

Received: 30 October 2010 / Accepted: 16 August 2011
© Springer Science+Business Media, LLC 2011

Abstract Minor Containment is a fundamental problem in Algorithmic Graph The-
ory used as a subroutine in numerous graph algorithms. A model of a graph H in a
graph G is a set of disjoint connected subgraphs of G indexed by the vertices of H ,
such that if {u,v} is an edge of H , then there is an edge of G between components
Cu and Cv . A graph H is a minor of G if G contains a model of H as a subgraph.
We give an algorithm that, given a planar n-vertex graph G and an h-vertex graph H ,
either finds in time O(2O(h) ·n+n2 · logn) a model of H in G, or correctly concludes
that G does not contain H as a minor. Our algorithm is the first single-exponential
algorithm for this problem and improves all previous minor testing algorithms in pla-
nar graphs. Our technique is based on a novel approach called partially embedded
dynamic programming.

An extended abstract of this work appeared in the proceedings of ESA’10 [2].

I. Adler
Institut für Informatik, Goethe-Universität, Frankfurt, Germany
e-mail: iadler@informatik.uni-frankfurt.de

F. Dorn (�) · F.V. Fomin
Department of Informatics, University of Bergen, Bergen, Norway
e-mail: frederic.dorn@ii.uib.no

F.V. Fomin
e-mail: fedor.fomin@ii.uib.no

I. Sau
AlGCo team, CNRS, LIRMM, Montpellier, France
e-mail: ignasi.sau@lirmm.fr

D.M. Thilikos
Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece
e-mail: sedthilk@math.uoa.gr

mailto:iadler@informatik.uni-frankfurt.de
mailto:frederic.dorn@ii.uib.no
mailto:fedor.fomin@ii.uib.no
mailto:ignasi.sau@lirmm.fr
mailto:sedthilk@math.uoa.gr


Algorithmica

Keywords Graph minors · Planar graphs · Branchwidth · Parameterized
complexity · Dynamic programming

1 Introduction

For two input graphs G and H , the MINOR CONTAINMENT problem is to decide
whether H is a minor of G. This is a classical NP-complete problem [18], and re-
mains NP-complete even when both graphs G and H are planar, as it is a general-
ization of the HAMILTONIAN CYCLE problem. When H is fixed, by Robertson and
Seymour’s celebrated result [30], there is an algorithm to decide if H is a minor of
an input graph G that runs in time f (h) · n3, where n is the number of vertices of
G, h is the number of vertices in H , and f is some recursive function. One of the
significant algorithmic implications of this result is that, combined with Robertson
and Seymour’s Graph Minor Theorem [32], it shows the polynomial-time solvabil-
ity of many graph problems, some of which were previously not even known to be
decidable [17]. However, these algorithmic results are highly non-practical. This trig-
gered an ongoing quest in the Theory of Algorithms since then—related to trying to
simplify the 20-papers proof of the Graph Minors Theorem—for making Graph Mi-
nors constructive and for making its algorithmic proofs practical for a wide range of
applications (e.g., [10, 23]).

Unfortunately, in Robertson and Seymour’s minor testing algorithm [30], the func-
tion f (h) has an immense (super-)exponential growth, which makes the algorithm
absolutely impractical even for very simple patterns (see [24] for recent theoretical
improvements of this function). There were several attempts to improve the running
time of Robertson and Seymour’s algorithm. One direction of such improvements
is decreasing the degree of the polynomial in n. For example, Reed and Li gave a
linear time algorithm solving K5-minor containment [29]. The second direction of
improvements is towards reducing the exponential dependency in the function f (h),
which is a natural direction of study for Parameterized Complexity [16]. A signifi-
cant step in this direction was done by Hicks [21], who provided in graphs of branch-
width k and m edges an O(3k2 · (h + k − 1)! · m) time algorithm, following the
algorithm sketched by Robertson and Seymour [30]. Recently, this was improved to
O(2(2k+1) log k · h2k · 22h2 · m) on general graphs, and in planar, and more generally,
in graphs of bounded genus, to 2O(k) · h2k · 2O(h) · n [1].

In this paper we focus on the case where the input graph G is planar.

PLANAR H -MINOR CONTAINMENT

Input: A planar graph G.
Objective: Either find a model M of H in G, or conclude that

G does not contain such a model.

Over the last four decades, many different algorithmic techniques in planar graphs
were developed for different type of problems and algorithms, including approxima-
tion [5, 9], exact [14, 26], and parameterized algorithms [3, 8, 15]. However, it seems
that none of these approaches can be used to speed up the algorithm for PLANAR

H -MINOR CONTAINMENT.



Algorithmica

1.1 Our Results and Key Ideas

By arguments inspired by Bidimensionality Theory [7], it can be easily shown that

the 2O(k) · h2k · 2O(h) · n time algorithm from [1], combined with the grid minor
Theorem of Robertson, Thomas, and Seymour [31], can be used to solve PLANAR

H -MINOR CONTAINMENT in time O(2O(h logh) · n + n2 · logn). This directly sets
up the challenge of designing a single-exponential (on the size h of the pattern H )
algorithm for this problem.

Our main result is the following theorem.

Theorem 1 Given a planar graph G on n vertices and a graph H on h vertices,
PLANAR H -MINOR CONTAINMENT is solvable in time O(2O(h) · n + n2 · logn).

That is, we prove that when G is planar the behavior of the function f (h) can be
made single-exponential, improving over all previous results for this problem [1, 21,
30]. In addition, we can enumerate and count the number of models within the same
time bounds. Let us remark that by Theorem 1, PLANAR H -MINOR CONTAINMENT

is solvable in polynomial time when the size of the pattern graph H is O(logn),
therefore substantially improving the existing algorithms for small patterns [12].

