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Abstract

We provide a new framework, alternative to bidimensionality, of sub-exponential
parameterized algorithms on planar graphs, which is based on the notion of cover-
ability. Roughly speaking, a parameterized problem is (r, q)-coverable when all the
faces and vertices of its YES-instances are “r-radially dominated” by some vertex
set whose size is at most q times the parameter. Our results are based on suitably
bounding the branchwidth, bw(G), of the input graph G. In particular, we prove
that if a parameterized problem can be solved in cbw(G)nO(1) steps and is (r, q)-
coverable, then it can be solved by a c r·2.122·

√
q·knO(1) step algorithm (where k is

the parameter). Our framework is general enough to unify the analysis of almost
all known sub-exponential parameterized algorithms on planar graphs and improves
or matches their running times. Our combinatorial bound on the branchwidth of
planar graphs bypasses the grid-minor exclusion theorem. That way, our approach
encompasses new problems where bidimensionality theory do not directly provide
sub-exponential parameterized algorithms.

Keywords: Parameterized Algorithms, Branchwidth, Planar Graphs, Coverable Prob-

lems, Radial Domination, Scattered Set.

1 Introduction

A parameterized problem can be defined as a language Π ⊆ Σ∗×N. Its inputs are pairs

(I, k) ∈ Σ∗ × N, where I can be seen as the main part of the problem and k is some

parameter of it. A problem Π ⊆ Σ∗ × N is fixed parameter tractable when it admits an

f(k) ·nO(1) -time algorithm. In that case, Π is classified in the parameterized complexity

class FPT and, when we insist to indicate the parameter dependance (i.e., the function

f), we also say that that Π ∈ f(k)-FPT.

In this paper we deal with parameterized problem on planar graphs where the main

part of the problem I encodes a planar graph G. For this reason we see such a problem

Π as a subset of P × N, where P is the set of all planar graphs. A pair (G, k) ∈ P × N
we say that (G, k) is a YES-instance of Π if (G, k) ∈ Π, otherwise we say that it is a

NO-instance of Π.
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Sub-exponential parameterized algorithms. A central problem in parameterized

algorithm design is to investigate in which cases and under which input restrictions

a parameterized problem belongs to FPT and, if so, to find algorithms with the best

possible parameter dependance. When f(k) = 2o(k), a parameterized problem is said to

admit a sub-exponential parameterized algorithm (for a survey on this topic, see [24]).

In [8], Cai and Juedes proved that several parameterized problems not belong to

2o(k)-FPT, unless Exponential Time Hypothesis1 fails. Among them, one can distinguish

core problems such as the standard parameterizations of Vertex Cover, Dominating

Set, and Feedback Vertex Set. However, it appears that many problems admit sub-

exponential parameterized algorithms when their inputs are restricted to planar graphs

or other sparse graph classes. moreover, the results of [8] indicated that this is indeed

the best we may expect when the planarity restriction is imposed.

The first sub-exponential parameterized algorithm on planar graphs appeared in [1]

for Dominating Set, Independent Dominating Set, and Face Cover. After that,

many other problems were classified in 2O(
√
k)-FPT, while there was a considerable effort

towards improving the constant hidden in the “O”-notation for each one of them [1, 44,

10, 15, 26, 27, 43, 35, 45, 19].

Bidimensionality theory. A major advance towards a theory of sub-exponential pa-

rameterized algorithms was made with the introduction of Bidimensionality, in [16].

Bidimensionality theory offered a generic condition for classifying a parameterized prob-

lem in 2O(
√
k)-FPT. It also provided a machinery for estimating a (reasonably small)

value c for each particular problem. moreover, it also provided meta-algorithmic results

in approximation algorithms [17, 32] and kernelization [28] (for a survey on bidimension-

ality, see [12]). We stress that alternative approaches for the design of sub-exponential

parameterized algorithms have been appeared in [2, 22, 37, 58] (see also [31] for a recent

innovative approach).

According to [16], a parameterized problem on planar graphs Π ⊆ P × N is minor-

bidimensional with density δ if the following two conditions are satisfied.

(a) If the graph G′ is a minor of the graph G, then (G, k) ∈ Π⇒ (G′, k) ∈ Π.

(b) There exists a δ > 0 such that for every k ∈ N it holds that (�√k/δ, k) 6∈ Π.

In the above definition, we use the term �w for the (dwe × dwe)-grid. Also, we say

that G′ is a minor of G, denoted as G′ 6m G, if G′ can be obtained by some subgraph

of G after a series of edge contractions2. We stress that there is an variant of the above

definition, called contraction bidimenisionality in the case where we take contractions

instead of minors (we avoid the precise definition in this paper as it is not necessary for

our results). For more on Bidimensionality Theory, see [18, 13, 59].

1The Exponential Time Hypothesis states that 3-SAT cannot be solved by a subexponential time

algorithm.
2The result of the contraction of en edge e = {x, y} in G is the graph obtained if we remove x and y

from G, add a new vertex vx,y, and make it adjacent with all vertices of V (G) \ {x, y} that are adjacent

with x or y in G.
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Branchwidth (along with its twin parameter of treewidth) has been a powerful tool

in parameterized algorithm design. Roughly speaking, branchwidth is a measure of the

topological resemblance of a graph to the structure of a tree. We use the term bw(G)

for the branchwidth of a graph G and we postpone its formal definition until Section 2.

We say that a problem Π ⊆ P × N is λ-single exponentially solvable with respect

to branchwidth if there exists an algorithm that solves it in 2λ·bw(G)nO(1) steps. The

main idea of [16], towards designing sub-exponential parameterized algorithms, was to

make use of the grid-minor exclusion theorem in [52] asserting that, for every planar

graph G, bw(G) 6 4 · gm(G), where gm(G) = max{w | �w 6m G}. This result was

recently improved by Gu and Tamaki in [40] who proved that bw(G) 6 3 · gm(G).

