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a b s t r a c t

A graph parameter is self-dual in some class of graphs embeddable in some surface if
its value does not change in the dual graph by more than a constant factor. Self-duality
has been examined for several width parameters, such as branchwidth, pathwidth, and
treewidth. In this paper, we give a direct proof of the self-duality of branchwidth in graphs
embedded in some surface. In this direction, we prove that bw(G∗) ≤ 6 · bw(G)+ 2g − 4
for any graph G embedded in a surface of Euler genus g .

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries

Our main reference for graphs on surfaces is the monograph by Mohar and Thomassen [10]. A surface is a connected
compact 2-manifold without boundaries. A surface Σ can be obtained, up to homeomorphism, by adding eg(Σ) crosscaps
to the sphere, and eg(Σ) is called the Euler genus of Σ . We denote by (G, Σ) a graph G embedded in a surface Σ , that is,
drawn in Σ without edge crossings. A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc on
Σ is a subset that is homeomorphic to a cycle. If an O-arc is G-normal, then we call it a noose. A noose N is contractible if it
is the boundary of some disc on Σ and is surface separating if Σ \ N is disconnected. The length of a noose is the number
of vertices it meets. Representativity, or face width, is a parameter that quantifies local planarity and density of embeddings.
The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ . We
call an embedding (G, Σ) polyhedral if G is 3-connected and rep(G, Σ) ≥ 3.

For a given embedding (G, Σ), we denote by (G∗, Σ) its dual embedding. Thus G∗ is the geometric dual of G. Each vertex
v (resp. face r) in (G, Σ) corresponds to some face v∗ (resp. vertex r∗) in (G∗, Σ). Also, given a set X ⊆ E(G), we denote as
X∗ the set of the duals of the edges in X .

Let G be a class of graphs embeddable in a surface Σ . We say that a graph parameter p is (c, d)-self-dual on G if for every
graph G ∈ G and for its geometric dual G∗, p(G∗) ≤ c · p(G) + d. Self-duality of treewidth, pathwidth, or branchwidth
(defined in Section 2) has played a fundamental role in the proof of the celebrated graph minors theorem [11], as well as
being useful for finding polynomial-time approximation algorithms for these parameters [2].

Most of the research concerning self-duality of graph parameters has been devoted to treewidth. Lapoire proved [7],
using algebraic methods, that treewidth is (1, 1)-self-dual in planar graphs, settling a conjecture stated by Robertson and
Seymour [12]. Bouchitté et al. [3] gave a much shorter proof of this result, exploiting the properties of minimal separators
in planar graphs.
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Fomin and Thilikos [4] proved that pathwidth is (6, 6g − 2)-self-dual in graphs polyhedrically embedded in surfaces
of Euler genus at most g . This result was improved for planar graphs by Amini et al. [1], who proved that pathwidth is
(3, 2)-self-dual in 3-connected planar graphs and (2, 1)-self-dual in planar graphs with a Hamiltonian path.

Concerning branchwidth, Seymour and Thomas [14] proved that it is (1, 0)-self-dual in planar graphs that are not forests
(for more direct proofs, see also [9] and [6]). In this note, we give a short proof that branchwidth is (6, 2g − 4)-self-dual in
graphs of Euler genus at most g . We also believe that our result can be considerably improved. In particular, we conjecture
that branchwidth is (1, g)-self-dual.

2. Self-duality of branchwidth

Given a graph G and a set X ⊆ E(G), we define ∂X = (


e∈X e) ∩ (


e∈E(G)\X e), where edges are naturally taken as pairs
of vertices (notice that ∂X = ∂(E(G) \ X)). A branch decomposition (T , µ) of a graph G consists of an unrooted ternary tree
T (i.e., all internal vertices are of degree three) and a bijection µ : L→ E(G) from the set L of leaves of T to the edge set of
G. For every edge f = {t1, t2} of T we define the middle set mid(e) ⊆ V (G) as follows: Let L1 be the leaves of the connected
component of T \ {e} that contain t1. Then mid(e) = ∂µ(L1). The width of (T , µ) is defined as max{|mid(e)|: e ∈ T }. An
optimal branch decomposition of G is defined by a tree T and a bijection µ which give the minimum width, called the
branchwidth of G, and denoted by bw(G).

If (G, Σ) is a polyhedral embedding, then the following proposition follows by an easy modification of the proof
of [4, Theorem 1].

Proposition 1. Let (G, Σ) and (G∗, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then bw(G∗) ≤ 6·bw(G)+
2g − 4.

In the sequel,we focus on generalizing Proposition 1 to arbitrary embeddings. For this,we first need some technical lemmata,
whose proofs are easy or well known, and omitted in this short note. Note that the removal of a vertex in G corresponds to
the contraction of a face in G∗, and vice versa (the contraction of a face is the contraction of all the edges incident to it to a
single vertex).

Lemma 1. Branchwidth is closed under taking of minors, i.e., the branchwidth of a graph is no less than the branchwidth of any
of its minors.

Lemma 2. The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1.

Lemma 3 (Fomin and Thilikos [5]). Let G1 and G2 be graphs with one edge or one vertex in common. Then bw(G1 ∪ G2) ≤
max{bw(G1), bw(G2), 2}.

