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Abstract

We give the first linear kernels for Dominating Set and Connected Dominating
Set problems on graphs excluding a fixed graph H as a topological minor. In other words,
we give polynomial time algorithms that, for a given H-topological-minor free graph G and
a positive integer k, output an H-topological-minor free graph G0 on O(k) vertices such that
G has a (connected) dominating set of size k if and only if G0 has.

Our results extend the known classes of graphs on which Dominating Set and Con-
nected Dominating Set problems admit linear kernels. Prior to our work, it was known
that these problems admit linear kernels on graphs excluding a fixed graph H as a minor.
Moreover, for Dominating Set, a kernel of size kc(H), where c(H) is a constant depending
on the size of H, follows from a more general result on the kernelization of Dominating
Set on graphs of bounded degeneracy. For Connected Dominating Set no polynomial
kernel on H-topological-minor free graphs was known prior to our work. On the negative
side, it is known that Connected Dominating Set on 2-degenerated graphs does not
admit a polynomial kernel unless coNP ✓ NP/poly.

Our kernelization algorithm is based on a non-trivial combination of the following ingre-
dients

• The structural theorem of Grohe and Marx [STOC 2012] for graphs excluding a fixed
graph H as a topological subgraph;

• A novel notion of protrusions, di↵erent that the one defined in [FOCS 2009];
• Reinterpretations of reduction techniques developed for kernelization algorithms for

Dominating Set and Connected Dominating Set from [SODA 2012].

A protrusion is a subgraph of constant treewidth separated from the remaining vertices
by a constant number of vertices. Roughly speaking, in the new notion of protrusion instead
of demanding the subgraph of being of constant treewidth, we ask it to contain a constant

number of vertices from a solution. We believe that the new notion of protrusion will be
useful in many other algorithmic settings.

Keywords: Parameterized complexity, kernelization, algorithmic graph minors, dominating
set, connected dominating set

1 Introduction

Kernelization is an emerging technique in parameterized complexity. A parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of polyno-
mial is independent of the parameter k), called a kernelization algorithm, that reduces the input
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instance down to an instance with size bounded by a polynomial p(k) in k, while preserving the
answer. This reduced instance is called a p(k) kernel for the problem. If the size of the kernel is
O(k), then we call it a linear kernel (for a more formal definition, see Section 2). Kernelization
appears to be an interesting computational approach both from practical and theoretical per-
spectives. There are many real-world applications where even very simple preprocessing can be
surprisingly e↵ective, leading to significant size-reduction of the input. Kernelization is a natu-
ral tool not only for measuring the quality of preprocessing rules proposed for specific problems
but also for designing new powerful preprocessing algorithms. From theoretical perspective,
kernelization provides a deep insight into the hierarchy of parameterized problems in FPT, the
most interesting class of parameterized problems. There are also interesting links between lower
bounds on the sizes of kernels and classical computational complexity [8, 16, 24].

The Dominating Set (DS) problem together with its numerous variants, is one of the most
classic and well-studied problems in algorithms and combinatorics [41]. In the Dominating
Set (DS) problem, we are given a graph G and a non-negative integer k, and the question is
whether G contains a set of k vertices whose closed neighborhood contains all the vertices of G.
In the connected variant, Connected Dominating Set (CDS), we additionally demand the
subgraph induced by the dominating set to be connected. A considerable part of the algorithmic
study on these NP-complete problems has been focused on the design of parameterized and
kernelization algorithms. In general, DS is W[2]-complete and therefore it cannot be solved by a
parameterized algorithm, unless an unexpected collapse occurs in the Parameterized Complexity
hierarchy (see [23, 28, 45]) and thus also does not admit a kernel. However, there are interesting
graph classes where fixed-parameter tractable (FPT) algorithms exist for the DS problem. The
project of widening the horizon where such algorithms exist spanned a multitude of ideas that
made DS the testbed for some of the most cutting-edge techniques of parameterized algorithm
design. For example, the initial study of parameterized subexponential algorithms for DS
on planar graphs [1, 17, 36] resulted in the creation of bidimensionality theory characterizing
a broad range of graph problems that admit e�cient approximate schemes, fixed-parameter
algorithms or kernels on a broad range of graphs [18, 20, 22, 31, 33, 32].