This implies that for a bidimensional problem with density δ on planar graphs, all YES-

instances have branchwidth at most 3
δ

√
k and this reduces the problem to its variant

where the branchwidth of the inputs are now bounded by 3
δ

√
k. As a preprocessing

step, an optimal branch decomposition of a planar graph can be constructed3 in O(n3)

steps, (see [39, 57]). Therefore, the main algorithmic consequence of bidimensionality,

as restricted to planar graphs4, is the following.

Proposition 1. If Π ⊆ P × N is minor-bidimensional with density δ and is λ-single

exponentially solvable with respect to branchwidth, then Π ∈ 2(3λ/δ)·
√
k-FPT.

The above result, along with its contraction-bidimensionality counterpart, defined

in [16] (see also [29, 30, 33, 38]), reduce the solution of bidimensional problems to the

easier task of designing dynamic programming algorithms on graphs with small branch-

width (or treewidth). Dynamic programming is one of the most studied and well devel-

oped topics in parameterized algorithms and there is an extensive bibliography on what

is the best value of λ that can be achieved for each problem (see e.g., [61, 11, 5, 34]).

Especially for planar graphs, there are tools that can make dynamic programming run

in single exponential time, even if this is not, so far, possible for general graphs [21, 4].

Lower bounds on the value of λ for problems such as Dominating Set appeared re-

cently in [46, 47]. Finally, meta-algorithmic conditions for single exponential solvability

with respect to branchwidth have appeared in [50].

A consequence of Proposition 1 and its contraction-counterpart was a massive clas-

sification of many parameterized problems in 2c·
√
k-FPT and, in many cases, with esti-

mations of c that improved all previously known bounds. The remaining question was

whether it is possible to do even better and when. Indeed, a more refined problem-

specific combinatorial analysis improved some of the bounds provided by the bidimen-

sionality framework (see also [19]). For instance, such refinements appeared in Planar

Dominating Set [35], Face Cover, Planar Vertex Feedback Set, and Cycle

Packing [45], that where classified in 2c·
√
k-FPT where c = 15.3, 10.1, 15.11, and 26.3

3A possible alternative is to use the FPT-approximation algorithm in [6]. This may reduce the O(n3)

contribution in this preprocessing step to a linear one with the cost of slightly worst constants in the

parametrized dependence of the algorithm of Proposition 1.
4The results in [16] apply for more general graph classes and have been further extended in [29, 30, 14].
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respectively, improving all previous results on those problems.

Our results. In this paper, we provide an alternative theory for the design of fast

sub-exponential parameterized algorithms.

Let us give first some definitions from [7]. As we mainly deal with plane graphs, we

use the notation F (G) for its faces and we refer to the members of F (G) ∪ V (F ) as the

elements of G. The radial distance between two elements x, y of G is one less than the

minimum length of an alternating sequence of vertices and faces starting from x and

ending in y, such that every two consecutive elements in this sequence are incident to

each other. Given a plane graph G = (V,E) and a set S ⊆ V , we define Rr
G(S) as the

set of all vertices or faces of G whose radial distance from some vertex of S is at most r

(for more definitions and notation, see Section 2).

A parameterized problem on planar graphs Π ⊆ P × N is (q, r)-coverable if for all

(G = (V,E), k) ∈ Π and for some planar embedding of a graph H, that is either G

or its dual, there is a set S ⊆ V such that |S| 6 q · k and Rr
H(S) contains all faces

and vertices of H. Intuitively, a parameterized problem is coverable if the input graph

of every YES-instance can be “covered” by a collection of O(k) balls each of constant

radius.

q r

Dominating Set 1 3

l-Dominating Set 1 2l + 1

l-Threshold Dominating Set 1 3

Perfect Code 1 3

Red Blue Dominating Set 1 3

Independent Directed Domination 1 3

Vertex Cover 1 2

Almost Outerplanar(a) 1 3

Almost Series-Parallel(a) 1 3

Connected l-Dominating Set 1 2l + 1

Connected Vertex Cover 1 2

Feedback Edge Set(b) 1 2

Feedback Vertex Set(b) 1 3

Connected Feedback Vertex Set 1 3

Minimum-Vertex Feedback Edge Set 1 3

Connected Dominating Set 1 3

q r

Cycle Domination 1 4

Edge Dominating Set 2 2

Clique Transversal 1 3

Independent Dominating Set 1 3

Odd Set 1 3

Face Cover 1 2

Vertex Triangle Covering(c) 1 3

Edge Triangle Covering(c) 2 2

l-Cycle Transversal(b) 1 l

l-Scattered Set 1 2l + 1

Cycle Packing 3 3

Induced Matching 2 3

Max Internal Spanning Tree 1 3

Triangle Packing(c) 1 3

Minimum Leaf Out-branching 1 3

Max Full Degree Spanning Tree 1 3

Table 1: Examples of (q, r)-coverable parameterized problems. (a)Triconnected in-

stances. (b)Biconnected instances. (c)For instances where each vertex of the input graph

belongs in some triangle.

