
12

On Exact Algorithms for Treewidth

HANS L. BODLAENDER, Utrecht University, the Netherlands
FEDOR V. FOMIN, University of Bergen, Norway
ARIE M. C. A. KOSTER, Aachen University, Germany
DIETER KRATSCH, Université de Metz, France
DIMITRIOS M. THILIKOS, University of Athens, Greece

We give experimental and theoretical results on the problem of computing the treewidth of a graph by exact
exponential-time algorithms using exponential space or using only polynomial space. We first report on an
implementation of a dynamic programming algorithm for computing the treewidth of a graph with running
time O∗(2n). This algorithm is based on the old dynamic programming method introduced by Held and Karp
for the TRAVELING SALESMAN problem. We use some optimizations that do not affect the worst case running
time but improve on the running time on actual instances and can be seen to be practical for small instances.
We also consider the problem of computing TREEWIDTH under the restriction that the space used is only
polynomial and give a simple O∗(4n) algorithm that requires polynomial space. We also show that with a
more complicated algorithm using balanced separators, TREEWIDTH can be computed in O∗(2.9512n) time and
polynomial space.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Computations on discrete structures; G.2.2 [Discrete Mathematics]:
Graph Theory

General Terms: Algorithms, Design, Theory, Experimentation

Additional Key Words and Phrases: Graph algorithms, exact algorithms, treewidth, dynamic programming,
separators

ACM Reference Format:
Bodlaender, H. L., Fomin, F. V., Kratsch, D., Koster, A. M. C. A., and Thilikos, D. M. 2012. On exact algorithms
for treewidth. ACM Trans. Algor. 9, 1, Article 12 (December 2012), 23 pages.
DOI = 10.1145/2390176.2390188 http://doi.acm.org/10.1145/2390176.2390188

This research was partially supported by the project Treewidth and Combinatorial Optimization with a grant
from the Netherlands Organization for Scientific Research NWO, and by the Research council of Norway, and
by the DFG research group “Algorithms, Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4).
The research of D. M. Thilikos was supported by the Spanish CICYT project TIN-2004-07925 (GRAMMARS)
and the project “Kapodistrias” (AII 02839/28.07.2008) of the National and Kapodistrian University of Athens
(project code: 70/4/8757).
Authors’ addresses: H. L. Bodlaender, Department of Information and Computing Sciences, Utrecht
University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands; email: h.l.bodlaender@uu.nl; F. V. Fomin,
Department of Informatics, University of Bergen, N-5020 Bergen, Norway; email: fomin@ii.uib.no; A. M. C. A.
Koster, Lehrstuhl II für Mathematik, RWTH Aachen University, Wüllnerstr. zwischen 5 und 7, D-52062
Aachen, Germany; email: koster@math2.rwth-aachen.de; D. Kratsch LITA, Université de Metz, F-507045
Metz Cedex 01, France; email: kratsch@sciences.univ-metz.fr; D. M. Thilikos, Department of Mathe-
matics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784, Athens, Greece;
email: sedthilk@math.uoa.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1549-6325/2012/12-ART12 $15.00

DOI 10.1145/2390176.2390188 http://doi.acm.org/10.1145/2390176.2390188

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:2 H. L. Bodlaender et al.

1. INTRODUCTION

The use of treewidth in several application areas requires efficient algorithms for
computing the treewidth and optimal width tree decompositions of given graphs. In
the past years, a large number of papers appeared, studying the problem to determine
the treewidth of a graph, including both theoretical and experimental results. See, for
example, Bodlaender [2005] and Bodlaender and Koster [2010, 2011] for overviews.
Since the problem is NP complete [Arnborg et al. 1987], there is a little hope in finding
an algorithm that can determine the treewidth of a graph in polynomial time. There are
several exponential time (exact) algorithms known in the literature for the treewidth
problem. (See the surveys [Fomin et al. 2005; Woeginger 2003] for an introduction to
the area of exponential algorithms.) Arnborg et al. [1987] gave an algorithm that tests
in O(nk+2) time if a given graph has treewidth at most k. It is not hard to observe that
the algorithm runs for variable k in O∗(2n) time and also uses O∗(2n) memory.1 See also
Shoikhet and Geiger [1997]. Fomin et al. [2004] presented an O(1.9601n) algorithm to
compute the treewidth based on minimal separators and potential maximal cliques of
graphs, using the paradigms introduced by Bouchitté and Todinca [2002, 2001]. In a
number of steps (see [Villanger 2006; Fomin et al. 2008; Fomin and Villanger 2012,
2010]) the running time of the algorithm was improved. The currently best-known
bound for the running time is O(1.7347n), due to Fomin and Villanger [2010]. The space
required for the algorithms from Fomin et al. [2004, 2008], Villanger [2006], Fomin and
Villanger [2012, 2010] is in each case bounded by a polynomial in n times the number of
potential maximal cliques, that is, O(1.7347n) by the analysis by Fomin and Villanger
[2010]. While these algorithms provide the best-known running times, they are based
on computations of potential maximal cliques and may be difficult to implement.

Our article contains results of two different types. Our first result is an exact al-
gorithm for treewidth whose running time is larger than the best-known asymptotic
bounds but which seems to be much more suitable for implementations. Our second
result is of theoretical nature, giving an exact algorithm with polynomial memory.

While TREEWIDTH is usually formulated as the problem to find a tree decomposition of
minimum width, it is possible to formulate it as a problem to find a linear ordering of
(the vertices of) the graph such that a specific cost measure of the ordering is as small as
possible. Several existing algorithms and heuristics, for treewidth are based on this lin-
ear ordering characterization of treewidth, see, for example, Bachoore and Bodlaender
[2005], Clautiaux et al. [2004], and Gogate and Dechter [2004]. In this article, we ex-
ploit this characterization again, and a lesser known property of it. Thus, we can show
that an old dynamic programming method, introduced by Held and Karp [1962] for the
TRAVELING SALESMAN problem can be adapted and used to compute the treewidth of given
graphs. Suppressing polynomial factors, time and space bounds of the algorithm for
treewidth is the same as that of the algorithm of Held and Karp [1962] for TSP: O∗(2n)
running time and O∗(2n) space. The Held-Karp algorithm tabulates some information
for pairs (S, v), where S is a subset of the vertices, and v is a vertex (from S); a small
variation of the scheme allows us to save a factor O(n) on the space for the problems
considered in this article: we tabulate information for all subsets S ⊆ V of vertices.

We have carried out experiments that show that the method works well to compute
the treewidth of graphs of size up to around forty to fifty. For larger graphs, the space
requirements of the algorithm appear to be the bottleneck. Thus, this raises the ques-
tion: are there polynomially space algorithms to compute the treewidth having running
time of the form O∗(cn) for some constant c? In this article, we answer this question in
the affirmative. We show that there is an algorithm to compute the treewidth that uses

1We sometimes use O∗-notation which is a modified O-notation suppressing all polynomially bounded factors,
introduced by Woeginger [2003].

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:3

O∗(4n) time and only polynomial space. This algorithm uses a simple recursive divide-
and-conquer technique and is similar to the polynomial space algorithm of Gurevich
and Shelah [1987] for HAMILTONIAN PATH.

Finally, we further provide theoretical results improving upon the running time for
the polynomial-space algorithm for treewidth. Using balanced separators, we obtain
an algorithm for TREEWIDTH that uses O∗(2.9512n) time and polynomial space. Using
similar methods, but a better method of enumerating potential maximal cliques, our
result was recently improved to O(2.6151n) time by Fomin and Villanger [2012].

It should be noted that, while the research on the polynomial-space algorithms was
initiated by observations from our experiments, the results are only of theoretical
interest. Both polynomial-space algorithms have to consider a very large number of
subsets of a specific size of the set of vertices, and it cannot be expected that these
algorithms are practical when our exponential space algorithm uses too much space.

2. PRELIMINARIES

2.1. Definitions

We assume the reader to be familiar with standard notions from graph theory. Through-
out this article, n = |V | denotes the number of vertices of graph G = (V, E). A graph
G = (V, E) is chordal, if every cycle in G of length at least four has a chord, that is,
there is an edge connecting two nonconsecutive vertices in the cycle. A triangulation of
a graph G = (V, E) is a graph H = (V, F) that contains G as subgraph (F ⊆ E) and is
chordal. H = (V, F) is a minimal triangulation of G = (V, E) if H is a triangulation of
G and there does not exist a triangulation H ′ = (V, F ′) of G with H′ a proper subgraph
of H. For a graph G = (V, E) and a set of vertices W ⊆ V , the subgraph of G induced
by W is the graph G[W] = (W, {{v,w} ∈ E | v,w ∈ W}).

Definition 2.1. A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T =
(I, F)) with {Xi | i ∈ I} a collection of subsets of V , called bags, and T = (I, F) a tree,
such that

—For all v ∈ V , there exists an i ∈ I with v ∈ Xi.
—For all {v,w} ∈ E, there exists an i ∈ I with v,w ∈ Xi.
—For all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subgraph (subtree) of T .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F)) equals maxi∈I |Xi| − 1. The
treewidth of a graph G, tw(G), is the minimum width of a tree decomposition of G.

The following alternative characterization of treewidth is well known, see, for exam-
ple, Bodlaender [1998].

PROPOSITION 2.2. Let G = (V, E) be a graph, kan integer. The following are equivalent.

