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Abstract: Let H and G be graph classes. We say that H has the
Erd”os–Pósa property for G if for any graph G∈G, the minimum vertex
covering of all H-subgraphs of G is bounded by a function f of the
maximum packing of H-subgraphs in G (by H-subgraph of G we mean
any subgraph of G that belongs to H). Robertson and Seymour [J Combin
Theory Ser B 41 (1986), 92–114] proved that if H is the class of all graphs
that can be contracted to a fixed planar graphH, thenH has the Erd”os–Pósa
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property for the class of all graphs with an exponential bounding function.
In this note, we prove that this function becomes linear when G is any
non-trivial minor-closed graph class. � 2010 Wiley Periodicals, Inc. J Graph Theory
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1. INTRODUCTION

Given a graph G we denote by V(G) and E(G) its vertex and edge set, respectively.
A graph class G is called non-trivial if it does not contain all graphs. We use the notation
H⊆G to denote that H is a subgraph of G. We say that a graph G is a G-subgraph of
a graph G′ if G⊆G′ and G∈G.

Let H be a class of graphs. Given a graph G, we define the covering number of
G with respect to the class H as

coverH(G)=min{k |∃S⊆V(G)|S|≤k and ∀H∈HH �⊆G\S}.
In other words, coverH(G)≤k if there is a set of at most k vertices meeting every
H-subgraph of G. The packing number of G with respect to the class H is defined as

packH(G)=max {k |∃ a partition V1, . . . ,Vk of V(G)

such that ∀i∈{1,.. .,k}∃H∈H H⊆G[Vi]}.
Less formally, packH(G)≥k if G contains k vertex-disjoint H-subgraphs.

A graph class H satisfies the Erdős–Pósa property for some graph class G if there
is a function f (depending only on H and G) such that, for any graph G∈G,

packH(G)≤coverH(G)≤ f (packH(G)) (1)

In [6], Erdős and Pósa proved that (1) holds for all graphs when H is the class of all
cycles. The problem of identifying more general graph classes where the Erdős–Pósa
property is satisfied, has attracted a lot of attention, see [13, 3, 10, 9, 14, 1]. For further
extensions and results of the same problem on matroids, see [8, 7].

We say that a graph G can be contracted to H if H can be obtained from G by
a series of edge contractions (the contraction of an edge e= (u,v) in G results in a
graph G′, in which u and v are replaced by a new vertex ve and in which for every
neighbor w of u or v in G, there is an edge (w,ve) in G′). We say that H is a minor of
G if some subgraph of G can be contracted to H. A graph class G is minor-closed if
any minor of a graph in G is again a member of G. We denote by M(H) the class of
graphs that can be contracted to H. In [11, Proposition 8.2] Robertson and Seymour
proved the following.

Proposition 1. Let H be a connected graph. Then M(H) satisfies the Erdős–Pósa
property for all graphs if and only if H is planar.

Another proof of Proposition 1 can also be found in the monograph “Graph Theory” [5],
by R. Diestel (Corollary 12.4.10 and Exercise 39). According to the proof of
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Proposition 1, the bounding function f (k) in (1) is exponential in k. However, by
the original result of Erdős–Pósa [6], when H is isomorphic to K3, f (k)≤4k logk.
In this note, we prove that the bound becomes linear for any planar H, when
graphs are restricted to some non-trivial minor-closed class. Formally, we prove the
following result.

Theorem 1. For a connected planar graph H, let H be the class of graphs that are
contractible to H. Let also G be a non-trivial minor-closed graph class. Then there is
a constant �G,H depending only on G and H such that for every graph G∈G, it holds that

packH(G)≤coverH(G)≤�G,H ·packH(G).

2. THE PROOF

We start with auxiliary definitions and statements. If G is a graph and x∈V(G) we use
the notation G−x for the graph G[V(G)−{x}].

A tree decomposition of a graph G is a pair (T ,X ={Xt}t∈V(T)) such that

• ⋃
u∈V(T)=V(G),

• for every edge {x,y}∈E(G) there is a t∈V(T) such that {x,y}⊆Xt, and
• for every vertex v∈V(G) the subgraph of T induced by the set {t |v∈Xt} is
connected.

The width of a tree decomposition is maxt∈V(T) |Xt|−1 and the treewidth of G, tw(G),
is the minimum width over all tree decompositions of G.

Our first observation is the following.

Lemma 1. For a planar graph H, let H be the class of graphs that are contractible
to H. Let also G be a non-trivial minor-closed graph class. Then, there is a constant cG,H ,
depending only on G and H such that for any graph G∈G, tw(G)≤cG,H ·(packH(G))1/2 .

