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Abstract: Let H and G be graph classes. We say that H has the
Erd6s—Pdsa property for G if for any graph GegG, the minimum vertex
covering of all H-subgraphs of G is bounded by a function f of the
maximum packing of H-subgraphs in G (by H-subgraph of G we mean
any subgraph of G that belongs to H). Robertson and Seymour [J Combin
Theory Ser B 41 (1986), 92-114] proved that if H is the class of all graphs
that can be contracted to a fixed planar graph H, then ‘H has the Erd6s—Pdsa
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property for the class of all graphs with an exponential bounding function.
In this note, we prove that this function becomes linear when G is any
non-trivial minor-closed graph class. © 2010 Wiley Periodicals, Inc. J Graph Theory
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1. INTRODUCTION

Given a graph G we denote by V(G) and E(G) its vertex and edge set, respectively.
A graph class G is called non-trivial if it does not contain all graphs. We use the notation
H C G to denote that H is a subgraph of G. We say that a graph G is a G-subgraph of
a graph G' if GC G’ and Geg.

Let ‘H be a class of graphs. Given a graph G, we define the covering number of
G with respect to the class H as

covery(G)=min{k|ASCV(G)|S| <k and VycyHZG\S}

In other words, covery (G) <k if there is a set of at most k vertices meeting every
‘H-subgraph of G. The packing number of G with respect to the class H is defined as

packy,(G)=max {k|3 a partition Vi,...,V; of V(G)
such that Vie{l,...,k}aHeH HCGlVi]}.

Less formally, packy,(G) >k if G contains k vertex-disjoint H-subgraphs.
A graph class H satisfies the Erd6s—Podsa property for some graph class G if there
is a function f (depending only on H and G) such that, for any graph Geg,

packy,(G) < covery (G) <f(packy(G)) (D)

In [6], Erd6s and Posa proved that (1) holds for all graphs when H is the class of all
cycles. The problem of identifying more general graph classes where the Erd6s—Posa
property is satisfied, has attracted a lot of attention, see [13, 3, 10,9, 14, 1]. For further
extensions and results of the same problem on matroids, see [8, 7].

We say that a graph G can be contracted to H if H can be obtained from G by
a series of edge contractions (the contraction of an edge e=(u,v) in G results in a
graph G’, in which u and v are replaced by a new vertex v, and in which for every
neighbor w of u or v in G, there is an edge (w,v,) in G’). We say that H is a minor of
G if some subgraph of G can be contracted to H. A graph class G is minor-closed if
any minor of a graph in G is again a member of G. We denote by M(H) the class of
graphs that can be contracted to H. In [11, Proposition 8.2] Robertson and Seymour
proved the following.

Proposition 1. Let H be a connected graph. Then M(H) satisfies the ErdSs—Posa
property for all graphs if and only if H is planar.

Another proof of Proposition 1 can also be found in the monograph “Graph Theory” [5],
by R. Diestel (Corollary 12.4.10 and Exercise 39). According to the proof of
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Proposition 1, the bounding function f(k) in (1) is exponential in k. However, by
the original result of Erd6s—Posa [6], when H is isomorphic to K3, f(k) <4klogk.
In this note, we prove that the bound becomes linear for any planar H, when
graphs are restricted to some non-trivial minor-closed class. Formally, we prove the
following result.

Theorem 1. For a connected planar graph H, let H be the class of graphs that are
contractible to H. Let also G be a non-trivial minor-closed graph class. Then there is
a constant g g depending only on G and H such that for every graph G € G, it holds that

packy,(G) <covery(G)<og g -packy(G).

2. THE PROOF

We start with auxiliary definitions and statements. If G is a graph and x € V(G) we use
the notation G—x for the graph G[V(G)—{x}].
A tree decomposition of a graph G is a pair (T, X = {X;},ev(r)) such that

® UueV(T)ZV(G)’

e for every edge {x,y} € E(G) there is a t€ V(T) such that {x,y} € X;, and

e for every vertex veV(G) the subgraph of T induced by the set {t|veX;} is
connected.

The width of a tree decomposition is max;ev(r) |X;|—1 and the treewidth of G, tw(G),
is the minimum width over all tree decompositions of G.
Our first observation is the following.

Lemma 1. For a planar graph H, let H be the class of graphs that are contractible
to H. Let also G be a non-trivial minor-closed graph class. Then, there is a constant cg g,
depending only on G and H such that for any graph G € G, tw(G) <cg g - (packH(G))l/z.