In order to prove Theorem 1, we introduce a novel approach of dynamic program-
ming in planar graphs of bounded branchwidth, namely partially embedded dynamic
programming. This approach is extremely helpful in computing graph minors, and we
believe that this technique can be used in many related problems including PLANAR

DISJOINT PATHS. Our technique is inspired by the technique of embedded dynamic
programming introduced in [13] for solving PLANAR SUBGRAPH ISOMORPHISM for
a pattern of size h and an input graph of size n in time 2O(h) · n. There, one controls
the partial solutions by the ways the separators of G can be routed through the pat-
tern. The difference (and difficulty) concerning PLANAR H -MINOR CONTAINMENT

is that we look for a model M of size O(n) out of 2O(n) possible non-isomorphic
models of H in G. In partially embedded dynamic programming, we look for poten-
tial models of H in G with a “magnifying glass” only at a given separator S of G.
That is, we consider a collection A of graphs A arising from ‘decontracting’ a part
of H , namely the part interacting with S. In this way, each graph A behaves like a
subgraph of G inside the intersection with S, and outside that intersection A behaves
like a minor of G; this is why we call our dynamic programming technique “partially
embedded”.

After giving some preliminaries in Sect. 2, we first show in Sect. 3 how PLANAR

H -MINOR CONTAINMENT can be solved in polynomial time for input graphs of
large branchwidth (in comparison to the pattern size). If the branchwidth is small,
we compute the collection A in Sect. 3.2 and give the partially embedded dynamic
programming approach in Sect. 3.3.

2 Preliminaries

We use standard graph terminology, see for instance [11].



Algorithmica

Fig. 1 On the left hand side we illustrate a graph G. In the middle we have a subgraph M of G. Contracting
the edges of M indicated by the dashed lines, we obtain minor H illustrated on the right hand side. M is
a model of H in G. The dashed lines illustrate its c-edges, the solid lines its m-edges

2.1 Graphs and Graph Minors

All graphs considered in this article are simple and undirected. Given a graph G, we
denote by V (G) and E(G) the vertex set and the edge set of G, respectively. A graph
H is a subgraph of a graph G, H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). We
define graph the operation of contracting an edge e = {x, y} ∈ G by removing e, x

and y from G, and adding a new vertex ve adjacent to both the former neighbors of
x and the former neighbors of y (excluding x and y).

A graph H is a minor of a graph G (denoted by H � G), if H can be obtained
from a subgraph of G by a (possibly empty) sequence of edge contractions. In this
case we also say that G is a major of H . A graph H is a contraction minor of a
graph G (denoted by H �c G), if H can be obtained from G by a (possibly empty)
sequence of edge contractions.

A model M of a minor H in G is a subgraph of G, where the edge set E(M) is
partitioned into c-edges (contraction edges) and m-edges (minor edges) such that the
graph resulting from contracting all c-edges is isomorphic to H .

For an illustration, see Fig. 1.

2.2 Branchwidth

A branch decomposition (T ,μ) of a graph G consists of an unrooted ternary tree T

(i.e., all internal vertices have degree three) and a bijection μ : L → E(G) from the
set L of leaves of T to the edge set of G. We define for every edge e of T the middle
set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of T \
{e}. Then let Gi be the graph induced by the edge set {μ(f ) : f ∈ L ∩ V (Ti)} for i ∈
{1,2}. The middle set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) =
V (G1) ∩ V (G2). The width of (T ,μ) is the maximum order of the middle sets over
all edges of T , i.e., width(T ,μ) := max{|mid(e)|: e ∈ E(T )}. The branchwidth of G

is defined as bw(G) := min{width(T ,μ) | (T ,μ)branch decomposition of G}. Note
that for each e ∈ E(T ), mid(e) is a separator of G, unless mid(e) = ∅.

Remark 1 For every two edges e, f ∈ E(T ) with e ∩ f �= ∅, we have |mid(e) ∪
mid(f )| ≤ 1.5 · width(T ,μ).



Algorithmica

Intuitively, a graph G has small branchwidth if G is close to being a tree. The fun-
damental Grid Minor Theorem says that, roughly, a graph has either small branch-
width, or it contains a large grid as a minor. We use the variant for planar graphs.

Proposition 1 [6, 20, 31] Given a planar graph G on n vertices with bw(G) ≥ k, a
model of the (�k/3
 × �k/3
)-grid in G can be found in time O(n2 · logn).

On the other hand, every planar graph is a minor of a large enough grid.

Proposition 2 [31] If H is a planar graph with |V (H)| + 2|E(H)| ≤ �, then H is
isomorphic to a minor of the (2� × 2�)-grid.

2.3 Planar Graphs and Equivalent Drawings

Let � be the unit sphere. A planar drawing �, or simply drawing �, of a graph
G with vertex set V (G) and edge set E(G) maps vertices to points in the sphere,
and edges to simple curves between their end-vertices, such that edges do not cross,
except in common end-vertices. A plane graph 〈G,�〉 is a graph G together with
a planar drawing �.1 A planar graph is a graph that admits a planar drawing. The
set of faces F(G) of a plane graph G is defined as the collection of the connected
regions of � \ G. A subgraph of a plane graph G, induced by the vertices and edges
incident to a face f ∈ F(G), is called a bound of f (for further reading, see e.g. [11]).
Consider any two drawings �1 and �2 of a planar graph G. A homeomorphism of
�1 onto �2 is a homeomorphism of � onto itself which maps vertices, edges, and
faces of �1 onto vertices, edges, and faces of �2, respectively. We call two planar
drawings equivalent, if there is a homeomorphism from one onto the other.