The notion of coverability has been introduced in [7] in the context of automated

kernel design, while some preliminary concepts had already appeared in [41]. It encom-

passes a wide number of parameterized problems on graphs; some of them are listed in

Table 1. Notice also that every (q, r)-coverable problem whose YES/NO instances are

closed under taking of minors is bidimensional. In the next paragraph, we justify some

of the constants depicted in this table (partially extracted from [7]).
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Examples of (q, r)-coverable problems. The Dominating Set problem is (1, 3)-

coverable because in graph G = (V,E), dominated by a set S, each face f ∈ F (G)

is either incident to some vertex v ∈ S (thus rdistG(v, f) = 1) or is incident to a

vertex x ∈ V \ S that is dominated by some vertex v ∈ S. As rdistG(v, x) = 2 and

rdistG(f, x) = 1, we conclude that r = 3. For the Face Cover problem, we keep in

mind that input graphs are plane and we observe that the dual G∗ = (V ∗, E∗) of G in a

YES-instance (G, k) contains a set of vertices F ∗ where each vertex in V ∗\F ∗ (resp. face

of G∗) is adjacent (resp. incident) to some vertex in F ∗. For the Feedback Vertex

Set problem we restrict ourselves to 2-connected planar graphs. Such a restriction

does not harm the generality of our analysis as, by Lemma 1 in Section 3, one may

concentrate to the branchwidth of the biconnected –or even triconnected– inputs of the

problem. Then, it is enough to check that if a set S intersects all cycles of a graph G,

then each face of G should be incident to a vertex in S. Then, r = 3 follows from the

fact that each other vertex is incident to some face. For the case of Cycle Packing,

q = 3 because, according to a recent result of [9], every planar graph G with at most

k disjoint cycles contains a set of size 3k meeting all the cycles of G. For Triangle

Covering we assume first that every vertex in G is incident to a triangle. If S is a

vertex set meeting each triangle of such a graph G, then each face should be incident to

a vertex that, in turn, is adjacent to some triangle of G. Removing from G of all vertices

that are not incident to a triangle is an easy preprocessing step that can be done in O(n)

steps (see [7] for a similar application).

Our results. We define Π = (G, k) ∈ (P × N) \ Π , i.e., Π is the set of NO-instances

of Π. We present below the main algorithmic contribution of our paper.

Theorem 1. Let Π ⊆ P × N be a parameterized problem on planar graphs. If Π is

λ-single exponentially solvable with respect to branchwidth and either Π or Π is (q, r)-

coverable, then Π ∈ 2λ·r·2.122·
√
q·k-FPT.

The advantages of our approach, compared with those of bidimensionality theory,

are the following:

• It applies to many problems where bidimensionality does not apply directly. This

typically happens for problems whose YES-instances are not closed under taking of

minors (or contractions) such as Independent Vertex Cover, Independent

Dominating Set, Perfect Code, and threshold Dominating Set.

• When applied, it always gives better bounds than those provided by bidimension-

ality theory. A direct comparison of the combinatorial bounds implies that the

constants in the exponent provided by coverability are
√

4.5/3 ≈ 70% of those

emerging by the grid-minor exclusion theorem of Gu and Tamaki in [40].

• Matches or improves all problem-specific time upper bounds known so far for sub-

exponential algorithms in planar graphs (including the results in [15, 35, 45, 44, 19])

and unifies their combinatorial analysis to a single theorem.
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Theorem 1 follows from the following theorem that we believe is of independent combi-

natorial interest.

Theorem 2. If (G, k) is a YES-instance of a (q, r)-coverable parameterized problem on

planar graphs, then bw(G) 6 r ·
√

4.5 · q · k.

Theorem 2 is our main combinatorial result and the rest of the sections of this paper

are devoted to its proof.

The paper is organized as follows. In Section 2, we give some necessary definitions

and preliminary results. Sections 3 and 4 are dedicated to the proof of Theorem 2.

Finally, some conclusion and directions for further research are given in Section 5.

2 Basic definitions and preliminaries

All graphs in this paper are simple (i.e., have no multiple edges or loops). Given a graph

G we denote by V (G) (resp. E(G)) the set of its vertices (resp. edges). For any set

S ⊆ V (G), we denote by G[S] the subgraph of G induced by the vertices in S. Given

two graphs G1 and G2, we define G1 ∪G2 = (V (G1)∪ V (G2), E(G1)∪E(G2)). We also

use the notation G \ S for the graph G[V (G) \ S]. Given x, y ∈ V (G) an (x, y)-path

is any subgraph of G where x and y have degree 1 and all the other vertices (if any)

have degree 2. The length of such a path is the number of its edges. The distance

between two vertices x, y in G is denoted by distG(x, y) and is the minimum length of

a (x, y)-path in G or is infinite if no such as path exists. The subdivision of an edge e

in a graph is the operation of replacing an edge e = {x, y} by a (x, y)-path of length

two. A subdivision of a graph H is any graph that can be obtained from H if we apply

a sequence of subdivisions to some (possibly none) of its edges. We say that a graph H

is a topological minor of a graph G (we denote it by H 6t G) if some subdivision of H

is a subgraph of G.

Plane graphs. In this paper, we mainly deal with plane graphs (i.e. graphs embedded

in the plane R2 without crossings). For simplicity, we do not distinguish between a vertex

of a plane graph and the point of the plane used in the drawing to represent the vertex

or between an edge and the open line segment representing it. Given a plane graph

G, we denote its dual by G∗. A parameter on plane graphs is any function p mapping

plane graphs to N. Given such a parameter p, we define its dual parameter p∗ so that

p∗(G) = p(G∗).

Given a plane graphG, we denote by F (G) the set of the faces ofG (i.e., the connected

components of R2 \ G, that are open subsets of the plane). We use the notation A(G)

for the set V (G)∪F (G) and we say that A(G) contains the elements of G. If ai, i = 1, 2

is an edge or an element of G, we say that a1 is incident to a2 if a1 ⊆ a2 or a2 ⊆ a1,

where x is the closure of the set x. For every face f ∈ F (G), we denote by bd(f) the

boundary of f , i.e., the set f \ f , where f is the closure of f .
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A triangulation H of a plane graph G is a plane graph H where V (H) = V (G),

E(G) ⊆ E(H), and where H is triangulated, i.e., every face of H (including the exterior

face) has exactly three edges incident upon it. Notice that each plane graph with at least

3 vertices has some triangulation. Notice that, in general, a triangulation of a simple

graphs is not necessarily simple (i.e. there is a triangulation of K2,r with an edge with

multiplicity r). However, there is always a simple one and, in this paper, we consider

only such triangulations.