(1) G has treewidth at most k.
(2) G has a triangulation H = (V, F) with the maximum size of a clique in H at most

k + 1.
(3) G has a minimal triangulation H = (V, F) with the maximum size of a clique in H

at most k + 1.

2.2. Treewidth as a Linear Ordering Problem

It is well known that treewidth can be formulated as a linear ordering problem, and
this is exploited in several algorithms for determining the treewidth, see, for example,
Bachoore and Bodlaender [2005], Clautiaux et al. [2004], Dendris et al. [1997], and
Gogate and Dechter [2004].

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:4 H. L. Bodlaender et al.

A linear ordering of a graph G = (V, E) is a bijection π : V → {1, 2, . . . , |V |}. For a
linear ordering π and v ∈ V , we denote by π<,v the set of vertices that appear before
v in the ordering: π<,v = {w ∈ V | π (w) < π(v)}. Likewise, we define π≤,v, π>,v, and
π≥,v. A linear ordering π of G is a perfect elimination scheme, if for each vertex, its
higher numbered neighbors form a clique, that is, for each i ∈ {1, 2, . . . , |V |}, the set
{π−1(j) | {π−1(i), π−1(j)} ∈ E ∧ j > i} is a clique. It is well known that a graph has a
perfect elimination scheme, if and only if it is chordal, see Golumbic [1980, Chapter 4].

For arbitrary graphs G, a linear ordering π defines a triangulation H of G that has
π as perfect elimination scheme. The triangulation with respect to π of G is built as
follows: first, set G0 = G, and then for i = 1 to n, Gi is obtained from Gi−1 by adding
an edge between each pair of nonadjacent higher numbered neighbors of π−1(i). One
can observe that the resulting graph H = Gn is chordal, has π as perfect elimination
scheme, and contains G as subgraph.

For our algorithms, we want to avoid working with the triangulation explicitly.
The following predicate allows us to “hide” the triangulation. For a linear-ordering
π , and two vertices v,w ∈ V , we say Pπ (v,w) holds, if and only if there is a path
v, x1, x2, . . . , xr, w from v to w in G, such that for each i, 1 ≤ i ≤ r, π (xi) < π (v), and
π (xi) < π (w). In other words, Pπ (v,w) is true, if and only if there is a path from v to
w such that all internal vertices are before v and w in the ordering π . Note that the
definition implies that Pπ (v,w) is always true when v = w or when {v,w} ∈ E.

With Rπ (v), we denote the number of higher numbered vertices w ∈ V for which
Pπ (v,w) holds, that is, Rπ (v) = |{w ∈ V | π (w) > π (v) ∧ Pπ (v,w)}|.

Let �(S) be the set of all permutations of a set S. So, �(V) is the set of all linear
orderings of G. For disjoint sets S and R, we write �(S, R) for the collection of permu-
tations of S ∪ R that end with vertices in R, that is, each such permutation starts with
the vertices in S in some ordered, and then ends with the vertices in R in some order.

For a graph G = (V, E), a set of vertices S ⊆ V and a vertex v ∈ V − S, we define

QG(S, v)
= {w ∈ V − S − {v} | there is a path from v to w in G[S ∪ {v,w}]}.

If G is clear from the context, we drop the subscript G. Let us note that Q(S, v) can
be computed in O(n + m) time by checking for each w ∈ V − S − {v} whether w has a
neighbor in the component of G[S∪{v}] containing v. Also note that Rπ (v) = |Q(π<,v, v)|
for any v ∈ V , and any linear ordering π ∈ �(V).

The proof of the following proposition is an immediate consequence of a lemma of
Rose et al. [1976]. (See also Bodlaender [1998], Clautiaux et al. [2004], and Dendris
et al. [1997].)

PROPOSITION 2.3. Let G = (V, E) be a graph. The treewidth of G equals
minπ∈�(V) maxv∈V Rπ (v).

PROOF. We use the following result from Rose et al. [1976]. For a given graph G =
(V, E), and a linear ordering π , we have for each pair of disjoint vertices v,w ∈ E: {v,w}
is an edge in the triangulation H = (V, EH) with respect to π , if and only if Pπ (v,w)
is true. Also, we use the result of Fulkerson and Gross [1965] that if π is a perfect
elimination scheme of chordal graph H = (V, EH), then the maximum clique size of
H is one larger than the maximum over all v ∈ V of the number of higher numbered
neighbors |{v,w} ∈ EH | π (w) > π (v)}|. Suppose the treewidth of G equals k, for some
nonnegative integer k.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:5

G has a triangulation H = (V, EH) with maximum clique size k+ 1 (Proposition 2.2).
For a perfect elimination scheme π of H, we have:

k + 1 = max
v∈V

|{{v,w} ∈ EH | π (w) > π (v)}|
= max

v∈V
|{w ∈ V | Pπ (v,w) ∧ π (w) > π (v)}|

= max
v∈V

Rπ (v).

Let π ′ ∈ �(V). There is a chordal graph H′ = (V, EH′) for which π ′ is a perfect elimi-
nation ordering. Let C be a maximum clique in H. By Proposition 2.2, |C| ≥ k+ 1. The
vertex in C with minimum π (v) has C ⊆ {v} ∪ {{v,w} ∈ EH′ | π (w) > π (v)}, so Rπ (v) ≥ k.
The result now follows.

3. EXACT ALGORITHMS FOR TREEWIDTH

3.1. An O∗(2n) Time and O∗(2n) Space Dynamic Programming Algorithm

In this section, we develop a theoretical exact algorithm for TREEWIDTH that uses O∗(2n)
time and O∗(2n) space. A more practical implementation is discussed in Section 4.

We define for ∅ �= S ⊆ V

T WG(S) = min
π∈�(S)

max
v∈S

|QG(π<,v, v)|.

Let T WG(∅) = −∞. Again, usually G is clear from the context, and dropped as
subscript. The main idea of the algorithm in this section is that we compute TWG(S)
for all subsets S ⊆ V using dynamic programming. The next lemma shows that this
solves the treewidth problem.

LEMMA 3.1. For each graph G = (V, E), the treewidth of G equals TW(V).

PROOF. Using Proposition 2.3, we have

tw(G) = min
π∈�(V)

max
v∈V

Rπ (v)

= min
π∈�(V)

max
v∈V

|Q(π<,v, v)|
= TW(V).

The following lemma gives the recursive formulation that allows us to compute the
values TW(S) with dynamic programming.

LEMMA 3.2. For any graph G = (V, E), and any set of vertices S ⊆ V , S �= ∅,

TW(S) = min
v∈S

max
{
TW(S − {v}), |Q(S − {v}, v)|}

PROOF. First, suppose |S| = 1. As TW(S − {v}) = −∞, and π<,v = S − {v} = ∅, the
result directly follows.

Suppose |S| > 1. Let π ∈ �(S) be a permutation with TW(S) = maxw∈S |Q(π<,w,w)|.
Suppose v is the vertex from S with the largest index in π , that is, the vertex with
S ⊆ π≤,v. Let π ′ ∈ �(S − {v}) be obtained by removing v from π . Note that, for all
w ∈ S − {v}, π<,w = π ′

<,w).

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:6 H. L. Bodlaender et al.

As S ⊆ π≤,v, we have |Q(S − {v}, v)| ≤ |Q(π<,v, v)|. Now

TW(S) = max
w∈S

|Q(π<,w,w)|

≥ max
{

max
w∈S−{v}

|Q(π ′
<,w,w)|, |Q(π<,v, v)|

}
≥ max

{
TW(S − {v}), |Q(π<,v, v)|}

≥ max
{
TW(S − {v}), |Q(S − {v}, v)|} .

Thus,

TW(S) ≥ min
v∈S

max
{
TW(S − {v}), |Q(S − {v}, v)|} .

For the other direction, let v be an arbitrary vertex from S. Suppose π ∈ �(S − {v})
is a vertex ordering with TW(S − {v}) = maxw∈S |Q(π<,w,w)|. Let π ′ ∈ �(S) be a vertex
ordering, obtained by first taking the vertex in S − {v} in the order as they appear
in π and then taking v. Note that we have for all w ∈ S − {v}, π ′

<,w ⊆ π<,w, and that
π ′

<,v = S − {v}. Now

TW(S) ≤ max
w∈S

|Q(π ′
<,w,w)|

= max
{

max
w∈S−{v}

|Q(π ′
<,w,w)|, |Q(π ′

<,v, v)|
}

≤ max
{

max
w∈S−{v}

|Q(π<,w,w)|, |Q(S − {v}, v)|
}

= max
{
TW(S − {v}), |Q(S − {v}, v)|} .

This gives us the following relatively simple algorithm for TREEWIDTH with O∗(2n)
worst case running time and space.

THEOREM 3.3. The treewidth of a graph on n vertices can be determined in O∗(2n)
time and O∗(2n) space.

PROOF. By Lemma 3.2, we almost directly obtain a Held-Karp-like dynamic pro-
gramming algorithm for the problem. In order of increasing sizes, we compute for each
S ⊆ V , TW(S) using Lemma 3.2. Here, we give pseudocode for a simple form of the
algorithm Dynamic-Programming-Treewidth.

ALGORITHM 1: Dynamic-Programming-Treewidth(Graph G = (V, E))
Set T W (∅) = −∞.
for i = 1 to n do

for all sets S ⊂ V with |S| = i do
Set T W (S) = minv∈S max

{
T W (S − {v}), |Q(S − {v}, v)|}

end for
end for
return T W (V)

The algorithm uses O∗(2n) time, as we do polynomially many steps per subset of V .
The algorithm also keeps all subsets of V and thus uses O∗(2n) space.