Proposition 3 (e.g. [28]) Every planar n-vertex graph has 2O(n) non-equivalent
drawings. A set of all such drawings can be computed in time 2O(n).

Proposition 4 [37] The number of non-isomorphic edge-maximal planar graphs on
n vertices is 2O(n).

2.4 Nooses and Combinatorial Nooses

A noose of a plane graph G is a simple closed curve in � that meets G only in
vertices. From the Jordan Curve Theorem (e.g. [27]), it follows that nooses separate
� into two regions.

Let V (N) = N ∩ V (G) be the vertices and F(N) be the faces intersected by a
noose N . The length of N is |V (N)|, the number of vertices in V (N). The clockwise
order in which N meets the vertices of V (N) is a cyclic permutation π on the set
V (N).

A combinatorial noose NC = [v0, f0, v1, f1, . . . , f�−1, v�] in a plane graph G is
an alternating sequence of vertices and faces of G, such that

1If the drawing � is clear from the context, we may also simply write plane graph G.



Algorithmica

• fi is a face incident to both vi, vi+1 for all i < �;
• v0 = v� and the vertices v1, . . . , v� are mutually distinct; and
• if fi = fj for any i �= j and i, j = 0, . . . , � − 1, then the vertices vi, vi+1, vj , and

vj+1 do not appear in the order (vi, vj , vi+1, vj+1) on the bound of face fi = fj .

The length of a combinatorial noose [v0, f0, v1, f1, . . . , f�−1, v�] is �.

Remark 2 The order in which a noose N intersects the faces F(N) and the vertices
V (N) of a plane graph G gives a unique alternating face-vertex sequence of F(N) ∪
V (N) which is a combinatorial noose NC . Conversely, for every combinatorial noose
NC there exists a noose N with face-vertex sequence NC .

We will refer to combinatorial nooses simply as nooses if it is clear from the
context.

Proposition 5 [13] Every plane n-vertex graph has 2O(n) combinatorial nooses.

2.5 Sphere Cut Decompositions

For a plane graph G, we define a sphere cut decomposition (or sc-decomposition)
〈T ,μ,π〉 as a branch decomposition, which for every edge e of T has a noose Ne

that divides � into two regions �1 and �2 such that Gi ⊆ �i ∪ Ne, where Gi is the
graph induced by the edge set {μ(f ) : f ∈ L ∩ V (Ti)} for i ∈ {1,2} and T1 ∪̇T2 =
T \ {e}. Thus Ne meets G only in V (Ne) = mid(e) and its length is |mid(e)|. The
vertices of mid(e) = V (G1) ∩ V (G2) are ordered according to a cyclic permutation
π = (πe)e∈E(T ) on mid(e).

Theorem 2 [15, 19, 36] Let G be a plane graph satisfying bw(G) ≤ k without ver-
tices of degree one. Then there exists a sc-decomposition of G of width at most k. In
addition, such a sc-decomposition can be computed in time O(n2 logn).

3 Minor Testing in Planar Graphs

For solving PLANAR H -MINOR CONTAINMENT in single-exponential time O(2O(h) ·
n + n2 · logn), we now introduce the method of partially embedded dynamic pro-
gramming. We present Algorithm 3.1 as a roadmap on how we proceed in proving
our main Theorem 1.

We divide Algorithm 3.1 into three parts, presented in the following three subsec-
tions.

Namely, in Sect. 3.1 we show how to find in polynomial time a model of H in G

in the case of G having large branchwidth. Otherwise, we may assume that bw(G) ≤
c · h for some constant c. In this case, PRE-PROC(H) (basically) computes a list of
all plane majors A of H up to a fixed size linear in h. This “preprocessing step” is
presented in Sect. 3.2. In the sequel, we are interested in graphs A of our list, if A

is a minor of G obtained from H by “decontracting” some part, such that on a given
subset S ⊆ V (G), our graph A looks like a subgraph of G. That is, we consider such



Algorithmica

Algorithm 3.1: The main routine for PLANAR H -MINOR CONTAINMENT

Input: A planar graph G.
Output: A model M of H in G, if it exists.
Compute sc-decomposition 〈T ,μ,π〉 of G of width bw(G).
if bw(G) > 42 · h then Compute M (Proposition 6)
else Run PRE-PROC(H) to produce a collection A of plane majors of H (Sect. 3.2, Algorithm 3.2);
Run partially embedded dynamic programming on 〈T ,μ,π〉 to find a model M of H in G by using
A (Sect. 3.3).

A that have a model MA in G such that every edge of MA[S] is an m-edge and for
every pair of vertices u,v ∈ V (MA[S]) there is no path of c-edges in MA connecting u

and v. Finally, in Sect. 3.3, we proceed by partially embedded dynamic programming
bottom-up along a sphere cut decomposition of G. Here we make use of the fact that
every middle set S yields a separating noose in an embedding of G. If H has a model
M ⊆ G that intersects S, then the noose comes from a noose in M , which in turn is
present in some major A of H of our list. We use this fact to restrict the number of
candidates A we need to consider in every single dynamic programming step.

3.1 Case of Large Branchwidth

The following proposition allows us to find a model of H in G in the case of G having
large branchwidth.

Proposition 6 Let G and H be planar graphs with |V (G)| = n and |V (H)| = h.
There exists a constant c ≤ 42 such that if bw(G) > c · h, then G contains a model
of H , which can be found in time O(n2 · logn + h4).