We use the term arc for any subset of the plane homeomorphic to the closed interval

[0, 1]. Given a plane graph G, an arc I that does not intersect its edges (i.e., I ∩ G ⊆
V (G)) is called normal. The length |I| of a normal arc I is equal to the number of elements

of A(G) that it intersects minus one. If x and y are the elements of A(G) intersected

by the extreme points a normal arc I, then we also call I normal (x, y)-arc. A noose of

the plane, where G is embedded, is a Jordan curve that does not intersect the edges of

G. We also denote by V (N) the set of vertices of G met by N , i.e., V (N) = V (G) ∩N .

The length |N | of a noose N is |V (N)|, i.e., is the number of the vertices it meets.

Let G be a plane graph and let r be a non-negative integer. Given two elements

x, y ∈ A(G), we say that they are within radial distance at most r if there is a normal

(x, y)-arc of the plane of length at most r and we denote this fact by rdistG(x, y) 6 r.

Observation 1. Let G be a triangulated plane graph and let x, y ∈ V (G). Then 2 ·
distG(x, y) 6 rdistG(x, y).

Given an edge set F ⊆ E(G), we define the subgraph of G induced by F as the graph

whose vertex set consists of the endpoints of the edges in F and whose edge set is F .

Given a vertex set S ⊆ V (G) and a non-negative integer r, we denote by Rr
G(S) the set

of all elements of G that are within radial distance at most r from some vertex in S.

We say that a set S ⊆ V (G) is an r-radial dominating set of G (or, alternatively we say

that S r-radially dominates G) if Rr
G(S) = A(G). We define

rds(G, r) = min{k | G contains an r-radial dominating set of size at most k}.

The following observation follows easily from the definitions.

Observation 2. The parameter rds is closed under topological minors. In other words,

if H,G ∈ P, r ∈ N, and H 6t G, then rds(H, r) 6 rds(G, r).

Branchwidth. Let G be a graph on n vertices. A branch decomposition (T, µ) of a

graph G consists of an unrooted ternary tree T (i.e., all internal vertices are of degree

three) and a bijection µ : L → E(G) from the set L of leaves of T to the edge set of

G. We define for every edge e of T the middle set ω(e) ⊆ V (G), as follows: Let T e1 and

T e2 be the two connected components of T \ e. Then, let Gei be the graph induced by

the edge set {µ(f) : f ∈ L ∩ V (T ei )} for i ∈ {1, 2}. The middle set is the intersection

of the vertex sets of Ge1 and Ge2, i.e., ω(e) = V (Ge1) ∩ V (Ge2). The width of (T, µ) is the

maximum order of the middle sets over all edges of T (in case T has no edges, then the

7



width of (T, µ) is equal to 0). The branchwidth, denoted by bw(G), of G is the minimum

width over all branch decompositions of G.

We now state a series of results on branchwidth that are useful for our proofs.

Proposition 2 (See e.g., [51, (4.1)]). The parameter bw is closed under topological mi-

nors, i.e., if H 6t G, then bw(H) 6 bw(G).

Proposition 3 ([49, 57]). If G is a planar graph with a cycle, then bw(G) = bw∗(G).

Proposition 4 ([36]). If G is a n-vertex planar graph, then bw(G) 6
√

4.5 · n.

Triconnected components. Let G be a graph and let S ⊆ V (G). We say that S is a

separator of G if G has less connected components that G \S. Given that V1, . . . , Vq are

the vertex sets of the connected components of G \S, we define C(G,S) = {G1, . . . , Gq}
where, for i ∈ {1, . . . , q}. Gi is the graph obtained from G[Vi ∪ S] if we add all edges

between vertices in S.

Given a graph G, the set Q(G) of its triconnected components is recursively defined

as follows:

• If G is 3-connected or a clique of size 6 3, then Q(G) = {G}.

• If G contains a separator S where |S| 6 2, then Q(G) =
⋃
H∈C(G,S)Q(H).

Notice that all graphs in Q(G) are either cliques on at most 3 vertices or 3-connected

graphs (graphs without any separator of less than 3 vertices). We wish to remark that

the study of triconnected components of plane graphs dates back to the work of Saunders

Mac Lane in [48] (see also [60]). Also, given G, Q(G) can be constructed in linear time

using the celebrated algorithm of Hopcroft and Tarjan in [42].

Observation 3. Let G be a graph. All graphs inQ(G) are topological minors ofG.

The following lemma follows easily from Observation 3 and [35, Lemma 3.1].

Lemma 1. If G is a graph that contains a cycle, then bw(G) = max{bw(H) | H ∈
Q(G)}.

Sphere-cut decompositions. Let G be a plane graph. A branch decomposition

(T, µ) of G is called a sphere-cut decomposition if for every edge e of T there exists a

noose Ne, such that

(a) ω(e) = V (Ne),

(b) Gei ⊆ ∆i ∪Ne for i = 1, 2, where ∆i is the open disc bounded by Ne, and

(c) for every face f of G, Ne∩f is either empty or connected (i.e., if the noose traverses

a face then it traverses it once).
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Sphere-cut decompositions have been introduced in [25] for improving the running

time of dynamic programming algorithms on planar graphs (for extensions to more

general graph classes, see [23, 56, 53, 54]). The following theorem is a useful tool when

dealing with branch decompositions of planar graphs.

Proposition 5 ([57, Theorem (5.1)]). Let G be a plane graph without vertices of degree

one and with branchwidth at most k. Then there exists a sphere-cut decomposition of G

of width at most k.

3 Radially extremal sets

Let G be a plane graph, y ∈ N, and S ⊆ V (G). We say that S is y-radially scattered if

for any a1, a2 ∈ S, rdistG(a1, a2) > y. We say that S is r-radially extremal in G if S is

an r-radial dominating set of G and S is 2r-radially scattered in G.