Proof. Let k=packy(G). In this proof, for any positive integer ¢, we denote the
(tx t)-grid by T';. Let

cg=min{r|H is a minor of I',;}

(for a short proof that constant cg exists, see e.g. [12, Proposition (1.5)]). Notice that
if m=T[k"27+1, then packy (I',.c,;) > k. We conclude that G does not contain I'y,.,,
as a minor. From [4, Theorem 1], there is a constant cg depending only on G such that
tw(G) <cg-m-cy and the Lemma follows. |

For the proof of the next Lemma, we enhance the definition of a tree decomposition
(T, X) as follows: T is a tree rooted on some node r where X, =, each of its nodes
have at most two children and could be one of the following

1. Introduce node: a node ¢ that has only one child # where X; DX, and |X;|=
[Xp|+1.

2. Forget node: a node t that has only one child ¢ where X, C Xy and |X;|=|Xy|—1.

3. Join node: a node t with two children #; and #, such that X, =X, =X,.

4. Base node: a node t that is a leaf of ¢ is different than the root, and X; =.
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Notice that, according to the above definitions, the root r of T is either a forget or a
join node. It is easy to see that any tree decomposition can be transformed to one with
the above requirements while maintaining the same width (see e.g. [2]). From now on,
when we refer to a tree decomposition (7, X') we presume the above requirements.

Given a tree decomposition (7, X') and some node ¢ of T, we define as T; the subtree
of T rooted at . Clearly, if r is the root of T, it holds that 7,=T. We also define
Gt:G[UseV(T,) X,] and G; =G;—X;.

Given a graph G, we call a triple (V1,S, V) d-separation triple of G if |S|<d and
{V1,S,V2} is a partition of V(G) such that there is no edge in G between a vertex in
V1 and a vertex in V5.

Lemma 2. For a connected planar graph H, let H be the class of graphs that are
contractible to H. Let also G be a non-trivial minor-closed graph class and let Ge G
such that 1 <packy(G)=k. Then there is an cg,Hw/l;-separation triple (V1,X,V2)
of G, where k/3 <packy (G[V1]) <2k/3 and packy (G[V1])+packy (G[V2]) <k (cgn
is a constant depending on G and H).

Proof. Let (X,T) be a tree decomposition of G of width at most Cg,Hw//;, as in
Lemma 1. We set up a labeling p: V(T)— NU{0} such that

p()=packy (G,).
The following observations are direct consequences of the definitions.

Observation 1. If t€ V(T) is an introduce node with t' as a child, then p(t')=p(?).
This holds because then G, =G .

Observation 2. If t€ V(T) is a forget node with t' as child, then p(t)—p(t')€{0,1}.
This holds because G, =G, —x for some vertex xe V(G,).

Observation 3. If te V(T) is a join node with t| and t; as children, then p(t))+
p(t2)=p(0). This holds because G, and G,, are disjoint graphs, G, =G, UG,, and
any graph in 'H is connected (because of the connectivity of H).

Observation 4. [fte V(T) is a base node, then p(t)=0. This holds because then G, is
the empty graph.

Observation 5. p(r)=packy(G). This holds because, X,=0 and thus G, =G,=G.

Let t€ V(T) be the node where p(r) >2k/3 and for each child ¢ of ¢, p(t') <2k/3.
From the above observations, this node exists and is unique provided that k> 0.
Moreover, t may be either a forget node or a join node (by Observation 1 and the
definition of 7).

We distinguish two cases:

Case 1. If 7 is a forget node, we set Vi =V(G,) and V,=V(G)—(V1UXy) and
observe that packy,(G;) <[2k/3],i=1,2 (by Observation 2 and the definition of f).
Also we set X=Xp.

Case 2. If ¢ is a join node with children #; and t,, we have that p(t;) <2k/3,i=1,2
(by Observation 3 and definition of 7). However, as p(t1)+p(t2) > 2k/3, we also have
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that either p(t;)>k/3 or p(t2)>k/3. W.lo.g. we assume that p(¢1) >k/3 and we set
Vi=V(G), V2=V(G)—(V1UX;,) and X=X;,.

We set k; =packy (G[V;]),i=1,2. We conclude that in both cases, k/3 <k; <2k/3
and k| 4k, <k. Therefore (V1,X, V>) is the required cg g - «/E—separation triple. [ |

Proof of Theorem 1. We only prove the right hand inequality as the left hand one
is trivial. In fact, we prove that

covery(G) <a-cg p-packy (G)—f-cg u/packy(G) 2)

for some constants o, § (Where «— 1> f§>2) that will be determined later.

Clearly, (2) holds trivially when packy;(G)=0 and assume that it holds when
packy(G) <k for some k>1. Let G be a graph such that packy (G)=k>1.
According to Lemma 2, G contains a Cg,H-«/l;—separation triple (V1,X,V2), where
k/3 <packy (G[V1])<2k/3 and packy(G[Vi])+packy (G[V2])<k. Notice that
covery(G) <covery(G[V1])+covery (G[V>])+|X|. Using the induction hypothesis,
we obtain that, for some 0€[1/3,2/3],

covery(G[Vil)<oa-cgu-0-k—f-cgu-vVo-k

to-cgp-(1—0)-k—P-cg-+/(1—0)-k+cgu vk

which is upper bounded by o-cgy-k—f-cgu- Vk, if we choose o=3.54 and f=2.54.
Therefore, Theorem holds for 6g g =3.54-cg 1. n
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