Proof Since any planar graph H with at least three vertices satisfies |E(H)| ≤
3|V (H)| − 6, by Proposition 2 any planar graph on h vertices is isomorphic to a
minor of the (14h × 14h)-grid.

With the algorithm of [36], we can find bw(G) in time O(n2). If bw(G) > 42h,
then by Proposition 1, we can find in time O(n2 logn) a model of a (14h× 14h)-grid
in G. From this grid we find a model of H in G using Proposition 2. To conclude,
let us discuss how the proof of Proposition 2 provided in [31] can be easily made
constructive. For the sake of presentation, we omit many details that can be found
in [31]. Indeed, the proof of [31, Fact (1.5)] consists in subdividing H to obtain an
auxiliary planar graph H1 with |V (H1)| ≤ 7h, which is isomorphic to a minor of a
planar Hamiltonian graph H2 with |V (H2)| ≤ 14h. It is then proved that such a graph
H2 is isomorphic to a minor of a (|V (H2)| × |V (H2)|)-grid. Then the proof uses
simple operations on vertices, edges, and separating triangles. At one point it uses
a Hamiltonian cycle, which existence is guaranteed by Whitney’s Theorem2 [38].
There exist a constructive version of Whitney’s Theorem, i.e. an algorithm finding a
Hamiltonian cycle in triangulated planar graph in linear time [34]. One can then check

2Whitney’s Theorem states that each triangulated planar graph without separating triangles is Hamiltonian.



Algorithmica

that the overall running time is dominated by the inductive proof of [31, Fact (1.4)],
in which one must find O(h) times a separating triangle in a graph on 7h vertices.
This procedure can be naïvely done in time O(h4). Therefore, a rough upper bound
for the algorithm that follows from Proposition 2 is O(h4). �

3.2 Preprocessing

If the branchwidth of G is at most c ·h, then we compute a sphere cut decomposition
of width O(h) in time O(n2) by using the algorithm of [19], and we continue with
dynamic programming.

In the first step we do preprocessing. Namely, we compute for H a list of auxiliary
graphs A with H � A, such that A is a candidate for a model M in G. We will need
this collection in the dynamic programming algorithm described in Sect. 3.3. To be
precise, we compute a collection A of edge-colored plane graphs, each consisting of

• a planar graph Am,c with h ≤ |V (Am,c)| ≤ h + 1.5 · bw(G), and |E(Am,c)| ≥
|E(H)|, such that H is a contraction minor of Am,c,

• a bipartition of the edge set E(Am,c) into m-edges and c-edges such that contract-
ing the c-edges of Am,c creates a graph isomorphic to H ; and

• a drawing � of Am,c .

Algorithm 3.2: The preprocessing algorithm: PRE-PROC

Input: Planar graph H on h vertices and � edges.
Output: Collection A of edge-colored plane graphs.
Compute all non-isomorphic planar graphs A satisfying h ≤ |V (A)| ≤ 1.5 · bw(G) + h and
|E(A)| ≥ �.
for every such graph A do

for every subset X of E(A) of size � do
mark the edges in X as m-edges and the edges in E(A) \ X as c-edges, resulting in a
edge-colored graph Am,c .

for every graph Am,c do
if the graph resulting from contracting the c-edges of Am,c is isomorphic to H then compute
its non-equivalent drawings �1, . . . ,�q , and
add the plane graphs 〈Am,c,�i 〉 for all 1 ≤ i ≤ q to A.

We describe the preprocessing in Algorithm 3.2: the routine PRE-PROC takes as
input H and outputs the collection A of edge-colored plane graphs 〈Am,c,�〉.

When doing dynamic programming in Sect. 3.3, we compute in each dynamic
programming step a subset of collection A consisting of minors of M which represent
both H and M .

Lemma 1 For every planar graph H on h vertices and every constant d , the car-
dinality of the collection A of non-isomorphic edge-colored plane graphs on d · h

vertices containing a minor isomorphic to H is 2O(h). Furthermore, we can compute
A in time 2O(h).



Algorithmica

Proof By Proposition 4, the number of non-isomorphic planar graphs A on d · h

vertices (for a constant d) is 2O(h). We compute this set in time 2O(h) using the
algorithm of [25]. We partition the edge set of each A into three subsets: the edges that
we need to delete, the c-edges, and the m-edges. There are again 2O(h) possible such
partitions, which can be computed in time 2O(h). We use the linear time algorithm
for planar graph isomorphism [22] to check if after applying the graph operations the
resulting graph A′ is isomorphic to H . If so, we generate all non-equivalent drawings
of A and add them to A by using Proposition 3 and Algorithm 4.1 in [13], again in
time 2O(h). �

Using Lemma 1, we get the following corollary.

Corollary 1 Algorithm 3.2 is correct and runs in time 2O(bw(G)+h).

3.3 Partially Embedded Dynamic Programming

From now on, we will refer to an edge-colored plane graph 〈Am,c,�〉 ∈ A simply
as A. In this section, we present the technique of partially embedded dynamic pro-
gramming. Before proceeding to a formal description, we provide the basic intuition
behind our algorithm. Towards this, let us consider graphs A ∈ A satisfying H �c A

and A � G.
We define subgraphs PAST, PRESENT, and FUTURE of A with

• V (A) = V (PAST) ∪ V (PRESENT) ∪ V (FUTURE);
• E(A) = E(PAST) ∪̇E(PRESENT) ∪̇E(FUTURE);
• PRESENT ⊆ G, (i.e., we can obtain A as a minor of G with PRESENT being sub-

graph of G); and
• E(PAST) ⊆ E(H) (i.e., we can obtain H as a contraction minor of A without con-

tracting edges in PAST).