In Section 4, we report on an implementation of the algorithm for TREEWIDTH (with
additional improvements to decrease the time for actual instances). Since the O∗(2n)
space requirement turns out to be a real limitation, we next consider polynomial-space

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:7

(but exponential-time) algorithms. In the pseudocode of Algorithm 1, we stored a value
for all sets S. In a practical computation, this is not necessary: when computing values
TW(S) for sets S of size i, we only need these values for sets of size i − 1, and thus can
delete the information for sets S with |S| < i − 1.

3.2. An O∗(4n) Time and Polynomial Space Recursive Algorithm for Treewidth

For vertex subsets L, S ⊆ V, S ∩ L = ∅, S �= ∅, of a graph G = (V, E), we define

TWR(L, S) = min
π∈�(L,S)

max
v∈S

|Q(L ∪ π<,v, v)|.

The intuition behind TWR(L, S) is as follows: we investigate the resulting cost of the
“best” ordering of the vertices in S, assuming that all vertices in L are left of all
vertices in S, and all vertices in V − (L ∪ S) are right of all vertices in S. We observe
that if S = {v}, then TWR(L, S) = |Q(L, v)|. Also, by definition, TWR(∅, S) = TW(S) and
therefore tw(G) = TWR(∅, V).

LEMMA 3.4. Let G = (V, E) be a graph. Let S ⊆ V , L ⊆ V , and L ∩ S = ∅.

(1) Suppose |S| = 1. Then TWR(L, S) = |Q(L, v)|.
(2) Suppose |S| ≥ 2, and 1 ≤ k < |S|. Then

TWR(L, S) = min
S′⊆S,|S′ |=k

max
{
TWR(L, S′), TWR(L ∪ S′, S − S′)

}
.

PROOF. First, suppose S = {v}. For each π ∈ �(L, S), L ∪ π<,v = L, and thus part (1)
of the lemma follows.

Suppose |S| ≥ 2 and 1 ≤ k < |S|. Suppose π ∈ �(L, S) fulfills TWR(L, S) =
maxv∈S |Q(L ∪ π<,v, v)|. Let S′ be the first k vertices in S that appear in π , that is,
all vertices in S− S′ have a higher index in π than any element in S′ and |S′| = k. Now,

TWR(L, S) = max
v∈S

|Q(L ∪ π<,v, v)|

= max
{

max
v∈S′

|Q(L ∪ π<,v, v)|, max
v∈S−S′

|Q(L ∪ π<,v, v)|
}

≥ max
{

TWR(L, S′), max
v∈S−S′

|Q(L ∪ S′ ∪ π<,v, v)|
}

≥ max
{
TWR(L, S′), TWR(L ∪ S′, S − S′)

}
.

For the other direction, suppose that S′ ⊆ S with |S′| = k fulfills

max
{
TWR(L, S′), TWR(L ∪ S′, S − S′)

}
= min

S′′⊆S,|S′ |=k
max

{
TWR(L, S′′), TWR(L ∪ S′, S − S′′)

}
.

Let π ′ ∈ �(L ∪ S′) be a permutation with TWR(L, S′) = maxv∈S′ |Q(L ∪ π ′
<,v, v)|. Let

π ′′ ∈ �(L∪S) be a permutation with TWR(L∪S′, S−S′) = maxv∈S−S′ |Q(L∪S′∪π ′′
<,v, v)|.

We now build a permutation π ∈ �(L ∪ S) in the following way. First, we take the
elements in L, in some arbitrary order. Then, we take the elements in S′, in the order
as they appear in π ′. That is, for v,w ∈ S′, we have that v has a smaller index than w
in π , if and only if v has a smaller index than w in π ′. Then, we take the elements in
S − S′, in the order as they appear in π ′′. That is, for v,w ∈ S − S′, we have that v has
a smaller index than w in π , if and only if v has a smaller index than w in π ′′. Also, for

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:8 H. L. Bodlaender et al.

all v ∈ S′, w ∈ S − S′, v has a smaller index than w in π . For this order π , we have

TWR(L, S) ≤ max
v∈S

|Q(L ∪ π<,v, v)|

= max
{

max
v∈S′

|Q(L ∪ π<,v, v)|, max
v∈S−S′

|Q(L ∪ π<,v, v)|
}

≤ max
{

max
v∈S′

|Q(L ∪ π ′
<,v, v)|, max

v∈S−S′
|Q(L ∪ S′ ∪ π ′′

<,v, v)|
}

= max
{
TWR(L, S′), TWR(L ∪ S′, S − S′)

}
.

This proves the result.

By making use of Lemma 3.4 with k = �|S|/2�, we obtain the following result.

THEOREM 3.5. The treewidth of a graph on n vertices can be determined in O∗(4n)
time and polynomial space.

PROOF. Lemma 3.4 is used to obtain Algorithm 2. This algorithm computes
TWR(L, S) recursively. Algorithm 2 computes the treewidth of the graph G when call-
ing Recursive-Treewidth(G,∅,V). Since tw(G) = TWR(∅, V), this gives the answer to the
problem.

ALGORITHM 2: Recursive-Treewidth(Graph G, Vertex Set L, Vertex Set S)
if |S| = 1 then

Suppose S = {v}.
return Q(L, v)

end if
Set Opt = ∞.
for all sets S′ ⊆ S, |S′| = �|S|/2� do

Compute v1 = Recursive-Treewidth(G, L, S′);
Compute v2 = Recursive-Treewidth(G, L ∪ S′, S − S′);
Set Opt = min {Opt, max {v1, v2}};

end for
return Opt

The algorithm clearly uses polynomial space: recursion depth is O(log n), and per
recursive step, only polynomial space is used. To estimate the running time, suppose
that Recursive-Treewidth(G,L,S) costs T (n, r) time with n the number of vertices of G
and r = |S|. All work, except the time of recursive calls, has its time bounded by a
polynomial in n, p(n). As we make less than 2r+1 recursive calls, each with a set S′ with
|S′| ≤ �|S|/2�, we have

T (n, r) ≤ 2r+1 · T (n, �r/2�) + p(n). (1)

From this, it follows that there is a polynomial p′(n), such that

T (n, r) ≤ 4r · p′(n). (2)

As the algorithm is called with |S| = n, it uses O∗(4n) time.

Compared to the exponential-space algorithm, the running time of this algorithm is
clearly worse. In the next section, we improve upon this without losing the polynomial-
space usage.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:9

3.3. An O∗(2.9512n) Time and Polynomial Space Algorithm

In this section, we give a faster exponential-time algorithm with polynomial-space for
TREEWIDTH. The algorithm is based on results of earlier sections combined with tech-
niques based upon balanced separators. We now derive a number of necessary lemmas.

LEMMA 3.6. Suppose π is a linear ordering of G = (V, E) with

tw(G) = max
v∈V

Rπ (v).

Let 0 ≤ i < |V |, and S = {v ∈ V | π (v) > i} be the set with the |V | − i highest numbered
vertices. Then

tw(G) = max
{
TW(V − S), TWR(V − S, S)

}
.

PROOF. Recall that TWR(∅, S) = TW(S), for all S ⊆ V . By Lemma 3.4,

tw(G) = TWR(∅, V) ≤ max
{
TWR(∅, V − S), TWR(V − S, S)

}
.

We have that TW(V − S) ≤ maxv∈V −S Rπ (v) ≤ tw(G). Observing that for v ∈ S: V − S ⊆
π<,v, we have

TWR(V − S, S) ≤ max
v∈S

|Q(V − S ∪ π<,v, v)|
= max

v∈S
Rπ (v) ≤ tw(G).

LEMMA 3.7. Let G = (V, E) be a graph. Let S ⊆ V be a set of vertices, such that
the treewidth of G is equal to the treewidth of the graph G′ = (V, E ∪ {{v,w} | v,w ∈
S, v �= w}) obtained from G by turning S into a clique. Then, there is a linear ordering
π ∈ �(V − S, S), such that tw(G) = maxv∈V Rπ (v).

PROOF. Suppose H = (V, EH) is a triangulation of G′, such that the maximum clique
size of H equals tw(G′) + 1 = tw(G) + 1. H is also a triangulation of G, and S is a
clique in H. By Lemma 4.2, there is a perfect elimination scheme π of H that ends
with the vertices in S, that is, with π ∈ �(V − S, S). For this ordering π , we have that
tw(G) = maxv∈V Rπ (v), as we have for each v ∈ V that {v} ∪ Q(π<,v, v) is a clique in H,
and hence Rπ (v) ≤ tw(G).

The following lemma is a small variant on a folklore result. Its proof follows mostly
the folklore proof.

LEMMA 3.8. Let G = (V, E) be a graph with treewidth at most k. There is a set S ⊆ V
with

—|S| = k + 1.
—Each connected component of G[V − S] contains at most (|V | − k)/2 vertices.
—The graph G′ = (V, E ∪ {{v,w} | v,w ∈ S, v �= w}) obtained from G by turning S into

a clique has treewidth at most k.

PROOF. It is well known that, if the treewidth of G is at most k, then G has a tree
decomposition ({Xi | i ∈ I}, T = (I, F)) such that

—For all i ∈ I: |Xi| = k + 1.
—For all (i, j) ∈ F: |Xi − Xj | ≤ 1.