This section is devoted to the proof of the following lemma.

Lemma 2. Let G be a 3-connected plane graph and S be an r-radial dominating set of

G. Then G is the topological minor of a triangulated 3-connected plane graph H where

S is r-radially extremal in H.

Before we present the proof of Lemma 2, we need first some preliminary results and

definitions.

Lemma 3. Let G be a 3-connected plane graph and S be an r-radial dominating set of

G. Then G has a planar triangulation H where S is an r-radial dominating set of H.

Proof. We apply, for any face f ∈ F (G) that is not a triangle, an edge addition that

does not harm r-radial domination by S. Let t be the minimum radial distance of f from

some vertex, say v, of S. Clearly, t 6 r and there exist a vertex u in Vf = V (G)∩bd(f)

where rdistG(v, u) = t− 1. Let also w be a vertex incident to f that is not a neighbor

of u. We claim that if G′ is the graph occurring after adding the edge {u,w} in G, then

S is also an r-radial dominating set of G′ (notice that {u,w} 6∈ E(G) because of the

3-connectivity of G, therefore G′ remains a simple 3-connected graph). Suppose to the

contrary that zq is an element of G′ such that for any x ∈ S, rdistG′(zq, x) > r. Clearly,

zq cannot be one of the two new f1, f2 faces of G′ that replaced the face f of G as they

both contain u in their boundary and thus

rdistG′(v, fi) 6 rdistG′(v, u) + 1 6 rdistG(v, u) + 1 = t 6 r, i = 1, 2,

a contradiction. Suppose now that zq is an element of A(G′) that is also an element of

A(G) and let I be a normal (z0, zq)-arc in G of length q 6 r for some z0 ∈ S. Let also

{z0, . . . , zq} be the set of elements of A(G) met by I ordered as they appear in I from

z0 to zq. Clearly, I cannot exist in G′. This means that f ∩ I 6= ∅ and therefore f = zi
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for some i, 1 < i < q. Moreover, yj ∈ bd(fi)− {v, y}, for j = i− 1, i+ 1. Observe now

that

rdistG′(v, zq) 6 rdistG′(v, u) + rdistG′(u, zi+1) + rdistG′(zi+1, zq) 6

rdistG(v, u) + rdistG′(u, zi+1) + rdistG(zi+1, zq) =

t− 1 + 2 + q − (i+ 1) 6 t+ q − i.

By the minimality of the radial distance between v and f , we have that t 6 i, therefore

rdistG′(v, zq) 6 q 6 r, a contradiction.

Given a number k ∈ N, we denote byA〈k〉 the set of all sequences of numbers in N with

length k. We denote 0k, the sequence containing k zero’s. Given αi = (ai1, . . . , a
i
k), i =

1, 2, we say that α1 ≺ α2 if, there is some integer j ∈ 1, . . . , k, such that a1
h = a2

h for

all h 6 j and a1
j < a2

j . For example (1, 1, 2, 4, 15, 3, 82, 2) ≺ (1, 1, 3, 1, 6, 29, 1, 3). A

sequence A = (αi | i ∈ N) of sequences in A〈k〉 is properly decreasing if for any two

consecutive elements αj , αj+1 of A it holds that αj ≺ αj+1. We will use the following

known observation.

Observation 4. For every k ∈ N, every properly decreasing sequence of sequences in

A〈k〉 is finite.

Given a graph G and a subset S ⊆ V (G), an S-path is any (x, y)-path of G where

x, y ∈ S. The proof of the following lemma is based on Observations 1 and 4.

Lemma 4. Let G be a triangulated plane graph and let S be an r-radial dominating set

of G. Then G is the topological minor of a graph H that is 2r-radially extremal.

Proof. Given a triangulated plane graph H and S ⊆ V (G), we consider the sequence

q(H) = (a1, . . . , ar−1)

where, for j = 1, . . . , r − 1, aj is the number of S-paths of length j in H. Notice

that if q(G) = 0r−1, then all S-paths have distance at least r. As G is triangulated,

Observation 1 implies that S is 2r-radially scattered in G.

If 0r−1 ≺ q(G), we show how to transform G to a new graph G′ satisfying the

following properties:

(i) G′ is triangulated,

(ii) G 6t G
′,

(iii) G′ is r-radially dominated by S, and

(iv) q(G′) ≺ q(G).
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From Observation 4, this transformation cannot be applied forever. Therefore, it will

end up with a graph Gfinal where q(Gfinal) = 0r−1. Then the lemma follows as S is an

r-radially scattered set of Gfinal and Gfinal 6t G. Below, we describe this transformation.

Let P = (v0, . . . , vt) be a minimum length S-path in G. Clearly, 0r−1 ≺ q(G) implies

that t 6 r − 1. Also, we set l = bt/2c and denote by f1, f2 the two triangular faces of

H that are incident to the edge e = {vl, vl+1}. We denote by y1 and y2 the two vertices

that are incident to f1 or f2 but not to e and assume that y1 (resp. y2) is incident to f1

(resp. f2). We transform G as follows: first subdivide in G the edge {vl, vl+1}, call vnew

the subdivision vertex, and then add the edges {y1, vnew} and {y2, vnew}. We denote by

G′ the resulting graph and we prove that it satisfies Properties (i)–(iv).