Here, we slightly abuse notation by assuming that vertex and edge sets in different
graphs are actually the same, instead of introducing bijective mappings. Note that we
make no assumption about the edges in FUTURE. Intuitively speaking, in partially
embedded dynamic programming, we look for potential models M of H with a mag-
nifying glass only in the separators of the sc-decomposition of G. By decontracting
H at the separators, we obtain the part PRESENT, which yields a subgraph of G for
which we are enabled to apply embedded dynamic programming. For memorizing
the rest of the potential model M , we contract all necessary edges to PAST in the pro-
cessed graph and (almost) all edges to FUTURE in the graph remainder. The picture
will be concretized in what follows.

Given a sc-decomposition of G, we proceed with dynamic programming: Every
edge e of the sc-decomposition defines a separator mid(e) ⊆ V (G) and an associ-
ated noose Ne, which separates the graph Gsub ⊆ G processed so far from G \ Gsub.
At every edge e of the sc-decomposition, we check for every graph A of A all
the ways in which the graph Gsub can be obtained as a major of Asub ⊆ A with
Asub = (V (PAST) ∪ V (PRESENT),E(PAST) ∪ E(PRESENT)), where mid(e) deter-
mines V (PRESENT). The noose Ne comes from a noose in A, and this is controlled



Algorithmica

by the ways in which Ne can be routed through the vertices of A. The number of
solutions we get—the valid partial solutions—is bounded by the number of com-
binatorial nooses in A onto which we can map Ne. When updating the valid partial
solutions at two incident edges of the sc-decomposition, we unite PRESENT and PAST

of two solutions and set the graph remainder to FUTURE. In a post-processing step,
we contract part of PRESENT, namely those edges with at most one endpoint in the
newly obtained separator of the sc-decomposition; this part becomes PAST. We then
decontract some edges of FUTURE for the next updating step. This concludes the
informal description of the algorithm.

In the remaining part of this section, we will precisely describe and analyze the
dynamic programming routine with which we achieve the following result:

Lemma 2 For a plane graph G with a given sc-decomposition 〈T ,μ,π〉 of G of
width bw(G) and a planar graph H on h vertices, we can decide in time 2O(bw(G)+h) ·
n whether G contains a model M of H .

3.4 Dynamic Programming

We root the sc-decomposition 〈T ,μ,π〉 at some node r ∈ V (T ). For each edge e ∈ T ,
let Le be the set of leaves of the subtree rooted at e. The subgraph Ge of G is induced
by the edge set {μ(v) | v ∈ Le}. The vertices of mid(e) form a combinatorial noose
N that separates Ge from the residual graph.

Let A be a given plane graph in A. If A is a minor of G, then there exists a plane
model M of A in G. Furthermore, for above noose N the intersection M ∩ N forms
a noose, both in model M and in candidate A. One basic point of partially embedded
dynamic programming is to check how the vertices of the combinatorial noose N

are mapped to faces and vertices of A. For a combinatorial noose NA in A, we can
map N to NA bounding (clockwise) a unique subgraph Asub of A.

In each step of the algorithm, we compute the solutions for a sub-problem in Ge,
where each solution consists of three parts, namely

• a plane edge-colored graph A ∈ A;
• a combinatorial noose NA in A; and
• a mapping γ from combinatorial noose N to NA (defined below).

NA has the properties that (a) it bounds (clockwise) a subgraph Asub ⊆ A and
(b) no vertex in V (Asub) \ V (NA) is incident to a c-edge. The subgraph Asub is rep-
resenting the part of model M already computed, whereas the residual graph of A

represents the part of M which still has to be verified. For every middle set, we store
this information in an array of triples 〈A,NA,γ 〉.

We define now valid mappings between combinatorial nooses and describe how
partial solutions are stored in the dynamic programming. Then, we give the different
DP-steps and finally verify the approach.

3.5 Valid Partial Solutions

For a middle set mid(e) of the rooted sc-decomposition 〈T ,μ,π〉 of plane graph
G, N = Ne is the associated combinatorial noose in G with face-vertex sequence



Algorithmica

Fig. 2 The figure on the left hand side illustrates the graph G of Fig. 1 with an oriented noose N (dashed)
enclosing subgraph Ge . The figure in the middle shows a graph A of collection A (that is, A is a major
of the graph H of Fig. 1) with a noose NA enclosing Asub. The figure on the right hand side shows a
mapping γ from the faces and vertices of N to NA

of F(N) ∪ V (N) separating Ge from the residual graph. Let N denote the set of
all combinatorial nooses of A whose length is at most the length of N and which
bound (clockwise) a subgraph Asub ⊆ A such that no vertex in V (Asub) \ V (NA) is
an end-vertex of a c-edge. We now map N to nooses NA ∈ N, preserving the order.
More precisely, we map vertices of N to both vertices and faces of A. Therefore, we
consider partitions of V (N) = V1(N) ∪̇V2(N) where vertices in V1(N) are mapped
to vertices of V (A) and vertices in V2(N) to faces of F(A).

We define a mapping γ : V (N)∪F(N) → V (A)∪F(A) relating N to the combi-
natorial nooses in N. For every NA ∈ N on faces and vertices of set F(NA)∪V (NA)

and for every partition V1(N) ∪̇V2(N) of V (N), mapping γ is valid if

(a) γ restricted to V1(N) is a bijection to V (NA);
(b) every v ∈ V2(N) and f ∈ F(N) satisfy γ (v) ∈ F(NA) and γ (f ) ∈ F(NA);
(c) for every vi ∈ V (N) and subsequence [fi−1, vi, fi] of N : if vi ∈ V2(N), then

face γ (vi) is equal to both γ (fi−1) and γ (fi), and if vi ∈ V1(N), then vertex
γ (vi) is incident to both γ (fi−1) and γ (fi); and

(d) Asub is a minor of Ge with respect to (a)–(c).