Take such a tree decomposition. Now, for each i ∈ I, consider the trees obtained when
removing i from T . For each such tree, consider the union of the sets Xj − Xi with j
in this tree. Each connected component G[W] of G[V − Xi] has all its vertices in one

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:10 H. L. Bodlaender et al.

Xi1 Xi2

i1 i2

W1W2

Fig. 1. Illustration to the proof of Lemma 3.8.

such set, that is, for one subtree of T − i. Suppose that for i ∈ I, there is at least
one component of G[V − Xi] that contains more than (|V | − k)/2 vertices. Let i′ be the
neighbor of i that belongs to the subtree that contains the vertices in W . Now, direct
an arc from i to i′. In this way, each node in I has at most one outgoing arc.

Suppose first that there are two neighboring nodes i1 and i2, with i1 having an arc
to i2, and i2 having an arc to i1. Let G[W1] be the connected component of G[V − Xi1]
that contains more than (|V | − k)/2 vertices. Let G[W2] be the connected component of
G[V − Xi2] that contains more than (|V | − k)/2 vertices.

Now, W1 and W2 are disjoint sets. (See Figure 1. Note that, if v ∈ W1 ∩ W2, then v
must belong to a bag in the part of the tree, marked with W1, and a part of the tree
marked with W2. Then also w ∈ Xi1 , and this is a contradiction as G[W] is a connected
component of G[V − Xi1].)

Also, W1∩Xi1 = ∅. As W2∩Xi2 = ∅, W1∩Xi2 ⊆ Xi1 −Xi2 . Now, Xi1 , W1, and W2−(Xi1 −Xi2)
are disjoint sets, which contain together at least (k + 1) + ((|V | − k)/2 + 1) + ((|V | −
k)/2 + 1 − 1) > |V | vertices, contradiction.

Now, as there are no two neighboring nodes i1 and i2, with i1 having an arc to i2,
and i2 having an arc to i1, there must be a there is a node i0 in T without outgoing
arcs. (Start at any tree node, and follow arcs. As the tree is finite and loopless, we
end in a node i0 without outgoing arcs.) Now taking S = Xi0 gives the required set:
({Xi | i ∈ I}, T = (I, F)) is also a tree decomposition of G′, so G′ has treewidth k, and as
i0 has no outgoing arcs, each connected component of G[V − Xi0] has at most (|V |−k)/2
vertices.

LEMMA 3.9. Let G = (V, E) be a graph with treewidth at most k. Let k + 1 ≤ r ≤ n.
There is a set W ⊆ V , with

—|W | = r.
—Each connected component of G[V − W] contains at most (|V | − r + 1)/2 vertices.
—tw(G) = max{TWR(∅, V − W), TWR(V − W, W)}.

PROOF. First, let S be the set, implied by Lemma 3.8. Let π ∈ �(V − S, S) be the
linear ordering with tw(G) = maxv∈V Rπ (v), see Lemma 3.7. If k + 1 = r, then we can
take W = S, and we are done by Lemma 3.6.

If k + 1 < r, then we construct W and an ordering π as follows. We start by setting
W = S, but will add later more vertices to W . Repeat the following steps, until |W | = r:
compute the connected components of G[V − W]. Suppose Z is the set of vertices of the
connected component of G[V − W] with the largest number of vertices. Let z ∈ Z be the
vertex in Z with the largest index in π : π (z) = maxv∈Z π (v). Now, we do the following.

—Change the position of z in π as follows: move z to the first position before an element
in W , that is, set π(z) = |V | − |Q|. All other elements keep their relative position.
Now, note that sets Q(π<,v, v) do not change, for all v ∈ V . So, for the new ordering
π , we still have that tw(G) = maxv∈V Rπ (v).

—Add z to W . Note that we still have that π ends with the vertices in W .

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:11

This procedure keeps as invariants that π ∈ �(V − W, W), that is, π ends with W ,
that tw(G) = maxv∈V Rπ (v), and that each connected component of G[V − W] contains
at most (|V | − |W | + 1)/2 vertices. (This can be seen as follows: The component that
contained z became one smaller, while the term (|V | − |W | − 1)/2 decreases with 1/2.
All but the largest component of G[V −W] contain at most (|V |−|W |)/2 vertices, which
means that they still are of sufficiently small size when |W | increases by one.)

By the Lemma 3.6, we know that the third condition holds for W ; thus, the set W
obtained by the procedure fulfills the conditions stated in the lemma.

For a graph G = (V, E), and a set W , let G+[W] be the fill-in graph, obtained by
eliminating the vertices in V − W , that is, G+[W] = (W, F), with for all v,w ∈ W ,
v �= w, we have that {v,w} ∈ F, if and only if there is a path from v to w that uses
only vertices in V − W as internal vertices. That is, the fill-in graph has all edges that
appear in any triangulation obtained by an elimination scheme that starts with W .

The next lemma formalizes the intuition behind TWR(V − W, W): when computing
TWR(V − W, W), we look for the best ordering of the vertices in W , after all vertices in
V − W are eliminated—that is, in the graph G+[W]). We also give a formal proof.

LEMMA 3.10. Let G = (V, E) be a graph, and W ⊆ V a set of vertices. Then,
tw(G+[W]) = TWR(V − W, W).

PROOF. Consider a linear ordering π ∈ �(V) of the vertices in V . Let π ′ be the linear
ordering of the vertices in W , obtained by restricting π to W , that is, for v,w ∈ W :
π (v) < π (w) ⇔ π ′(v) < π ′(w). Now, for all v ∈ V ,

QG+[W](π ′
<,v, v) = QG(V − W ∪ π<,v, v).

This is because, for each edge {v,w} in the graph G+[W], there is a path from v to w
using only vertices in V − W ∪ {v,w}.

Suppose that for linear ordering π ′ of the vertices in W , we have

tw(G+[W]) = max
v∈W

QG+[W](π ′
<,v, v).

Take an arbitrary ordering π ∈ �(V − W, W) such that π ′ is the ordering obtained
by restricting π to W , that is, we extend π ′ by placing the vertices of V − W in some
arbitrary ordering before all vertices in W . Now

tw(G+[W]) = max
v∈W

QG+[W](π ′
<,v, v)

= max
v∈W

QG(V − W ∪ π<,v, v)

≥ TWR(V − W, W).

Suppose that for linear ordering π of the vertices in V , we have

TWR(V − W, W) = max
v∈W

QG(V − W ∪ π<,v, v).

Let π ′ be the restriction of π to W . Now

TWR(V − W, W) = max
v∈W

QG(V − W ∪ π<,v, v)

= max
v∈W

QG+[W](π ′
<,v, v)

≥ tw(G+[W]).

LEMMA 3.11. Let G = (V, E) be a graph, and let S = S1∪S2 ⊆ V . Suppose S1∩S2 = ∅,
and that there is no edge between a vertex in S1 and a vertex in S2. Then, TW(S) =
max{TW(S1), TW(S2)}.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:12 H. L. Bodlaender et al.

PROOF. Suppose for i ∈ {1, 2}, π i ∈ �(V) is a linear ordering of G with

TW(Si) = max
v∈Si

|Q(π i
<,v, v)|.

Let π ∈ �(S) be the permutation of S, constructed as follows: we take the vertices in
S1 in the order as they appear in π1, that is, for all v,w ∈ S1, π (v) < π(w) ⇔ π1(v) <
π1(w). Then, we take the vertices in S2 in the order as they appear in π2.

Now, for i ∈ {1, 2}, and all vertices v ∈ Si, we have that

Q(π i
<,v, v) = Q(π<,v, v)

and hence

TW(S) ≤ max
v∈S

|Q(π<,v, v)|

= max
{

max
v∈S1

|Q(π<,v, v)|, max
v∈S2

|Q(π<,v, v)|
}

= max
{

max
v∈S1

|Q(π1
<,v, v)|, max

v∈S2

|Q(π2
<,v, v)|

}
= max{TW(S1), TW(S2)}.

Consider a permutation π ∈ �(S) with TW(S) = maxv∈S |Q(π<,v, v)|. Let π1 ∈ �(S1)
be obtained by restricting π to S1, that is, for all v,w ∈ S1, v is before w in π if and only
if v is before w in π1. Again, Q(π1

<,v, v) = Q(π<,v, v), and it follows that TW(S) ≥ TW(S1).
Similarly, TW(S) ≥ TW(S2).

These lemmas are summarized in the following result, which gives a main idea of
the improved recursive algorithm.

COROLLARY 3.12. Let G = (V, E) be a graph, and let k, r be integers, 0 ≤ k < r ≤ |V |.
The treewidth of G is at most k, if and only if there is a set of vertices S ⊆ V , with

—|S| = r.
—Each connected component of G[V − S] contains at most (|V | − r + 1)/2 vertices.
—For each connected component G[W] of G[V − S], TWR(∅, W) ≤ k.
—The treewidth of G+[S] is at most k.

PROOF. Let G = (V, E) be a graph, 0 ≤ k < r ≤ |V |.
First, suppose the treewidth of G is at most k. By Lemma 3.9, there is a set S, with

|S| = r, each connected component of G[V − S] contains at most (|V | − r + 1)/2 ver-
tices, and tw(G) = max{TWR(∅, V − S), TWR(V − S, S). By Lemma 3.10, tw(G+[S]) =
TWR(V − S, S) ≤ tw(G) ≤ k. For each connected component G[W] of G[V − S],
TWR(∅, W) ≤ TWR(∅, V − S) ≤ tw(G) ≤ k. So, each of the conditions holds for S.