Properties (i) and (ii) hold directly by the construction of G′. For property (iii),

we assume, towards a contradiction, that some element a ∈ A(G′) is not r-radially

dominated by any vertex in S. Notice that a 6= vnew, as distG′(vnew, vt) 6 1 +

distG′(vl+1, vt) 6 1 + distG(vl+1, vt) = 1 + t − bt/2c − 1 6 dt/2e, thus, from Obser-

vation 1, rdistG′(vnew, vt) 6 2 · dt/2e 6 r. Notice also that

rdistG′(v0, vl) 6 rdistG(v0, vl) 6 2 · bt/2c 6 r − 1

and

rdistG′(vt, vl+1) 6 rdistG(vt, vl+1) 6 2 · (t− bt/2c − 1) 6 2 · bt/2c 6 r − 1,

therefore each of the new faces of G′ that are either incident to vl or incident to vl+1 is

r-radially dominated by either v0 or vt respectively. This means that a is also an element

of A(G). Let P ′ = (a0, . . . , aq) be a path in G such that a0 ∈ S and either aq = a (in

case a is a vertex) or aq is incident to a (in case a is a face); in the first case q 6 br/2c
and in the second q 6 b(r − 1)/2c. As P ′ is not a path of G′, some, say {aj , aj+1}, of

its edges should be the subdivided edge {vl, vl+1}. We will end up with a contradiction

by proving the existence in G′ of a (x, aq)-path of length 6 q for some x ∈ {v0, vt} ⊆ S.

We examine two cases:

Case I. aj = vl and aj+1 = vl+1. By the minimality of the choice of P , we deduce that

l 6 j (otherwise distG(a0, vt) 6 distG(a0, vl)+1+distG(vl+1, vt) < l+1+(t−l−1) 6 t)
and this means that

distG′(vl+1, aq) 6 distG(vl+1, aq) 6 q − j − 1 6 q − l − 1 = q − bt/2c − 1

Observe that distG′(vl+1, vt) 6 distG(vl+1, vt) 6 t − l − 1 = dt/2e − 1. Therefore,

distG′(vt, aq) 6 q − bt/2c − 1 + dt/2e − 1 6 q, a contradiction.

Case II. aj = vl+1 and aj+1 = vl. Now, by the minimality of P we have that t− l−1 6 j
(otherwise distG(a0, v0) 6 distG(a0, aj) + 1 +distG(vl, v0) < (t− l− 1) + 1 + l 6 t) and

thus

distG′(vl, aq) 6 distG(vl, aq) 6 q − j − 1 6 q − t+ l = q − dt/2e.
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As distG′(v0, vl) 6 distG(v0, vl) = l = bt/2c, we conclude that distG′(v0, aq) 6 bt/2c+

q − dt/2e 6 q, a contradiction and property (iii) holds for G′.

For Property (iv), we need to prove that q(G′) ≺ q(G). As all S-paths in G′ that

avoid vnew also exist in G, we have to prove that there is at least one S-path of length

t in G that is not in G′ and that no new paths of length t appear in G′. Indeed P is

a path of length t that does not exist in G′. What remains is to prove that no new

paths of length t appear in G′. Suppose to the contrary that P ′ = (x0, . . . , xt) is such

a path. Clearly, P ′ should meet the vertex vnew and assume that vnew = xi. The cases

where the set {xi−1, xi+1} is one of {vl, y1}, {vl, y2}, {vl+1, y1}, {vl+1, y2} are excluded

as, in such a case, the existence of the path (x0, xi−1, xi+1, . . . , xt) in G contradicts

the minimality of the choice of P . Therefore, {xi−1, xi+1} = {y1, y2} and, w.l.o.g., we

assume that xi−1 = y1 and xi+1 = y2. Then either distG(x0, xi−1) 6 b(t − 2)/2c or

distG(xi+1, xt) 6 b(t − 2)/2c. W.l.o.g., we assume that dist(x0, xi−1) 6 b(t − 2)/2c.
Then

distG(x0, vt) 6 distG(x0, y1) + 1 + distG(vl+1, vt) 6

b(t− 2)/2c+ 1 + (t− l − 1) =

b(t− 2)/2c+ 1 + t− bt/2c − 1 =

bt/2c − 1 + 1 + dt/2e − 1 = t− 1,

a contradiction to the minimality of P .

We are now in position to proof Lemma 2.

Proof of Lemma 2. Applying first Lemma 3, we obtain a planar triangulation H of G

where the set S is a r-radial dominating. Then, applying Lemma 4, we obtain a triangu-

lated graph H that is a topological minor of H ′ and such that S is 2r-radially scattered

in H ′. The lemma follows as G is a topological minor of H ′ and H ′ is triangulated and

thus 3-connected.

4 A bound for branchwidth

We are now ready to prove our main combinatorial result.

Theorem 3. Let r be a positive integer and let G be a plane graph. Then bw(G) 6
r ·

√
4.5 · rds(G, r).

Proof. We use induction on r. If r = 1 then |V (G)| = rds(G, 1) and the result follows

from Proposition 4. Assume now that the lemma holds for values smaller than r and

we will prove that it also holds for r, where r > 2. Let G be a plane graph where

rds(G, r) 6 k. Using Lemma 1, we choose H ∈ Q(G) such that bw(H) = bw(G)

(we may assume that G contains a cycle, otherwise the result follows trivially). By

Observations 2 and 3, rds(H, r) 6 rds(G, r) 6 k. Let S be an r-radial dominating set
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of H where |S| 6 k. From Lemma 2, H is the topological minor of a 3-connected plane

graph H1 where S is r-radially extremal.

Let H2 be the graph obtained if we remove from H1 all vertices of S. By the 3-

connectivity of H1, it follows that, for any v ∈ S, the graph H1[NH1(v)] is a cycle and

each such cycle is the boundary of some face of H2. We denote by F the set of these

faces and observe that F ∗ is a (r− 1)-radial dominating set of H∗2 (we denote by F ∗ the

vertices of H∗2 that are duals of the faces of F in H2). moreover, the fact that S is a

2r-scattered dominating set in H1, implies that F ∗ is a 2(r − 1)-scattered dominating

set in H∗2 .