Items (a) and (b) say where to map the faces and vertices of N to. Item (c) (with
(a)) makes sure that if two vertices vh, vj in sequence N = [. . . , vh, . . ., vj , . . .]
are mapped to two vertices wi,wi+1 that appear in sequence NA as [. . . ,wi, fi ,
wi+1, . . .], then every face and vertex between vh, vj in sequence N (here under-
lined) is mapped to face fi . Item (d) simply makes clear that the boundary of Ge is
mapped to the boundary Asub such that contracting some part of Ge \N leads to Asub.
For an illustration, see Fig. 2.

We assign an array �e to each mid(e) consisting of triples, where each triple
〈A,NA,γ 〉 represents a minor candidate A together with a valid mapping γ from
a combinatorial noose N corresponding to mid(e) to a combinatorial noose NA ∈
N. The vertices and faces of N are oriented clockwise around the drawing of Ge.
Without loss of generality, we assume for every 〈A,NA,γ 〉 the orientation of NA to
be clockwise around the drawing of subgraph Asub of A.
Step 0: Initializing the leaves. For every parent edge e of a leaf v of T , we initial-
ize for every A ∈ A the valid mappings from the combinatorial noose bounding the



Algorithmica

edge μ(v) of G to every combinatorial noose of length at most two in A (clockwise
bounding at most one edge of A).
Step 1(a): Update process. We update the arrays of the middle sets bottom-up in
post-order manner from the leaves of T to root r . During this updating process it is
guaranteed that the local solutions for each minor associated with a middle set of the
sc-decomposition are combined into a global solution for the overall graph G.

In each dynamic programming step, we compare the arrays of two middle sets
mid(e) and mid(f ) in order to create a new array assigned to the middle set mid(g),
where e, f , and g have a vertex of T in common. From [15] we know that the combi-
natorial noose Ng is formed by the symmetric difference of the combinatorial nooses
Ne,Nf and that Gg = Ge ∪ Gf . In other words, we are ensured that if two solutions
on Ge and Gf bounded by Ne and Nf fit together, then they form a new solution
on Gg bounded by Ng . We now determine when two solutions represented as tuples
in the arrays �e and �f fit together. We update two triples 〈A1,N1

A,γ1〉 ∈ �e and
〈A2,N2

A,γ2〉 ∈ �f to a new triple in �g if

• A1 = A2 =: A ∈ A and every edge of A with no endpoint in V (N1
A) ∪ V (N2

A) is
an m-edge;

• for every x ∈ (V (Ne) ∪ F(Ne)) ∩ (V (Nf ) ∪ F(Nf )), we have γ1(x) = γ2(x); and
• for the subgraph A1

sub of A separated by N1
A and the subgraph A2

sub of A separated
by N2

A, we have that E(A1
sub)∩E(A2

sub) = ∅ and V (A1
sub)∩V (A2

sub) ⊆ {γ (v) | v ∈
V (Ne) ∩ V (Nf )}.

That is, we only update solutions with the same graph A and with the two nooses
N1

A and N2
A bounding (clockwise) two edge-disjoint parts of A and intersecting in a

consecutive subsequence of both N1
A and N2

A. If the two solutions on Ne and Nf fit
together, we get a valid mapping γ3 : Ng → N3

A to a noose N3
A of A as follows:

• for every x ∈ (V (Ne) ∪ F(Ne)) ∩ (V (Nf ) ∪ F(Nf )) ∩ (V (Ng) ∪ F(Ng)) we have
γ1(x) = γ2(x) = γ3(x);

• for every y ∈ (V (Ne) ∪ F(Ne)) \ (V (Nf ) ∪ F(Nf )) we have γ1(y) = γ3(y); and
• for every z ∈ (V (Nf ) ∪ F(Nf )) \ (V (Ne) ∪ F(Ne)) we have γ2(z) = γ3(z).

We have that γ3 is a valid mapping from Ng to the combinatorial noose N3
A that

bounds subgraph A3
sub = A1

sub ∪ A2
sub.

Step 1(b): Post-processing. Before adding a triple 〈A,N3
A,γ3〉 to array �g , we need

to manipulate A so that (a) it does not grow too big and (b) it is suitable for future
update operations. In A restricted to subgraph A3

sub, we contract all c-edges with at
least one end-vertex not in N3

A in order to fulfill (a). Concerning (b), for every B ∈ A
we check for all its nooses NB with |V (NB)| = |V (N3

A)| if there is a bijection β from
N3

A to NB such that the following holds. If in a copy of B we contract those c-edges
which (i) are in the subgraph counter-clockwise bounded by NB and (ii) have at least
one end-vertex not in NB , then we obtain a edge-colored graph isomorphic to A. We
define δ = γ3 ◦ β and we replace 〈A,N3

A,γ3〉 in array �g by those triples 〈B,NB, δ〉
which validate properties (i) and (ii).
Step 2: Termination. If, at some step, we have a solution where the entire minor H is
formed, we terminate the algorithm accepting. That is the case, if for some triple we



Algorithmica

have that H � Asub � A and Asub is bounded by NA. We output model M of H in G

represented by this A by reconstructing a solution top-down in 〈T ,μ,π〉. If at root r

no A ∈ A has been computed, we reject.