One of the first results on linear kernels is the celebrated work of Alber, Fellows, and Nie-
dermeier on DS on planar graphs [2]. This work augmented significantly the interest in proving
polynomial (or preferably linear) kernels for other parameterized problems. The result of Alber
et al. [2], see also [12], has been extended to a much more general graph classes like graphs of
bounded genus [9] and apex-minor free graphs [33]. An important step in this direction was done
by Alon and Gutner [3, 40] who obtained a kernel of size O(kh) for DS on H-minor-free and
H-topological-minor free graphs, where the constant h depends on the excluded graph H. Later,
Philip, Raman, and Sikdar [46] obtained a kernel of size O(kh) on Ki,j-free and d-degenerated
graphs, where h depends on i, j and d respectively. In particular, for d-degenerate graphs, a
subclass of Ki,j-free graphs, the algorithm of Philip, Raman, and Sikdar [46] produces a kernel
of size O(kd2). Similarly, the sizes of kernels in [3, 40, 46] are bounded by polynomials in k
with degrees depending on the size of the excluded minor H. Alon and Gutner [3] mentioned
as a challenging question to characterize the families of graphs for which the dominating set
problem admits a linear kernel, i.e. a kernel of size f(h) · k, where the function f depends
exclusively on the graph family. In this direction, there are already results for more restricted
graph classes. According to the meta-algorithmic results on kernels introduced in [9], DS has a
kernel of size f(g) · k on graphs of genus g. An alternative meta-algorithmic framework, based
on bidimensionality theory [18], was introduced in [33], implying the existence of a kernel of size
f(H) ·k for DS on graphs excluding an apex graph H as a minor. Recently, the result on linear
kernels on apex-minor-free graphs was extended to graphs excluding an arbitrary graph H as
a minor [34]. Prior to our work, the only result on linear kernels for DS on graphs excluding
H as a topological subgraph, was the result of Alon and Gutner in [3] for a very special case
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H = K
3,h. See Fig. 1 for the relationship between these classes.

planar
DS: linear kernel [J.ACM 04]
CDS: linear kernel [FOCS 09]bounded genus

DS: linear kernel  [FOCS 09]
CDS: linear kernel [FOCS 09]

apex-minor-free
DS: linear kernel  [SODA 10]
CDS: linear kernel [SODA 10]

H-minor-free
DS: linear kernel  [SODA 12]
CDS: linear kernel [SODA 12]

d-degenerated
DS: poly-kernel for fixed d [ESA 09] 
CDS: no poly-kernel for  d>1 [WG 10]

bounded degree
DS: trivial linear kernel  
CDS: trivial linear kernel H-topological-minor-free

DS: linear kernel 
CDS: linear kernel 

THIS PAPER

Figure 1: Kernels for DS and CDS on classes of sparse graphs. Arrows represent inclusions of
classes. In the diagram, [J.ACM 04] is referred to the paper of Albers et al. [2], [FOCS 09] to
the paper of Bodlaender et al. [9], [SODA 10] and [SODA 12] to the papers of Fomin et al. [33]
and [34], [ESA 09] to the paper of Philip et al. [46], and [WG 10] to Cygan et al. [14].

It is tempting to suggest that similar improvements on kernel sizes are possible for more
general graph classes like d-degenerated graphs. For example, for graphs of bounded vertex
degree, a subclass of d-degenerate graphs, DS has a trivial linear kernel. Unfortunately, for d-
degenerate graphs the existence of a linear kernel and even polynomial kernel with the exponent
of the polynomial independent of d is very unlikely. By the very recent work of Cygan et al. [13],
the kernelization algorithm of Philip, Raman, and Sikdar [46] is essentially tight—existence of a
kernel of size O(k(d�3)(d�1)�")), would imply that coNP is in NP/poly. In spite of these negative
news, we show how to lift the linearity of kernelization for DS from bounded-degree graphs and
H-minor free graphs to the class of graphs excluding H as a topological subgraph. Moreover,
a modification of the ideas for DS kernelization can be used to obtain a linear kernel for CDS,
which is usually a much more di�cult problem to handle due to the connectivity constraint.
For example, CDS does not have a polynomial kernel on 2-degenerated graphs unless coNP is
in NP/poly [14].

The class of graphs excluding H as a topological subgraph is a wide class of graphs containing
H-minor-free graphs and graphs of constant vertex degrees. The existence of a linear kernel
for DS on this class of graphs significantly extends and improves previous works [3, 34, 40].
The basic idea behind kernelization algorithms on apex-minor-free and minor-free graphs is the
bidimensionality of DS. Roughly speaking, the treewidth of these graphs with dominating set k
is either o(k) (as in planar, bounded genus or apex-minor-free graphs [18]) or becomes o(k) after
applying the irrelevant vertex technique [34]. This idea can hardly work on graphs of bounded
degree, and hence on graphs excluding H as a topological subgraph. The reason is that the
bound o(k) on the treewidth of such graphs would imply that DS is solvable in subexponential
time on graphs of bounded degree, which in turn can be shown to contradict the Exponential
Time Hypothesis [42]. This is why the kernelization techniques developed for H-minor-free
graphs does not seem to be applicable directly in our case.
High level overview of the main ideas. Our kernelization algorithm has two main phases.
In the first phase we partition the input graph G into subgraphs C