Suppose we have a set S ⊆ V , that fulfills each of these four conditions. For each con-
nected component G[W] of G[V −S], we have TW(W) = TWR(∅, W) ≤ k. By Lemma 3.11,
V − S, which is the disjoint union of the vertex sets of these connected components,
fulfills TWR(∅, V − S) = TW(V − S) ≤ k. By Lemma 3.10, tw(G+[S]) = TWR(V − S, S).
Now, (cf., Lemma 3.4), tw(G) ≤ max{TWR(∅, V − S), TWR(V − S, S)} ≤ k.

We now present the main result of this section.

THEOREM 3.13. The treewidth of a graph G on n vertices can be computed in polyno-
mial space and time O∗(2.9512n).

PROOF. We describe a decision algorithm for treewidth: given a graph G, and an
integer k, it decides whether the treewidth of G is at most k. Of course, an algorithm

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:13

that, given a graph G, computes tw(G) can be constructed at the cost of an additional
multiplicative factor O(log n), suppressed by the O∗-notation. Let γ = 0.4203.

Algorithm 3 gives the pseudocode of the algorithm. It works as follows. If |V | ≤ k+1,
then the treewidth of G is at most |V | − 1 ≤ k, so the algorithm returns true.

ALGORITHM 3: Improved-Recursive-Treewidth(Graph G = (V, E), Integer k)
if |V | ≤ k + 1 then

return true
else if k ≤ 0.25 · |V | or k ≥ 0.4203 · |V | then

for all sets S ⊆ V of size k + 1 do
if each connected component of G[V − S] contains at most (|V | − |S| + 1)/2 vertices then

tbool = true;
for all connected components G[W] of G[V − S] do

tbool = tbool or (Recursive-Treewidth(G, ∅, W) ≤ k);
end for
if tbool then

return true
end if

end if
end for

else
for all sets S ⊆ V of size �0.4203 · |V |� do

if Each connected component of G[V − S] contains at most (|V | − |S| + 1)/2 vertices
then

Compute the graph G+[S].
tbool = Improved-Recursive-Treewidth(G+[S], k);
for all connected components G[W] of G[V − S] do

tbool = tbool or Recursive-Treewidth(G, ∅, W) ≤ k;
end for
if tbool then

return true
end if

end if
end for

end if
return false

Otherwise, the algorithm checks if k ≤ 0.25 · |V | or k ≥ γ · |V |. If this is the case,
then we search for a set S, as implied by Corollary 3.12 when we take r = k + 1. That
is, we enumerate all sets S of size k + 1. For each such S, we check if all connected
components of G = (V, E) have size at most (|V |− |S|+1)/2. If so, we use the algorithm
of Theorem 3.5 (Algorithm 2 Recursive-Treewidth) to compute for each connected com-
ponent G[W] the value TWR(W,∅). If, for each such component W , TWR(∅, W), then
the algorithm returns true: as G+(W) has k + 1 vertices, its treewidth is trivially at
most k, and hence all conditions of Corollary 3.12 are fulfilled, so G has treewidth at
most k. If there is no set S of size k + 1 that yields true, then the algorithm returns
false; correctness is implied by Corollary 3.12.

The remaining case is that 0.25 · |V | < k < γ · |V |. Now, we search for a set S as
implied by Corollary 3.12 when taking r = �γ · |V |�. That is, we enumerate all sets S of
size r = �γ · |V |�. For each, we check if all connected components G[W] of G[V − S] have
size at most (|V |−r +1)/2. If so, we use Algorithm 2 Recursive-Treewidth for deciding if
all connected components G[W] of G[V − S] fulfill TWR(∅, W) ≤ k. We also recursively
call the algorithm on G+(W) to decide if this graph has treewidth at most k. If all these

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:14 H. L. Bodlaender et al.

checks succeed, the algorithm returns true. If no S of size r made the algorithm return
true, the algorithm returns false. Correctness again follows from Corollary 3.12.

We now analyze the running time of the algorithm. Write α = k/|V |.
We start with analyzing the case where k ≤ 0.25 · |V | or γ · |V | ≤ k. We have α ≤ 0.25

or α ≥ γ . The number of subsets of size α · n of a set of size n is known to be of size

O∗((α−α · (1 − α)α−1)n).

Each connected component G[W] of G[V − S] for which the algorithm calls Recursive-
Treewidth has size at most (|V |−α · |V |+1)/2, thus, we use at most O∗(4(|V |−α·|V |+1)/2) =
O∗(2(1−α)|V | time for one such component. Thus, the total time in this case is bounded
by

O∗((α−α · (1 − α)α−1 · 21−α)n.

Write f (α) = α−α · (1 − α)α−1 · 21−α. The function f monotonically increases in the
interval (0, 1

3), and monotonically decreases in the interval (1
3 , 1). As f (0.25) < 2.9512,

and f (γ) < 2.9512, we have for all α with 0 < α ≤ 0.25 or γ ≤ α < 1, that f (α) < 2.9512,
and hence that the algorithm uses O∗(2.9512n) time.

We now look at the case where 0.25 · |V | < k < γ · |V |, that is, where 0.25 < α < γ .
As in the previous case, the time for all computations of TWR(∅, W) for all connected
components of G[V − S] over all sets S ⊆ V of size r is bounded by

O∗((γ −γ · (1 − γ)γ−1 · 21−γ)n = O∗(f (γ)n).

As f (γ) = f (0.4203) < 2.9512, the total time for these steps is bounded by O∗(2.9512n).
We have to add to this time the total time over all recursive calls to the algorithm with

graphs of the form G+(S). Note that the recursion depth is at most 1: in the recursion,
the value of k is unchanged, while we now have a graph with |S| = �γ · |V |� vertices. So,
in the recursive call, k > 0.25 · |V | > γ · |S|, and the algorithm executes the first case.
From this analysis, it follows that each recursive call of Improved-Recursive-Treewidth
on a graph G+[S] costs

O∗(
(
β−β · (1 − β)β−1 · 21−β

)γ ·n
)

time, with β = α/γ . (Note that k
|S| ∼ α|V |

γ |V | = β.) Write

g(α) = γ γ · (1 − γ)γ−1 ·
((

α

γ

)− α
γ

·
(

1 − α

γ

) α
γ
−1

· 21− α
γ

)γ

.

As there are O∗((γ γ · (1 − γ)γ−1)n) vertex sets S ⊆ V of size γ n, the total time of
all calls of Improved-Recursive-Treewidth with graphs of the form G+[S] is bounded
by O∗(g(α)n). On the interval [0.25, γ], the function g is monotonically decreasing,
with g(0.25) < 2.9511. Thus, it follows that the total time over all calls of Improved-
Recursive-Treewidth for graphs G+[S] is bounded by O∗(2.9511n), and the total time of
the algorithm is bounded by O∗(2.9512n).

Recently, the bound has been improved to O(2.6151n) time by Fomin and Villanger
[2012]. This improvement is mainly obtained by a better method to enumerate and
bound the number of potential maximal cliques.

4. EXPERIMENTAL RESULTS AND ALGORITHM ENGINEERING

In this section, we discuss experiments with the algorithms proposed in the previ-
ous section. We first discuss algorithm engineering aspects of our exponential-space

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:15

algorithms: small modifications and improvements turn the algorithm into an algo-
rithm that is practical for small sized graphs. We then report on results of experiments
with implementations of the modified algorithm with optimizations. Finally, we briefly
discuss the polynomial-space algorithms.

4.1. Exponential Space and Time Implementation

4.1.1. Algorithm Engineering. For practical considerations, we use a scheme that is
slightly different than that of Theorem 3.3. Note that it is not useful to perform com-
putations with sets S for which TW(S) is larger than or equal to a known upper bound
up on the treewidth of G: these cannot lead to a smaller bound on the treewidth of G.
Thus, in order to save time and space in practice, we avoid handling some of such S.
We compute collections TW1, TW2, . . . , TWn. Each collection TWi (1 ≤ i ≤ n) contains
pairs (S, TW(S)) with |S| = i. The collection for sets of size i > 1 is built as follows: for
each pair (S, r) ∈ TWi−1 and each x ∈ V − S, we compute r′ = max{r, |Q(S, x)|}. Recall
that Q(S, x) is the set of vertices in V − S − {x} that are reachable from x with paths
using vertices in S ∪ {x}. A simple variant of depth first search can be used for this. If
r′ < up, then we check if there is a pair (S ∪ {x}, t) in TWi for some t, and if so, replace
it by (S ∪ {x}, min(t, r′)). If r′ < up, but there is no such pair (S ∪ {x}, t) for some t is in
TWi, then we insert (S ∪ {x}, r′) in TWi.

Starting with a good upper bound up is beneficial for the running time, as fewer table
entries have to be handled. See also Section 4.2.

The scheme is shown in Algorithm 4. In our implementation, we use two additional
optimizations that appeared to give significant savings in time and space consumption.
Both of these are shown in the code of Algorithm 4. The first of these is based upon
Lemma 4.1.