3.6 Correctness of the Algorithm

In Corollary 1, we already showed that the preprocessing correctly computes the
collection A of pairwise non-isomorphic edge-colored plane graphs A on at least h

and at most 1.5 ·bw(G)+h vertices containing H as a minor. In the update process on
the nooses N1,N2 of two incident edges of the sc-decomposition, we produce graphs
with as many vertices since we have for candidate A of H in G that A intersects
V (N1) ∪ V (N2), and by Remark 1 that |V (N1) ∪ V (N2)| ≤ 1.5 · bw(G) and up to h

vertices of A might be outside N1
A and N2

A.
We have already seen how to map every combinatorial noose of G that identifies

a separation of G via a valid mapping γ to a combinatorial noose of A determin-
ing a separation of A. Step 0 ensures that every edge of A is bounded by a com-
binatorial noose NA of length two, which is determined by triple 〈A,NA,γ 〉 in an
array assigned to a leaf edge of T . We need to show that Step 1(a) and 1(b) com-
pute a valid solution for Ng from Ne and Nf , given incident edges e, f, g. We note
that the property that the symmetric difference of the combinatorial nooses Ne and
Nf forms a new combinatorial noose Ng is passed on to the combinatorial nooses
N1

A,N2
A, and N3

A of A, too. If the two solutions fit together, then A1
sub of A sepa-

rated by N1
A and subgraph A2

sub of A separated by N2
A only intersect in the image of

V (Ne) ∩ V (Nf ). We observe that N1
A and N2

A intersect in a consecutive alternating

subsequence with order reversed to each other, i.e., N1
A |Ne∩Nf

= N2
A |Ne∩Nf

, where
NA means the reversed sequence NA. Since every oriented NA uniquely identifies a
separation of E(A), we can easily decide whether two triples 〈A,N1

A,γ 〉 ∈ �e and
〈A,N2

A,γ 〉 ∈ �f fit together and bound a new subgraph A3
sub of A. In Step 1(b), we

contract all c-edges in A3
sub with an end-vertex in V (A3

sub) \ V (N3
A) such that A3

sub

represents a subgraph of H . Next we blow up A3
sub, that is the subgraph of A on the

other side which N3
A bounds counter-clockwise. From A we compute every possi-

ble graph partitioned into one subgraph isomorphic to A3
sub and one subgraph major

of A3
sub separated by a noose bijectively mapped from N3

A. If there exists an A ∈ A
which is a minor of G, then at some point we will enter Step 2 and produce the entire
model M .

3.7 Running Time of the Algorithm

By Corollary 1, computing the collection A in the preprocessing step can be done
in time 2O(bw(G)+h). We now give an upper bound on the size of each array � . For
each A ∈ A, the number of combinatorial nooses in N we are considering is bounded
by the total number of combinatorial nooses in A, which is 2O(bw(G)+h) by Proposi-
tion 5. The number of partitions of vertices of any combinatorial noose N is bounded
by 2|V (N)|. Since the order of both NA and N is given, we only have 2 · |V (A)| pos-
sibilities to map vertices of N to NA, once the vertices of N are partitioned. Thus, in



Algorithmica

an array �e we may have up to 2O(|V (A)|) · 2|V (N)| · |V (A)| triples 〈A,NA,γ 〉. We
first create all triples in the arrays assigned to the leaves. Since middle sets of leaves
only consist of an edge in G, we get arrays of size O(|V (A)|2), which we compute in
the same asymptotic running time. When updating middle sets mid(e),mid(f ), we
compare every triple of array �e to every triple in array �f to check if two triples
fit together. We can compute the unique subgraph A1

sub (resp. A2
sub) described by a

triple in �e (resp. �f ), compare two triples in �e and �f , and create a new triple
in time linear in the order of V (N) and V (H). For adding a new triple to �g in the
post-processing, we apply the color coding technique [4] for computing each of the
2O(bw(G)+h) nooses in N in the same asymptotic running time.

This completes the proof of Lemma 2.

Proof of Theorem 1 We put everything together by verifying Algorithm 3.1. We pro-
duce in time O(n2 · logn) a sc-decomposition of input graph G [19]. Next, either we
can immediately compute a model of H in G in time O(n2 · logn + h4) (Proposi-
tion 6) or we run our 2-step-algorithm: we produce all majors of the minor pattern
(Lemma 1) with Algorithm 3.2 in time 2O(h), and run partially embedded dynamic
programming in time 2O(h) · n (Lemma 2). �

4 Conclusions and Further Research

In this paper we showed that PLANAR H -MINOR CONTAINMENT is solvable in time
O(2O(h) · n + n2 · logn) for a host graph G on n vertices and a pattern H on h

vertices. That is, we showed that the problem can be solved in single-exponential
time in h, significantly improving all previously known algorithms. Similar to [13],
we can enumerate and count the number of models within the same time bounds.

Let us discuss some interesting avenues for further research concerning minor
containment problems. First, it seems possible to solve other variants of planar mi-
nor containment in single-exponential time using our approach, such as testing for a
contraction minor, an induced minor, or a topological minor, as it has been recently
done in [1] for general host graphs using completely different techniques. Also, it
would be interesting to count the number of non-isomorphic models faster than just
by enumerating models and removing isomorphic duplicates.

An important question is if, up to some assumption from complexity theory, the
running time of our algorithm is tight. In other words, is there a 2o(h) ·nO(1) algorithm
(i.e., a subexponential algorithm) solving PLANAR H -MINOR CONTAINMENT, or
the existence of such an algorithm would imply the failure of, say, the Exponential
Time Hypothesis? A first step could be to study the existence of subexponential al-
gorithms when the pattern is further restricted to be a k-outerplanar graph for some
constant k, or any other subclass of planar graphs.