0

, C
1

, . . . , C`, such that
|C

0

| = O(k); for every i � 1, the neighbourhood N(Ci) ✓ C
0

, and
P

1i` |N(Ci)| = O(k). In
the second phase, we replace these graphs by smaller equivalent graphs. Towards this, we treat
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graphs N [Ci] = Ci [ N(Ci), i � 1, as t-boundaried graphs with boundary N(Ci). Our first
conceptual contribution is a polynomial time algorithmic procedure replacing a t-boundaried
graph by an equivalent graph of size O(|N(Ci)|). Observe that as a result of such replacements,
the size of the new graph is

P

1i` |O(N(Ci))|+ |C
0

| = O(k) and thus we obtain a linear kernel.
Kernelization techniques based on replacing a t-boundaried graph by an equivalent instance, or
more specifically, protrusion replacement, were used before [9, 33, 30, 44]. At this point it is
also important to mention earlier works done in [27, 5, 7, 11, 15, 10] on protrusion replacement
in the algorithmic setting on graphs of bounded treewidth. The substantial di↵erences with our
replacement procedure and the ones used before in the kernelization setting are the following.

• In the protrusion replacement procedure it is assumed that the size of the boundary t and
the treewidth of the replaced graph are constants. In our case neither the treewidth, nor
the boundary size are bounded. In particular, the boundary size could be a linear function
of k.

• In earlier protrusion replacements, the size of the equivalent replacing graph is bounded
by some (non-elementary) function of t. In our case this is a linear function of t.

Our new replacement procedure strongly exploits the fact that graphs Ci possess a set of desired
properties allowing us to apply the irrelevant vertex technique from [34]. However, not every
graph G excluding some fixed graph as a topological minor can be partitioned into graphs with
the desired properties. We show that in this case there is another polynomial time procedure
transforming G into an equivalent graph, which in turn can be partitioned. The procedure
is based on a generalised notion of protrusion, which is the second conceptual contribution of
this paper. In the new notion of protrusion we relax the requirement that protrusion is of
bounded treewidth by the condition that it has a bounded dominating set. Let us remark,
that a similar notion of a generalised protrusion bounded by the size of a certificate, can be
used for a variety of graph problems. We show that either a graph does not have the desired
partition, or it contains a su�ciently large generalised protrusion, which can be replaced by a
smaller equivalent subgraph. For constructing the partitioning, we also devise a constant factor
approximation algorithm for DS on graphs excluding some fixed graph as a topological minor.
The construction of the partitioning as well as the approximation algorithm, are heavily based
on the recent work of Grohe and Marx on the structure of such graphs [39].

2 Preliminaries

In this section we give various definitions which we make use of in the paper. We refer to Diestel’s
book [21] for standard definitions from Graph Theory. Let G be a graph with vertex set V (G)
and edge set E(G). A graph G0 is a subgraph of G if V (G0) ✓ V (G) and E(G0) ✓ E(G).
For subset V 0 ✓ V (G), the subgraph G0 = G[V 0] of G is called the subgraph induced by V 0

if E(G0) = {uv 2 E(G) | u, v 2 V 0}. By NG(u) we denote the (open) neighborhood of u in
graph G, that is, the set of all vertices adjacent to u and by N [u] = N(u) [ {u}. Similarly,
for a subset D ✓ V , we define NG[D] = [v2DNG[v] and NG(D) = NG[D] \ D. We omit the
subscripts when it is clear from the context. Throughout the paper, given a graph G and vertex
subsets Z and S, whenever we say that a subset Z dominates all but (everything but) S then we
mean that V (G) \ S ✓ N [Z]. Observe that a vertex of S can also be dominated by the set Z.

We denote by Kh the complete graph on h vertices. Also for given graph G and a vertex
subset S by K[S] we mean a clique on the vertex set S. For integer r � 1 and vertex subsets
P,Q ✓ V (G), we say that a subset Q is r-dominated by P , if for every v 2 Q there is u 2 P such
that the distance between u and v is at most r. For r = 1, we simply say that Q is dominated
by P . We denote by N r

G(P ) the set of vertices r-dominated by P .
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Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting the
edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to
the old neighbors of x and y (except from x and y). A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. We denote it by H c G. A graph H is a
minor of a graph G if H is the contraction of some subgraph of G and we denote it by H m G.
We say that a graph G is H-minor-free when it does not contain H as a minor. We also say
that a graph class GH is H-minor-free (or, excludes H as a minor) when all its members are
H-minor-free. An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some of the vertices of G. A graph class GH is apex-minor-free if GH

excludes a fixed apex graph H as a minor.
A subdivision of a graph H is obtained by replacing each edge of H by a non-trivial path.