Proof. Let k=packH(G). In this proof, for any positive integer t, we denote the
(t×t)-grid by �t. Let

cH =min{r |H is a minor of �r}
(for a short proof that constant cH exists, see e.g. [12, Proposition (1.5)]). Notice that
if m=
k1/2�+1, then packH(�m·cH )>k. We conclude that G does not contain �m·cH
as a minor. From [4, Theorem 1], there is a constant cG depending only on G such that
tw(G)≤cG ·m ·cH and the Lemma follows. �

For the proof of the next Lemma, we enhance the definition of a tree decomposition
(T ,X ) as follows: T is a tree rooted on some node r where Xr=∅, each of its nodes
have at most two children and could be one of the following

1. Introduce node: a node t that has only one child t′ where Xt⊃Xt′ and |Xt|=
|Xt′ |+1.

2. Forget node: a node t that has only one child t′ where Xt⊂Xt′ and |Xt|=|Xt′ |−1.
3. Join node: a node t with two children t1 and t2 such that Xt=Xt1 =Xt2 .
4. Base node: a node t that is a leaf of t is different than the root, and Xt=∅.
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Notice that, according to the above definitions, the root r of T is either a forget or a
join node. It is easy to see that any tree decomposition can be transformed to one with
the above requirements while maintaining the same width (see e.g. [2]). From now on,
when we refer to a tree decomposition (T ,X ) we presume the above requirements.

Given a tree decomposition (T ,X ) and some node t of T , we define as Tt the subtree
of T rooted at t. Clearly, if r is the root of T , it holds that Tr=T . We also define
Gt=G[

⋃
s∈V(Tt)Xs] and G−

t =Gt−Xt.
Given a graph G, we call a triple (V1,S,V2) d-separation triple of G if |S|≤d and

{V1,S,V2} is a partition of V(G) such that there is no edge in G between a vertex in
V1 and a vertex in V2.

Lemma 2. For a connected planar graph H, let H be the class of graphs that are
contractible to H. Let also G be a non-trivial minor-closed graph class and let G∈G
such that 1≤packH(G)=k. Then there is an cG,H ·√k-separation triple (V1,X,V2)
of G, where k / 3≤packH(G[V1])≤2k / 3 and packH(G[V1])+packH(G[V2])≤k (cG,H
is a constant depending on G and H).

Proof. Let (X ,T) be a tree decomposition of G of width at most cG,H ·√k, as in
Lemma 1. We set up a labeling p :V(T)→N∪{0} such that

p(t)=packH(G−
t ).

The following observations are direct consequences of the definitions.

Observation 1. If t∈V(T) is an introduce node with t′ as a child, then p(t′)=p(t).
This holds because then G−

t′ =G−
t .

Observation 2. If t∈V(T) is a forget node with t′ as child, then p(t)−p(t′)∈{0,1}.
This holds because G−

t′ =G−
t −x for some vertex x∈V(G−

t′ ).

Observation 3. If t∈V(T) is a join node with t1 and t2 as children, then p(t1)+
p(t2)=p(t). This holds because G−

t1 and G−
t2 are disjoint graphs, G−

t =G−
t1 ∪G−

t2 and
any graph in H is connected (because of the connectivity of H).

Observation 4. If t∈V(T) is a base node, then p(t)=0. This holds because then Gt is
the empty graph.

Observation 5. p(r)=packH(G). This holds because, Xr=∅ and thus G−
r =Gr=G.

Let t∈V(T) be the node where p(t)>2k / 3 and for each child t′ of t, p(t′)≤2k / 3.
From the above observations, this node exists and is unique provided that k>0.
Moreover, t may be either a forget node or a join node (by Observation 1 and the
definition of t).

We distinguish two cases:
Case 1. If t is a forget node, we set V1=V(G−

t′ ) and V2=V(G)−(V1∪Xt′ ) and
observe that packH(Gi)≤�2k / 3�, i=1,2 (by Observation 2 and the definition of t).
Also we set X=Xt′ .

Case 2. If t is a join node with children t1 and t2, we have that p(ti)≤2k / 3, i=1,2
(by Observation 3 and definition of t). However, as p(t1)+p(t2)>2k / 3, we also have
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that either p(t1)≥k / 3 or p(t2)≥k / 3. W.l.o.g. we assume that p(t1)≥k / 3 and we set
V1=V(G−

t1 ), V2=V(G)−(V1∪Xt1 ) and X=Xt1 .
We set ki=packH(G[Vi]), i=1,2. We conclude that in both cases, k / 3≤k1≤2k / 3

and k1+k2≤k. Therefore (V1,X,V2) is the required cG,H ·√k-separation triple. �

Proof of Theorem 1. We only prove the right hand inequality as the left hand one
is trivial. In fact, we prove that

coverH(G)≤� ·cG,H ·packH(G)−� ·cG,H
√
packH(G) (2)

for some constants �, � (where �−1≥�>2) that will be determined later.
Clearly, (2) holds trivially when packH(G)=0 and assume that it holds when

packH(G)<k for some k≥1. Let G be a graph such that packH(G)=k≥1.
According to Lemma 2, G contains a cG,H ·√k-separation triple (V1,X,V2), where
k / 3≤packH(G[V1])≤2k / 3 and packH(G[V1])+packH(G[V2])≤k. Notice that
coverH(G)≤coverH(G[V1])+coverH(G[V2])+|X|. Using the induction hypothesis,
we obtain that, for some �∈ [1 /3,2 /3],

coverH(G[Vi])≤ � ·cG,H ·� ·k−�·cG,H ·
√

� ·k
+� ·cG,H ·(1−�)·k−�·cG,H ·

√
(1−�)·k+cG,H ·

√
k

which is upper bounded by �·cG,H ·k−�·cG,H ·√k, if we choose �=3.54 and �=2.54.
Therefore, Theorem holds for �G,H =3.54 ·cG,H. �
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mathematics (Budapest, 1999).

Journal of Graph Theory DOI 10.1002/jgt