ALGORITHM 4: Algorithm TWDP (Graph G = (V, E), clique C ⊆ V)
n = |V |.
Compute some initial upper bound up on the treewidth of G. (For example, set up = n − 1.)
Let T W0 be the set, containing the pair (∅, −∞).
for i = 1 to n − |C| do

Set T Wi to be an empty set.
for each pair (S, r) in T Wi−1 do

for each vertex x ∈ V − S do
Compute q = |Q(S, v)|.
Set r′ = min{r, q}.
if r′ < up then

up = min{up, n − |S| − 1}
if There is a pair (S ∪ {x}, t) in T Wi for some t then

Replace the pair (S ∪ {x}, t) in T Wi by (S ∪ {x}, min(t, r′)).
else

Insert the pair (S ∪ {x}, r′) in T Wi.
end if

end if
end for

end for
end for
if T Wn−|C| contains a pair (V − C, r) for some r then

return r
else

return up
end if

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:16 H. L. Bodlaender et al.

LEMMA 4.1. Let G = (V, E) be a graph, and let S ⊆ V . The treewidth of G is at most
max{TW(S), n − |S| − 1}.

PROOF. Take π ∈ �(V) with TW(S) = maxv∈S |QG(π<,v, v)|. Now, take a linear order-
ing π ′ of G that starts with the vertices in S in the same order as these are in π , and
then the vertices in V − S in some arbitrary order. Now we claim that

tw(G) ≤ max
v∈V

|QG(π ′
<,v, v)| ≤ max

{
TW(S), n − |S| − 1

}
For v ∈ S, |QG(π ′

<,v, v)| = |QG(π<,v, v)| ≤ TW(S). If v ∈ V − S, |QG(π ′
<,v, v)| ≤ |V − S −

{v}| ≤ n − |S| − 1.

Lemma 4.1 shows correctness of the following rule that was used in the implemen-
tation: we keep an upper bound up for the treewidth of G, initially set by the user or
set to n − 1. Each time, we get a pair (S, r) in a collection TWi, either by insertion,
or by replacement of an existing pair, we set the upper bound up to the minimum of
up and n − |S| − 1 = n − i − 1. Moreover, when handling a pair (S, r) from TWi−1, it
is first checked if r is smaller than up; if not, then this pair cannot contribute to an
improvement of the upper bound, and hence is skipped. Our second optimization is
stated in Lemma 4.3. We use the following basic fact on chordal graphs and cliques.

LEMMA 4.2. Let H = (V, EH) be a chordal graph and let C ⊆ V induce a clique in
G. Then, H has a perfect elimination scheme π that ends with C, that is, such that for
each v ∈ C: π (v) ≥ |V | − |C| + 1.

PROOF. Consider (for instance) the Maximum Cardinality Search (MCS) algorithm
from Tarjan and Yannakakis [1984]. When given a chordal graph H, it produces a
perfect elimination scheme of H. It is easy to see that MCS can produce an ordering
with the vertices of C at the highest numbered positions.

LEMMA 4.3. Let C ⊆ V induce a clique in graph G = (V, E). The treewidth of G
equals max{TW(V − C), |C| − 1}.

PROOF. Using the proof method of Proposition 2.3 and Lemma 4.2, we obtain that
the treewidth of G is at most some nonnegative integer k, if and only if there is a linear
ordering π ∈ �(V −C, C) of G, such that for each v ∈ V , Rπ (v) ≤ k. In a similar, slightly
more complicated way as for the proof of Lemma 3.1, we have

tw(G) = min
π∈�(V −C,C)

max
v∈V

Rπ (v)

= min
π∈�(V −C,C)

max
{

max
v∈V−C

Rπ (v), max
v∈C

Rπ (v)
}

= min
π∈�(V −C,C)

max
{

max
v∈V−C

Rπ (v), |C| − 1
}

= max
{
|C| − 1, min

π∈�(V −C,C)
Rπ (v)

}
= max{|C| − 1, TW(V − C)}.

By Lemma 4.3, we can restrict the sets S to elements from V − C for some clique C;
in particular for the maximum clique. Although it is NP-hard to compute the maximum
clique in a graph, it can be computed extremely fast for the graphs considered. In our
program, we use a simple combinatorial branch-and-bound algorithm to compute all
maximum cliques. It recursively extends a clique by all candidate vertices once.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:17

4.1.2. When and How to Use the TWDP Algorithm. Several other algorithmic engineer-
ing studies have been made for the computation of treewidth. These include exact
algorithms, upper-bound heuristics, lower-bound heuristics, and preprocessing meth-
ods. Many of these results are also reported in TreewidthLib [2004]. A series of three
overview papers is being made [Bodlaender and Koster 2010, 2011, ?], reporting on
respectively upper-bound heuristics, lower-bound heuristics, and exact algorithms and
preprocessing for treewidth. A few of the experiences that were obtained are useful to
see when and where the TWDP algorithm is of use.

An approach that is sometimes successful to obtain the exact treewidth is the fol-
lowing: we try out a few different upper-bound heuristics, and a good lower-bound
heuristic, for example, the LBP+(MMD+) heuristic from Bodlaender et al. [2006]. In
several instances reported in TreewidthLib [2004], the best upper-bound matches the
lower bound, and we have obtained in a relatively fast way an exact bound on the
treewidth of the instance graph. When these bounds do not match, and the graph is
not too large, the TWDP algorithm can be of good use. We give the TWDP algorithm as
input the best available upper bound for the treewidth.

A nice example is the celar03 graph. This graph has 200 vertices and 721 edges. A
combination of different preprocessing techniques yield an equivalent instance celar03-
pp-001 which has 38 vertices and 238 edges. Existing upper bound heuristics gave a
best upper bound of 15, while the lower bound of the LBP+(MMD+) heuristic was 13.
With the TWDP algorithm with 15 as input for an upper bound, we obtained the exact
treewidth of 14 for this graph, and hence also for celar03.

The TWDP algorithm can also be used as a lower bound heuristic: give the algorithm
as “upper bound” a conjectured lower bound �: when it terminates, it either has found
the exact treewidth, or we know that � is indeed a lower bound for the treewidth of the
input graph. In a few cases, we could thus increase the lower bound for the treewidth of
considered instances, for example, for the treewidth of the queen8-8 graph (the graph
modeling the possible moves of a queen on an 8 by 8 chessboard) the lower bound could
be improved from 27 to 35.

For larger graphs, this idea can be combined by an idea exploited earlier in various
papers. Given a graph G and a minor G′ of G, tw(G′) ≤ tw(G). In Bodlaender et al.
[2006], Gogate and Dechter [2004]; Koster et al. [2005], a lower bound on tw(G′) is
computed to obtain a lower bound for G. With Algorithm 4, we can compute tw(G′)
exactly to obtain a lower bound for tw(G). That is, given a graph whose size is too large
to compute its treewidth exactly, we contract edges until we obtain a graph that is
small enough for our program. The exact treewidth of this minor gives a lower bound
for the treewidth of G. In our experiments, and other results report on [TreewidthLib
2004], this has shown to be a viable lower bound strategy.

For the 1024 vertices graph pignet2-pp, we have generated a sequence of minors by
repeatedly contracting a minimum degree vertex with a neighbor with least number of
common neighbors (see Bodlaender et al. [2006]). Figure 2 shows the treewidth (right
y-scale) for the minors with 70 to 79 vertices. Moreover, the maximum number of sets
for three different upper bounds is reported (left y-scale, logarithmic). If the used upper
bound is less than or equal to the treewidth, no feasible solution is found in the end.
The best known lower bound for pignet2-pp is increased from 48 to 59 by the treewidth
of the 79 vertex-minor. Figure 2 shows the impact of the upper bound on the memory
consumption (and time consumption) of the algorithm.

4.1.3. Implementation Details. The algorithm was implemented in C++, using the Boost
graph library [Boost 1999–2009], as part of the Treewidth Optimization Library TOL, a
package of algorithms for the treewidth of graphs. The package includes preprocessing,
upper bound, and lower bound algorithms for treewidth (some algorithms can be tested

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:18 H. L. Bodlaender et al.

Fig. 2. Maximum number of subsets S during algorithm for different upper bounds.

online [Koster 2009]). Experiments were carried out on a number of graphs taken from
applications; several were used in other experiments. See TreewidthLib [2004] for the
used graphs, information on the graphs, and other results of experiments to compute
the treewidth. The experiments were carried out on a Linux-operated PC with Intel
Core 2 Quad 2.83-GHz processor and 8 GB of internal memory, with one exception: the
results for queen7-7 (marked ∗) have been obtained on a Sun computer with 4 AMD
Dualcore Opteron 875, 2.2-GHz processor, and 20-GB internal memory. The program
did not use parallelism.

4.1.4. Experiments. In Table I, the results of our experiments on a number of graphs
are reported. Besides instance name, number of vertices, number of edges, and the
computed treewidth, we report on the CPU time in seconds and the maximum number
of sets (S, r), considered at once, max |TW| = maxi=0,...,n |TWi| in a number of cases.
First, we report on the CPU time and maximum number of sets for the case that no
initial upper bound up is exploited (i.e., we start with up = n − 1. Next, we report on
the case where we use an initial upper bound, displayed in the column up. The last
two columns report on the experiments in which the algorithm is advanced by both an
initial upper bound up and a maximum clique C of size ω. (The case no-C corresponds to
setting C = ∅ in Algorithm 4.) In several instances reported in TreewidthLib [2004], the
best bound obtained from a few upper-bound heuristics, and the lower bound obtained
by the LBP+(MMD+) heuristic match, and then we have obtained in a relatively fast
way an exact bound on the treewidth of the instance graph. In other cases, these bounds
do not match. Then, when the graph is not too large, the TWDP algorithm can be of
good use. The LBP+(MMD+) lower bound heuristic is described in Bodlaender et al.
[2006], combining contractions with a technique by Clautiaux et al. [2003].