We say that H is a topological minor of G if some subgraph of G is isomorphic to a subdivision
of H and denote it by H �T G. A graph G excludes graph H as a (topological) minor if H is
not a (topological) minor of G. For a graph H, by CH , we denote all graphs that exclude H as
topological minors.
Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair (M, ) where M
is a rooted tree and  : V (M)! 2V , such that :

1.
S

t2V (M)

 (t) = V .
2. For each edge (u, v) 2 E, there is a t 2 V (M) such that both u and v belong to  (t).
3. For each v 2 V , the nodes in the set {t 2 V (M) | v 2  (t)} form a subtree of M .

If M is a path then we call the pair (M, ) as path decomposition.
The following notations are the same as that in [39]. Given a tree decomposition of graph
G = (V,E), we define mappings �, � : V (M)! 2V and  : E(M)! 2V . For all t 2 V (M),

�(t) =

(

; if t is the root of M

 (t) \ (s) if s is the parent of t in M

�(t) =
S

u is a descendant of t (u)

For all e = uv 2 E(M), (e) =  (u) \ (v).
For a subgraph M 0 of M by  (M 0) we denote [t2V (M 0

)

 (t).

Let (M, ) be a tree decomposition of a graph G. The width of (M, ) is min{| (t)|� 1 |
t 2 V (M)}, and the adhesion of the tree decomposition is max{|�(t)| | t 2 V (M)}. We use
tw(G) to denote the treewidth of the input graph. If the For every node t 2 V (M), the torso
at t is the graph

⌧(t) := G[ (t)] [ E(K[�(t)]) [S

u child of t E(K[�(u)]).

Kernels and Protrusions. A parameterized problem ⇧ is a subset of �⇤ ⇥ N for some finite
alphabet �. An instance of a parameterized problem consists of (x, k), where k is called the
parameter. We will assume that k is given in unary and hence k  |x|O(1). The notion of ker-
nelization is formally defined as follows. A kernelization algorithm, or in short, a kernelization,
for a parameterized problem ⇧ ✓ �⇤ ⇥ N is an algorithm that given (x, k) 2 �⇤ ⇥ N outputs
in time polynomial in |x| + k a pair (x0, k0) 2 �⇤ ⇥ N such that (a) (x, k) 2 ⇧ if and only if
(x0, k0) 2 ⇧ and (b) |x0|  g(k) and k0  g(k), where g is some computable function. The output
of kernelization (x0, k0) 2 ⇧ is referred as the kernel and the function g is referred to as the size
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of the kernel. If g(k) = kO(1) or g(k) = O(k) then we say that ⇧ admits a polynomial kernel
and linear kernel respectively.

Given a graph G, we say that a set X ✓ V (G) is an r-protrusion of G if tw(G[X])  r and
the number of vertices in X with a neighbor in V (G) \X is at most r.

Known Decomposition Theorems. We start by the definition of nearly embeddable graphs.

Definition 1 (h-nearly embeddable graphs). Let ⌃ be a surface with boundary cycles C
1

, . . . , Ch,
i.e. each cycle Ci is the border of a disc in ⌃. A graph G is h-nearly embeddable in ⌃, if G
has a subset X of size at most h, called apices, such that there are (possibly empty) subgraphs
G

0

= (V
0

, E
0

), . . . , Gh = (Vh, Eh) of G \X such that

• G \X = G
0

[ · · · [Gh,
• G

0

is embeddable in ⌃, we fix an embedding of G
0

,
• graphs G

1

, . . . , Gh (called vortices) are pairwise disjoint,
• for 1  · · ·  h, let Ui := {ui1 , . . . , uimi

} = V
0

\Vi, Gi has a path decomposition (Bij), 1 
j  mi, of width at most h such that

– for 1  i  h and for 1  j  mi we have uj 2 Bij

– for 1  i  h, we have V
0

\ Ci = {ui1 , . . . , uimi
} and the points ui1 , . . . , uimi

appear
on Ci in this order (either if we walk clockwise or anti-clockwise).

The decomposition theorem that we use extensively for our proofs is given in the next theorem.