From the induction hypothesis and the fact that |F ∗| = |S|, we obtain that bw(H∗2 ) 6
(r − 1) ·

√
4.5 · k. This fact, along with Proposition 3, implies that bw(H2) 6 (r − 1) ·√

4.5 · k.

In graph H2, for any face fi ∈ F , let (xi0, . . . , x
i
mi−1) be the cyclic order of the vertices

in its boundary cycle (as H1 is 3-connected we have that mi > 3). We also denote by xi

the vertex in H1 that was removed in order fi to appear in H2. Let (T, τ) be a branch

decomposition of H2 of width 6 (r − 1) ·
√

4.5 · k. By Proposition 5, we may assume

that (T, τ) is a sphere-cut decomposition.

We use (T, τ) in order to construct a branch decomposition of H1, by adding new

leaves in T and mapping them to the edges of E(H1)\E(H2) =
⋃
i=1,...,|F |{{xi, xih} | h =

0, . . . ,mi−1} in the following way: For every i = 1, . . . , |F | and every h = 0, . . . ,mi−1,

we set tih = τ−1({xih, xih+1 mod mi
}) and let eih = {yih, tih} be the unique edge of T that

is incident to tih. We subdivide eih and we call the subdivision vertex sih. We also add

a new vertex zih and make it adjacent to sih. Finally, we extend the mapping of τ by

mapping the vertex zih to the edge {xi, xih} and we use the notation (T ′, τ ′) for the

resulting branch decomposition of H1.

Claim. The width of (T ′, τ ′) is at most r ·
√

4.5 · k.

Proof. We use the functions ω and ω′ to denote the middle sets of (T, τ) and (T ′, τ ′)

respectively. Let e be an edge of T ′. If e is not an edge of T (i.e., is an edge of the form

{zih, sih} or {tih, sih} or {yih, sih}), then |ω′(e)| 6 3, therefore we may fix our attention to

the case where e is also an edge of T . Let Ne be the noose of H2 meeting the vertices of

ω(e). We distinguish the following cases.

Case 1. Ne does not meet any face of F , then clearly ω′(e) = ω(e). Thus |ω′(e)| 6
(r − 1) ·

√
4.5 · k.

Case 2. If Ne meets only one, say fi, of the faces of F , then the vertices in ω′(e)

are the vertices of a noose N ′e of H1 meeting all vertices of ω(e) plus xi. Therefore,

ω′(e) = ω(e) ∪ {xi} and thus |ω′(e)| 6 (r − 1) ·
√

4.5 · k + 1.

Case 3. Ne meets p > 2 faces of F . We denote by {f ′0, . . . , f ′p−1} the set of these faces

and let J0, . . . , Jp−1 be the normal arcs corresponding to the connected components

of Ni −
⋃
i=0,...,p−1 f

′
i . Let also I0, . . . , Ip−1 be the normal arcs corresponding to the

closures of the connected components of Ni ∩ (
⋃
i=0,...,p−1 f

′
i), assuming that Ii ⊆ f ′i ,

for i = 0, . . . , p − 1. Recall that F ∗ is a (r − 1)-scattered dominating set of H∗2 . This
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implies that each Ji meets at least r− 1 vertices of H2 and therefore p · (r− 1) 6 ω(e) 6
(r− 1) ·

√
4.5 · k. We conclude that p 6

√
4.5 · k. Observe now that the vertices of ω′(e)

are the vertices of a noose N ′e of H1 where N ′e = (
⋃
i=0,...,p−1 Ji) ∪ (

⋃
i=0,...,p−1 I

′
i) and

such that, for each i = 0, . . . , p − 1, I ′i is a replacement of Ii so that it is still a subset

of f
′
i, has the same endpoints as Ii, and also meets the unique vertex in S ∩ f ′i . As N ′e

meets in H1 all vertices of Ne ∩ V (H2) plus p more, we obtain that

|ω′(e)| 6 (r − 1) ·
√

4.5 · k + p 6 r ·
√

4.5 · k.

According to the above case analysis, |ω′(e)| 6 max{3,
√

4.5 · k + 1, r ·
√

4.5 · k} = r ·√
4.5 · k and the claim follows.

We just proved that bw(H1) 6 r ·
√

4.5 · k. As H is a topological minor of H1,

from Proposition 2, we also have that bw(H) 6 r ·
√

4.5 · k. The lemma follows as

bw(G) = bw(H).

We are now ready to prove Theorem 2.

Proof of Theorem 2. By the definition of coverability, G has an embedding such that

either G or G∗ contains an r-radial dominating set of size at most q · k. Without loss

of generality, assume that this is the case for G (here we use Proposition 3). Then

rds(G, r) 6 q · k and, from Theorem 3, bw(G) 6 r ·
√

4.5 · q · p(G).

5 Conclusions and open problems

The concept of coverability for parameterized problems was introduced in [7]. In this

paper, we show that it can also be used to improve the running time analysis of a

wide family of sub-exponential parameterized algorithms. Essentially, we show that

such an analysis can be done without the grid-minor exclusion theorem. Instead, our

better combinatorial bounds emerge from the result in [36] that, in turn, is based on

the “planar separators theorem” of Alon, Seymour, and Thomas in [3]. This implies

that any improvement of the constant
√

4.5 in [3] would improve all the running times

emerged from the framework of this paper.

It follows that there are bidimensional parameterized problems that are not coverable

and vice versa. For instance, Independent Dominating Set is coverable but not

bidimensional while Longest Path is bidimensional but not coverable. Is it possible

to extend both frameworks to a more powerful theory, at least in the context of sub-

exponential parameterized algorithms?