Conversely, single-exponential algorithms may exist for host graphs more gen-
eral than planar graphs. The natural candidates are host graphs embeddable in an
arbitrary surface. One possible approach could be to use the framework recently in-
troduced in [33] for performing dynamic programming for graphs on surfaces. The
main ingredient of this framework is a new type of branch decomposition of graphs



Algorithmica

on surfaces, called surface cut decomposition, which plays the role of sphere cut
decompositions for planar graphs.

Finally, an interesting open question is whether the PLANAR DISJOINT PATHS

problem, a problem closely related to minor testing (see [35]), can be solved with a
similar running time.

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized algorithms for minor
containment. In: Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT). LNCS, vol. 6139, pp. 322–333 (2010)

2. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast minor testing in planar graphs. In: Proc.
of the 18th Annual European Symposium on Algorithms (ESA). LNCS, vol. 6346, pp. 97–109 (2010)

3. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for
dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)

4. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41,

153–180 (1994)
6. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. Algorith-

mica 51(1), 81–98 (2008)
7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algo-

rithms on graphs of bounded genus and H -minor-free graphs. J. ACM 52(6), 866–893 (2005)
8. Demaine, E.D., Hajiaghayi, M.: Bidimensionality. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms.

Springer, Berlin (2008)
9. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and

PTASs. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 590–601 (2005)

10. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.I.: Algorithmic graph minor theory: decomposi-
tion, approximation, and coloring. In: Proc. of the 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 637–646 (2005)

11. Diestel, R.: Graph Theory, vol. 173. Springer, Berlin (2005)
12. Dinneen, M., Xiong, L.: The Feasibility and Use of a Minor Containment Algorithm. Computer Sci-

ence Technical Reports, vol. 171. University of Auckland, Auckland (2000)
13. Dorn, F.: Planar subgraph isomorphism revisited. In: Proc. of the 27th International Symposium on

Theoretical Aspects of Computer Science (STACS), pp. 263–274 (2010)
14. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Comput. Sci. Rev.

2(1), 29–39 (2008)
15. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs:

exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)
16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
17. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms.

J. Comput. Syst. Sci. 49, 769–779 (1994)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completeness.

Freeman, New York (1979)
19. Gu, Q.-P., Tamaki, H.: Constant-factor approximations of branch-decomposition and largest grid mi-

nor of planar graphs in O(n1+ε) time. In: Proc. of the 20th International Symposium Algorithms and
Computation (ISAAC). LNCS, vol. 5878, pp. 984–993 (2009)

20. Gu, Q.P., Tamaki, H.: Improved bound on the planar branchwidth with respect to the largest grid
minor size. Technical report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009

21. Hicks, I.V.: Branch decompositions and minor containment. Networks 43(1), 1–9 (2004)
22. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary

report). In: Proc. of the 6th Annual ACM Symposium on Theory of Computing (STOC), pp. 172–184
(1974)

23. Kawarabayashi, K.I., Reed, B.A.: Hadwiger’s conjecture is decidable. In: Proc. of the 41st Annual
ACM Symposium on Theory of Computing (STOC), pp. 445–454 (2009)



Algorithmica

24. Kawarabayashi, K.I., Wollan, P.: A shorter proof of the graph minor algorithm—the unique linkage
theorem. In: Proc. of the 42st Annual ACM Symposium on Theory of Computing (STOC), pp. 687–
694 (2010)

25. Li, Z., Nakano, S.-I.: Efficient generation of plane triangulations without repetitions. In: Proc. of
the 28th International Colloquium on Automata, Languages and Programming (ICALP). LNCS,
vol. 2076, pp. 433–443 (2001)

26. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627
(1980)

27. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001)
28. Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their

triangulations. J. Comb. Theory, Ser. B 88(1), 119–134 (2003)
29. Reed, B.A., Li, Z.: Optimization and recognition for K5-minor free graphs in linear time. In: Proc. of

the 8th Latin American Symposium on Theoretical Informatics (LATIN), pp. 206–215 (2008)
30. Robertson, N., Seymour, P.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B

63(1), 65–110 (1995)
31. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B

62(2), 323–348 (1994)
32. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B

92(2), 325–357 (2004)
33. Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. In: Proc. of the 37th

International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 6198,
pp. 372–383 (2010)

34. Sanders, D.P.: On Hamilton cycles in certain planar graphs. J. Graph Theory 21(1), 43–50 (1998)
35. Schrijver, A.: Complexity of disjoint paths problems in planar graphs. In: Algorithms—ESA ’93,

Proc. of the First Annual European Symposium. LNCS, vol. 726, pp. 357–359 (1993)
36. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
37. Tutte, W.T.: A census of planar triangulations. Can. J. Math. 14, 21–38 (1962)
38. Whitney, H.: A theorem on graphs. Ann. Math. 32, 378–390 (1931)


	Fast Minor Testing in Planar Graphs
	Abstract
	Introduction
	Our Results and Key Ideas

	Preliminaries
	Graphs and Graph Minors
	Branchwidth
	Planar Graphs and Equivalent Drawings
	Nooses and Combinatorial Nooses
	Sphere Cut Decompositions

	Minor Testing in Planar Graphs
	Case of Large Branchwidth
	Preprocessing
	Partially Embedded Dynamic Programming
	Dynamic Programming
	Valid Partial Solutions
	Correctness of the Algorithm
	Running Time of the Algorithm

	Conclusions and Further Research
	References