In the last two columns of Table I, we compare the TWDP algorithm with the quickBB
algorithm of Gogate and Dechter [2004] (a branch-and-bound algorithm based on the
linear ordering characterization). Here, #nodes denotes the number of nodes in the
search tree. The algorithm was run on the same machine as the TWDP algorithm.
The results show that our algorithm outperforms the quickBB algorithm on 9 out of

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:19

Ta
bl

e
I.

E
xp

er
im

en
ta

lR
es

ul
ts

fo
r

S
om

e
D

IM
A

C
S

V
er

te
x

C
ol

or
in

g
G

ra
ph

s,
S

om
e

P
ro

ba
bi

lis
tic

N
et

w
or

ks
an

d
Fr

eq
ue

nc
y

A
ss

ig
nm

en
t

n
o

up
,n

o
C

w
it

h
up

,n
o

C
w

it
h

up
,w

C
qu

ic
kB

B
in

st
an

ce
|V

|
|E

|
tw

C
P

U
m

ax
|T

W
|

up
C

P
U

m
ax

|T
W

|
ω

C
P

U
m

ax
|T

W
|

C
P

U
#n

od
es

m
yc

ie
l3

11
20

5
0.

00
24

0
5

0.
00

35
2

0.
00

21
0.

00
12

m
yc

ie
l4

23
71

10
4.

88
29

68
35

10
0.

10
44

22
2

0.
08

40
64

0.
08

11
93

qu
ee

n
5-

5
25

16
0

18
0.

09
18

22
0

18
0.

01
94

4
5

0.
00

39
2

0.
83

77
35

qu
ee

n
6-

6
36

29
0

25
22

.9
5

20
31

71
6

26
0.

69
18

87
2

6
0.

22
69

94
31

.6
9

23
26

78
qu

ee
n

7-
7∗

49
47

6
35

-
-

37
10

12
.1

2
96

51
70

95
7

24
8.

03
24

41
09

15
12

38
1.

70
63

29
12

38
pa

th
fi

n
de

r-
pp

12
43

6
0.

00
10

7
6

0.
00

1
6

0.
00

1
0.

00
26

oe
so

ca
+-

pp
14

75
11

0.
00

48
11

0.
00

5
9

0.
00

5
0.

00
32

fu
n

gi
u

k
15

36
4

0.
06

47
13

4
0.

00
4

5
0.

00
4

0.
00

1
w

ee
du

k
15

49
7

0.
02

29
06

7
0.

00
35

8
0.

00
35

0.
00

1
m

u
n

in
-k

go
-p

p
16

41
5

0.
08

68
92

5
0.

00
2

4
0.

00
2

0.
00

24
w

il
so

n
21

27
3

9.
59

35
05

73
3

0.
06

24
12

3
0.

06
23

42
0.

00
1

w
at

er
-p

p
22

96
9

0.
95

77
28

6
10

0.
03

81
6

6
0.

00
47

5
0.

03
37

0
oo

w
-t

ra
d-

pp
23

54
6

28
.0

3
10

65
12

0
6

0.
06

29
53

4
0.

04
18

95
2.

45
55

34
5

ba
rl

ey
-p

p
26

78
7

22
6.

05
61

10
57

2
7

0.
43

13
59

7
5

0.
20

79
71

0.
50

91
14

oo
w

-b
as

27
54

4
93

9.
65

19
93

73
01

4
0.

01
30

3
4

0.
00

11
1

0.
00

8
oo

w
-s

ol
o-

pp
27

63
6

65
5.

36
17

04
80

70
6

0.
60

22
48

4
4

0.
21

94
26

33
.9

3
61

53
50

sh
ip

-s
h

ip
-p

p
30

77
8

-
-

9
17

6.
04

30
62

86
3

4
33

.1
6

82
09

10
48

24
.5

9
83

43
34

41
0

w
at

er
32

12
3

9
-

-
10

7.
32

12
75

45
6

0.
96

25
87

4
0.

03
37

0
oo

w
-t

ra
d

33
72

6
-

-
6

77
.0

2
11

62
65

0
4

8.
48

17
88

46
2.

82
56

03
6

m
il

de
w

35
80

4
-

-
4

1.
90

33
04

5
4

0.
25

54
31

0.
00

37
m

ai
n

u
k

48
19

8
7

-
-

8
-

-
8

11
62

.2
4

11
74

81
47

0.
00

54
ce

la
r0

3-
pp

-0
01

38
23

8
14

-
-

15
76

.0
8

91
19

18
8

2.
41

55
50

4
12

2.
25

11
06

81
2

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:20 H. L. Bodlaender et al.

Fig. 3. CPU time to generate all required subproblems for graphs of different sizes.

22 instances, whereas it is slower in only 5 cases. We were unable to compare our
results with the algorithm of Shoikhet and Geiger [1997]; the only other implemented
exact algorithm for treewidth that we know of [Bachoore and Bodlaender 2006] is
outperformed by quickBB.

4.2. Polynomial-Space Algorithms

The computational results in Table I are limited to relatively small graphs due to
the exponential space requirement. We nevertheless suggest the use of the TWDP
algorithm instead of the polynomial space algorithms in practice. Algorithms 2 and 3
require the computations of large numbers of vertex-subsets. Already the generation
of these subsets requires significant computation time. Figure 3 illustrates this for
n = 15, . . . , 23. The lower lines show the CPU time (in milliseconds) for only generating
recursively all required subsets of {1, . . . , n} without any further computations. The
upper lines show the number kn for k = 2.9512 and k = 4. From this figure, it will
be clear that any real implementation will be significantly slower than the TWDP
algorithm for the graphs of Table I and beyond.

5. CONCLUDING REMARKS

In this article, we have given dynamic programming and recursive algorithms to com-
pute the treewidth of a given graph. The dynamic programming algorithm for the
treewidth problem has been implemented; for small instances (slightly below 50 ver-
tices), the algorithm appears to be practical. Also, it can be used to obtain better lower
bounds (by running the algorithm on a minor of the input graph), or upper bounds
(by dropping table entries when space or time does not permit us to compute the full
tables). On a more theoretical side, we gave the first exponential-time algorithms for
TREEWIDTH with a running time of the type O∗(cn) for some constant c that use polyno-
mial space and we reduced the running time of the algorithm with polynomial space
to O∗(2.9512n). Using similar methods, but a better method of enumerating potential
maximal cliques, our result was recently improved to O(2.6151n) time by Fomin and
Villanger [2012].

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:21

For several problems that can be formulated as linear ordering problems, there are
algorithms, similar to those we gave here, that is, an algorithm that with running time
and space O∗(2n), resembling the classic Held-Karp algorithm for TSP [Held and Karp
1962], and an algorithm with running time O∗(4n) and polynomial space that resembles
the algorithm by Gurevich and Shelah [1987]. These include the following problems:
MINIMUM FILL-IN, PATHWIDTH, SUM CUT, MINIMUM INTERVAL GRAPH COMPLETION, CUTWIDTH,
DIRECTED CUTWIDTH, MODIFIED CUTWIDTH, DIRECTED MODIFIED CUTWIDTH, OPTIMAL LINEAR

ARRANGEMENT, DIRECTED OPTIMAL LINEAR ARRANGEMENT and DIRECTED FEEDBACK ARC SET.
The proofs are more or less straightforward but tedious modifications of the proofs
given for treewidth in this paper, and are given in Bodlaender et al. [2012]. In a few
cases, better algorithms are known, for example, for MINIMUM FILL-IN [Fomin et al.
2008; Fomin and Villanger 2012, 2010] and very recently for PATHWIDTH [Suchan and
Villanger 2009; Kitsunai et al. 2012] and CUTWIDTH [Cygan et al. 2011] of bipartite
graphs. Recently, Björklund [2010] introduced a randomized algorithm for HAMILTONIAN

CYCLE of time O∗(1.66n). It is interesting if faster randomized algorithms can be found
for other vertex ordering problems.

Koivisto and Parviainen [2010] have very recently obtained algorithms that give a
tradeoff between the Held-Karp and Gurevich-Shelah approaches, that is, algorithms
with less than O∗(T n) time with T < 4 and O∗(Cn) memory with C < 2. In several
cases, TC < 4. The approach of Koivisto and Parviainen [2010] can be applied to all of
these problems, TREEWIDTH and several other problems, including TRAVELLING SALESMAN

PROBLEM.
Several approaches can be tried to improve the algorithm reported in Section 4.1.1.

We mention two such approaches, that possibly decrease the number of table entries
that are created during the TWDP algorithm, but give a significant increase in
the time per entry. For an entry (S, r) in a table TWi−1, we can first apply some
lower-bound heuristic to the graph G+[S], and then set r to the maximum of r and
this lower bound, which can in some cases allow us to delete the table entry. While
this can decrease the number of table entries that must be processed, it gives a large
increase in the time per entry. Several different lower-bound methods that can be
tried here exist, see, for example, the overviews in Bodlaender [2006] and Bodlaender
and Koster [2011]. Running one or more lower-bound heuristics on G and checking
if the largest known lower-bound matches the best-known upper bound is a simple
and sometimes very effective approach. One can also try to see if G+[S] contains
simplicial or almost simplicial vertices. If G+[S] has a simplicial vertex v, then there
is an optimal elimination scheme for G+[S] that starts with v, so, instead of trying
each set W ∪ {x} for all x ∈ V − S, we can only take the set W ∪ {v}. Under additional
conditions, almost simplicial vertices can play the same role. Some details can be found
in Bodlaender et al. [2005]. Another approach may be to use some of our techniques in
combination with a branch and bound approach, for example , add memorization and
a clique at the end of the elimination sequence to the algorithm of Gogate and Dechter
[2004].