Recall that coverability appeared for the first time in the meta-algorithmic context

of kernelization [7]. We believe that the combinatorial part of [7], based on the concept

of protrusion decomposition, can be optimized using some ideas of the proofs of this

paper. An important step in this direction has already been made by Michalis Samaris

in his Master Thesis for µΠλ∀, in [55]. The main result of [55], is a refinement of Theo-

rem 3 where the resulting branch decompositions have additional structural properties,
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resembling those of protrusion decompositions in [7]. We believe that this approach may

imply a significant improvement of the constants in the kernels derived from [7] for the

case of planar graphs.

Another open issue is whether the framework we define in this paper can be extended

to graphs embeddable to 2-dimensional surfaces (orientable or non-orientable) of genus

g. For such graphs, it is straightforward to extend the definition of (r, q)-coverability.

As most (but not all) of the concepts that we defined in this paper can also be extended,

we conjecture that this may lead to an generalization of Theorem 2, classifying (r, q)-

coverable problems on surface embeddable graphs in cO(r
√
q·g·k)-FPT. However this might

be a hard task. Also such research should additionally optimize the constant hidden in

the O-notation, in order to compete with the parameterized dependencies guaranteed

by Bidimensionality Theory in [20].
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characterizes the complexity of certain graph problems: Some tight results. Journal

of Computer and System Sciences, 73(6):892 – 907, 2007.

[11] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M.

van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parame-

terized by treewidth in single exponential time. In IEEE 52nd Annual Symposium

on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, Octo-

ber 22-25, 2011, pages 150–159, 2011.

[12] E. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic

applications. The Computer Journal, 51(3):292–302, 2007.

[13] Erik Demaine. Algorithmic graph minors and bidimensionality. In Dimitrios Thi-

likos, editor, Graph Theoretic Concepts in Computer Science, volume 6410 of Lecture

Notes in Computer Science, pages 2–2. Springer Berlin / Heidelberg, 2010.

[14] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.

Thilikos. Bidimensional parameters and local treewidth. SIAM J. Discrete Math.,

18(3):501–511, 2005.

[15] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.

Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map

graphs. ACM Trans. Algorithms, 1(1):33–47, 2005.

[16] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.

Thilikos. Subexponential parameterized algorithms on graphs of bounded genus

and H-minor-free graphs. Journal of the ACM, 52(6):866–893, 2005.

[17] Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new con-

nections between FPT algorithms and PTASs. In Sixteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 590–601 (electronic). ACM, New York,

2005.

[18] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory

and its algorithmic applications. Comput. J., 51(3):292–302, 2008.

16



[19] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. Ex-

ponential speedup of fixed-parameter algorithms for classes of graphs excluding

single-crossing graphs as minors. Algorithmica, 41:245–267, 2005.

[20] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. The

bidimensional theory of bounded-genus graphs. SIAM J. Discrete Math., 20(2):357–

371, 2006.

[21] Frederic Dorn. Dynamic programming and fast matrix multiplication. In 14th

Annual European Symposium on Algorithms (ESA 2006), volume 4168 of LNCS,

pages 280–291. Springer, Berlin, 2006.

[22] Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket

Saurabh. Beyond bidimensionality: Parameterized subexponential algorithms on

directed graphs. Information and Computation, 233:60–70, 2013.

[23] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Fast subexponential

algorithm for non-local problems on graphs of bounded genus. In 10th Scandinavian

Workshop on Algorithm Theory (SWAT 2006), volume 4059 of LNCS, pages 172–

183. Springer, Berlin, 2006.

[24] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential param-

eterized algorithms. Computer Science Review, 2(1):29–39, 2008.

[25] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient

exact algorithms on planar graphs: exploiting sphere cut branch decompositions.

In Algorithms—ESA 2005, volume 3669 of LNCS, pages 95–106. Springer, Berlin,

2005.

[26] Henning Fernau. Graph separator algorithms: a refined analysis. In Graph-theoretic

Concepts in Computer Science, volume 2573 of LNCS, pages 186–197. Springer,

Berlin, 2002.

[27] Henning Fernau and David Juedes. A geometric approach to parameterized algo-

rithms for domination problems on planar graphs. In 29th International Symposium

on Mathematical Foundations of Computer (MFCS 2004), volume 3153 of LNCS,

pages 488–499. Springer, Berlin, 2004.

[28] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and

kernels. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2010), pages 503–510. ACM-SIAM, 2010.

[29] Fedor V. Fomin, Petr Golovach, and Dimitrios M. Thilikos. Contraction bidimen-

sionality: the accurate picture. In 17th Annual European Symposium on Algorithms

(ESA 2009), LNCS, pages 706–717. Springer, 2009.

17



[30] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstruc-

tions for treewidth. J. Comb. Theory, Ser. B, 101(5):302–314, 2011.

[31] Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal

Pilipczuk, and Saket Saurabh. Subexponential parameterized algorithms for planar

and apex-minor-free graphs via low treewidth pattern covering. In IEEE 57th An-

nual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October

2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 515–524, 2016.

[32] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidi-

mensionality and EPTAS. In 22st ACM–SIAM Symposium on Discrete Algorithms

(SODA 2011), pages 748–759. ACM-SIAM, San Francisco, California, 2011.

[33] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geo-

metric graphs. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’12, pages 1563–1575, Philadelphia, PA, USA, 2012.

Society for Industrial and Applied Mathematics.

[34] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation

of representative sets with applications in parameterized and exact algorithms. In

Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 142–151,

2014.

[35] Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs:

branch-width and exponential speed-up. SIAM J. Comput., 36(2):281–309 (elec-

tronic), 2006.

[36] Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the decompos-

ability of planar graphs. Journal of Graph Theory, 51(1):53–81, 2006.

[37] Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for

minimum fill-in. SIAM Journal on Computing, 42(6):2197–2216, 2013.

[38] Alexander Grigoriev, Athanassios Koutsonas, and Dimitrios M. Thilikos. Bidimen-

sionality of geometric intersection graphs. In Viliam Geffert, Bart Preneel, Branislav
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