We need a technical definition before stating our main result. Suppose that G1 and G2 are graphs with disjoint vertex
sets and k ≥ 0 is an integer. For i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G′i (i = 1, 2) be obtained from Gi by
deleting some (possibly none) of the edges from Gi[Wi] with both endpoints in Wi. Consider a bijection h : W1 → W2. We
define a clique sum G1 ⊕ G2 of G1 and G2 to be the graph obtained from the union of G′1 and G′2 by identifying w with h(w)
for all w ∈ W1.

Theorem 1. Let (G, Σ) be an embedding with g = eg(Σ). Then bw(G∗) ≤ 6 · bw(G)+ 2g − 4.

Proof. The proof uses the following procedure that applies a series of cutting operations to decompose G into polyhedral
pieces plus a set of vertices whose size is linearly bounded by eg(Σ). The input is the graph G and its dual G∗ embedded
in Σ .

1. Set B = {G}, and B∗ = {G∗} (we call the members of B and B∗ blocks).
2. If (G, Σ) has a minimal separator S with |S| ≤ 2, let C1, . . . , Cρ be the connected components of G[V (G) \ S] and, for

i = 1, . . . , ρ, let Gi be the graph obtained by G[V (Ci) ∪ S] by adding an edge with both endpoints in S in the case where
|S| = 2 and such an edge does not already exist (we refer to this operation as cutting G along the separator S). Notice that
a separator S of Gwith |S| = 1 corresponds to a separator S∗ of G∗ with |S∗| = 1, given by the vertex of G∗ corresponding
to the external face of G. Also, to a separator S of Gwith |S| = 2 we can associate a separator S∗ of G∗ with |S∗| = 2, given
by the vertex of G∗ corresponding to the external face of G and a vertex of G∗ corresponding to a face of G containing
both vertices in S. Let G∗i , i = 1, . . . , ρ be the graphs obtained by cutting G∗ along the corresponding separator S∗. We
say that each Gi (resp G∗i ) is a block of G (resp. G∗) and notice that each G and G∗ is the clique sum of its blocks. Therefore,
from Lemma 3,

bw(G∗) ≤ max{2,max{bw(G∗i ) | i = 1, . . . , ρ}}. (1)

Observe now that for each i = 1, . . . , ρ, Gi and G∗i are embedded in a surface Σi such that Gi is the dual of G∗i and
eg(Σ) =

∑
i=1,...,ρ eg(Σi). Notice also that

bw(Gi) ≤ bw(G), i = 1, . . . , ρ, (2)
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as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G and Lemma 1
applies. We set B ← B \ {G} ∪ {G1, . . . ,Gρ} and B∗ ← B∗ \ {G∗} ∪ {G∗1, . . . ,G

∗
ρ}.

3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set S ⊆ V (G) with |S| ≤ 2, let G′ =
G[V (G) \ S] and let F be the set of faces in G∗ corresponding to the vertices in S. Observe that the obtained graph G′ has
an embedding to some surface Σ ′ of Euler genus strictly smaller than Σ that, in turn, has some dual G′∗ in Σ ′. Therefore
eg(Σ ′) < eg(Σ). Moreover, G′∗ is the result of the contraction in G∗ of the |S| faces in F . From Lemma 2,

bw(G∗) ≤ bw(G′∗)+ |S|. (3)

Set B ← B \ {G} ∪ {G′} and B∗ ← B∗ \ {G∗} ∪ {G′∗}.
4. As long as this is possible, apply (recursively) Steps 2–4 for each block G ∈ B and its dual.

We now claim that before each recursive call of Steps 2 and 3, it holds that bw(G∗) ≤ 6 ·bw(G)+2eg(Σ)−4. The proof uses
descending induction on the distance from the root of the recursion tree of the above procedure. Notice that all embeddings
of graphs in the collections B and B∗ constructed by the above algorithm are polyhedral (except from the trivial cases that
they have size at most 3). Then the theorem follows directly from Proposition 1.

Suppose that G (resp. G∗) is the clique sum of its blocks G1, . . . ,Gρ (resp. G∗1, . . . ,G
∗
ρ) embedded in the surfaces

Σ1, . . . , Σρ (Step 2). By induction, we have that bw(G∗i ) ≤ 6 · bw(Gi) + 2eg(Σi) − 4, i = 1, . . . , ρ and the claim follows
from Relations (1) and (2) and the fact that eg(Σ) =

∑
i=1,...,ρ eg(Σ).

Suppose now (Step 3) that G (resp. G∗) occurs from some graph G′ (resp. G′∗) embedded in a surface Σ ′ where eg(Σ ′) <
eg(Σ) after adding the vertices in S (resp. S∗). From the induction hypothesis, bw(G′∗) ≤ 6 · bw(G′) + 2eg(Σ ′) − 4 ≤
6 · bw(G′)+ 2eg(Σ)− 2− 4 and the claim follows directly from Relation (3) as |S| ≤ 2 and bw(G′) ≤ bw(G). �

3. Recent results and a conjecture

Recently, Mazoit [8] proved that treewidth is a (1, g + 1)-self-dual parameter in graphs embeddable in surfaces of Euler
genus g , using completely different techniques. Since the branchwidth and the treewidth of a graph G, with |E(G)| ≥ 3,
satisfy bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) [13], this implies that bw(G∗) ≤ 3
2bw(G) + g + 2, improving the constants of

Theorem 1. We believe that an even tighter self-duality relation holds for branchwidth and hope that the approach of this
paper will be helpful to settle the following conjecture.

Conjecture 1. If G is a graph embedded in some surface Σ , then bw(G∗) ≤ bw(G)+ eg(Σ).
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