Other recent theoretical results for which an experimental evaluation would be
very interesting are the new approach to list potential maximal cliques by Fomin
and Villanger [2010], the space-time tradeoff algorithms by Koivisto and Parviainen
[2010], and a comparison between the simple O∗(2n) algorithm and algorithms for
PATHWIDTH from Suchan and Villanger [2009] and Kitsunai et al. [2012].

ACKNOWLEDGMENT

We thank the referees for useful comments.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

12:22 H. L. Bodlaender et al.

REFERENCES

ARNBORG, S., CORNEIL, D. G., AND PROSKUROWSKI, A. 1987. Complexity of finding embeddings in a k-tree. SIAM
J. Algeb. Disc. Meth. 8, 277–284.

BACHOORE, E. H. AND BODLAENDER, H. L. 2005. New upper bound heuristics for treewidth. In Proceedings of the
4th International Workshop on Experimental and Efficient Algorithms (WEA 2005). S. E. Nikoletseas,
Ed., Lecture Notes in Computer Science, vol. 3503, Springer Verlag, 217–227.

BACHOORE, E. H. AND BODLAENDER, H. L. 2006. A branch and bound algorithm for exact, upper, and lower bounds
on treewidth. In Proceedings of the 2nd International Conference on Algorithmic Aspects in Information
and Management (AAIM 2006), S.-W. Cheng and C. K. Poon, Eds., Lecture Notes in Computer Science,
vol. 4041, Springer Verlag, 255–266.

BJÖRKLUND, A. 2010. Determinant sums for undirected Hamiltonicity. In Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2010). IEEE, 173–182.

BODLAENDER, H. L. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209,
1–45.

BODLAENDER, H. L. 2005. Discovering treewidth. In Proceedings of the 31st Conference on Current Trends in
Theory and Practive of Computer Science (SOFSEM 2005). P. Vojtás̆, M. Bieliková, and B. Charron-Bost,
Eds., Lecture Notes in Computer Science, vol. 3381, Springer Verlag, 1–16.

BODLAENDER, H. L. 2006. Treewidth: Characterizations, applications, and computations. In Proceedings of the
32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2006). F. V. Fomin,
Ed., Lecture Notes in Computer Science, vol. 4271, Springer Verlag, 1–14.

BODLAENDER, H. L., FOMIN, F. V., KOSTER, A. M. C. A., KRATSCH, D., AND THILIKOS, D. M. 2012. A note on exact
algorithms for vertex ordering problems on graphs. Theory Comput. Syst. 50, 3, 420–432.

BODLAENDER, H. L., AND KOSTER, A. M. C. A. 2010. Treewidth computations I. Upper bounds. Inf. Computat. 208,
259–275.

BODLAENDER, H. L., AND KOSTER, A. M. C. A. 2011. Treewidth computations II. Lower bounds. Inf. Compu-
tat. 209, 1103–1119.

BODLAENDER, H. L., KOSTER, A. M. C. A., AND VAN DEN EIJKHOF, F. 2005. Pre-processing rules for triangulation
of probabilistic networks. Computat. Intell. 21, 3, 286–305.

BODLAENDER, H. L., KOSTER, A. M. C. A., AND WOLLE, T. 2006. Contraction and treewidth lower bounds. J.
Graph Algor. Appl. 10, 5–49.

BOOST 1999–2009. Boost C++ libraries. http://www.boost.org/.
BOUCHITTÉ, V., AND TODINCA, I. 2001. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM

J. Comput. 31, 212–232.
BOUCHITTÉ, V., AND TODINCA, I. 2002. Listing all potential maximal cliques of a graph. Theoret. Comput.

Sci. 276, 17–32.
CLAUTIAUX, F., CARLIER, J., MOUKRIM, A., AND NÉGRE, S. 2003. New lower and upper bounds for graph treewidth.

In Proceedings of the 2nd International Workshop on Experimental and Efficient Algorithms (WEA 2003),
J. D. P. Rolim, Ed., Lecture Notes in Computer Science, vol. 2647, Springer Verlag, 70–80.

CLAUTIAUX, F., MOUKRIM, A., NÉGRE, S., AND CARLIER, J. 2004. Heuristic and meta-heuristic methods for com-
puting graph treewidth. RAIRO Oper. Res. 38, 13–26.

CYGAN, M., LOKSHTANOV, D., PILIPCZUK, M., PILIPCZUK, M., AND SAURABH, S. 2011. On cutwidth parameterized
by vertex cover. In Proceedings of the 6th International on Parameterized and Exact Computation (IPEC
2011). Lecture Notes in Computer Science Series, vol. 7112, Springer, 246–258.

DENDRIS, N. D., KIROUSIS, L. M., AND THILIKOS, D. M. 1997. Fugitive-search games on graphs and related
parameters. Theoret. Comput. Science 172, 233–254.

FOMIN, F. V., GRANDONI, F., AND KRATSCH, D. 2005. Some new techniques in design and analysis of exact
(exponential) algorithms. Bull. EATCS 87, 47–77.

FOMIN, F. V., KRATSCH, D., AND TODINCA, I. 2004. Exact (exponential) algorithms for treewidth and minimum
fill-in. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming,
(ICALP 2004), J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sanella, Eds., Lecture Notes in Computer
Science, vol. 3142, Springer Verlag, 568–580.

FOMIN, F. V., KRATSCH, D., TODINCA, I., AND VILLANGER, Y. 2008. Exact algorithms for treewidth and minimum
fill-in. SIAM J. Comput. 38, 1058–1079.

FOMIN, F. V. AND VILLANGER, Y. 2010. Finding induced subgraphs via minimal triangulations. In Proceedings
27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), J.-Y. Marion
and T. Schwentick, Eds., Dagstuhl Seminar Proceedings Series, vol. 5, Leibniz-Zentrum für Informatik,
Schloss Dagstuhl, Germany, 383–394.

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

On Exact Algorithms for Treewidth 12:23

FOMIN, F. V. AND VILLANGER, Y. 2012. Treewidth computation and extremal combinatorics. Combinatorica 32, 3,
289–308.

FULKERSON, D. R. AND GROSS, O. A. 1965. Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855.
GOGATE, V. AND DECHTER, R. 2004. A complete anytime algorithm for treewidth. In Proceedings of the 20th

Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), D. M. Chickering and J. Y.
Halpern, Eds., AUAI Press, 201–208.

GOLUMBIC, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.
GUREVICH, Y. AND SHELAH, S. 1987. Expected computation time for Hamiltonian path problem. SIAM J.

Comput. 16, 486–502.
HELD, M. AND KARP, R. 1962. A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210.
KITSUNAI, K., KOBAYASHI, Y., KOMURO, K., TAMAKI, H., AND TANO, T. 2012. Computing directed pathwidth in

O(1.89n) time. In Proceedings of the 7th International on Parameterized and Exact Computation (IPEC
2012). Lecture Notes in Computer Science Series, vol. 7535, Springer, 182–193.

KOIVISTO, M. AND PARVIAINEN, P. 2010. A space-time tradeoff for permutation problems. In Proceedings of the
21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010). ACM, 484–492.

KOSTER, A. M. C. A. 2009. ComputeTW – An interactive platform for computing treewidth of graphs.
http://www.math2.rwth-aachen.de/∼koster/ComputeTW.

KOSTER, A. M. C. A., WOLLE, T., AND BODLAENDER, H. L. 2005. Degree-based treewidth lower bounds. In
Proceedings of the 4th International Workshop on Experimental and Efficient Algorithms (WEA 2005),
S. E. Nikoletseas, Ed., Lecture Notes in Computer Science, vol. 3503, Springer Verlag, 101–112.

ROSE, D. J., TARJAN, R. E., AND LUEKER, G. S. 1976. Algorithmic aspects of vertex elimination on graphs. SIAM
J. Comput. 5, 266–283.

SHOIKHET, K. AND GEIGER, D. 1997. A practical algorithm for finding optimal triangulations. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI’97). Morgan Kaufmann, 185–190.

SUCHAN, K. AND VILLANGER, Y. 2009. Computing pathwidth faster than 2n. In Proceedigs of the International
Workshop on Parameterized and Exact Computaion (IWPEC 2009). Lecture Notes in Computer Science,
vol. 5917, Springer, 324–335.

TARJAN, R. E. AND YANNAKAKIS, M. 1984. Simple linear time algorithms to test chordiality of graphs, test
acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579.

TREEWIDTHLIB. 2004. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib.
VILLANGER, Y. 2006. Improved exponential-time algorithms for treewidth and minimum fill-in. In Proceedings

of the 7th Latin American Symposium on Theoretical Informatics (LATIN 2006), J. R. Correa, A. Hevia,
and M. A. Kiwi, Eds., Lecture Notes in Computer Science, vol. 3887, Springer Verlag, 800–811.

WOEGINGER, G. J. 2003. Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization:
“Eureka, you shrink”. Lecture Notes in Computer Science, vol. 2570, Springer, Berlin, 185–207.

Received October 2006; revised November 2009; accepted May 2012

ACM Transactions on Algorithms, Vol. 9, No. 1, Article 12, Publication date: December 2012.