Theorem 1 ([39, 47]). For every graph H, there exists a constant h, depending only on the size
of H, such that every graph G with H 6�T G, there is a tree decomposition (M, ) of adhesion
at most h such that for all t 2 V (M), one of the following conditions is satisfied:

1. ⌧(t) is h-nearly embedded in a surface ⌃ in which H cannot be embedded.
2. ⌧(t) has at most h vertices of degree larger than h.

Moreover, if G is H-minor graph G then nodes of second type do not exist. Furthermore, there
is an algorithm that, given graphs G, H of sizes n and |H|, computes such a tree decomposition
in time f(|H|)nO(1) for some computable function f , and moreover computes an apex set Zt of
size at most h for every bag of the first type.

Furthermore we can assume that in (M, ), for any x, y 2 V (M),  (x) 6✓  (y). That is, no
bag is contained in other. See [28, Lemma 11.9] for the proof.

3 An approximation algorithm for DS on H 6�T G

In this section we give a constant factor approximation for DS on CH . It is well known that
graphs in CH has bounded degeneracy. In a recent manuscript a subset of the authors to-
gether with others show that DS has a O(d2) factor approximation algorithm on d-degenerate
graphs [43]. To make this paper self contained we provide an approximation algorithm for DS
on CH here. For technical reasons, it is more convenient to give an approximation algorithm for
a more general problem, namely Colored Dominating Set. In Colored Dominating Set,
the vertex set of the input graph G is partitioned into X,Y, Z, N(X) = Y , and the objective is
to find a minimum sized set D ✓ Y [Z that dominates all the vertices of Z. In other words, X
is the set of vertices already in the dominating set, Y is the set of vertices already dominated,
and the objective is to dominate Z, i.e. to find a minimum sized set D ✓ Y [Z such that X[D
is a dominating set for G. A normal Dominating Set instance G can be viewed as an instance
of Colored Dominating Set by taking X = Y = ; and Z = V (G).
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Lemma 1. Let H be a graph. Then there exists a constant ⌘(H) depending only on |H| such
that Colored Dominating Set, admits a ⌘(H)-factor approximation algorithm on CH .

Proof. We first describe the algorithm. Let G be the input with the vertex set partitioned
into (X,Y, Z). During the algorithm we will be changing the input partition (X,Y, Z) but
the solution for the resulting partition will be within a constant factor of the optimal solution
for (X,Y, Z). We repeat the procedure described below until Z 6= ;. The algorithm starts
by computing the Grohe-Marx decomposition using Theorem 1. Let this tree decomposition
be (M, ). We root the tree M arbitrarily at some node w. We know that for every vertex
v 2 V (G) we have that the nodes in the set {t 2 V (M) | v 2  (t)} form a subtree Mv of M . A
node t 2 Mv is the peak of a vertex v if t is the closest node to w in the rooted tree M . Select
a lowermost node t that is the peak of an undominated vertex. In other words, t is the lowest
node containing a vertex v 2 Z that has to be dominated and v /2 �(t). Now we have di↵erent
procedure based on the type of the node t.

Case 1: Torso ⌧(t) has at most h vertices of degree larger than h. Let W be the set of vertices
in ⌧(t) of degree more than h. Let X⇤ = W [ �(t). Let Z⇤ = ( (t) \ NG(X⇤)) \ Z. We
change partition (X,Y, Z) by adding X⇤ [ Z⇤ to X, making Y = N(X) , and decreasing
Z := V (G) \ (X [ Y ) := Z \ Y .

Case 2: Torso ⌧(t) is h-nearly embedded in a surface ⌃ in which H cannot be embedded. In
this case we first apply a PTAS for Colored Dominating Set developed in [19] for
H-minor free graphs on G[ (t)] with  (t) being partitioned as follows: X 0 = X \  (t),
Y 0 = Y \  (t) and Z 0 = Z \  (t). We run this PTAS as a factor two approximation
algorithm. Let D be the set returned by this algorithm. That is, D dominates all the
vertices in Z 0 and the size of D is at most twice the size of an optimal dominating set for
Colored Dominating Set when the input is G[ (t)]. We add �(t) [D to X. Finally,
we make Y := N(X) and Z := V (G) \ (X [ Y ) := Z \ Y .

Clearly, this algorithm runs in polynomial time. Next we show that this is indeed a constant
factor approximation algorithm for Colored Dominating Set. We fix ⌘(H) = 5h. We prove
that the algorithm described above is a ⌘(H)-factor approximation algorithm using induction
on p = |Z|, the size of Z. The base case is when the input graph G has vertex set partitioned
into X, Y and Z and p = |Z|  1. The base case is obvious. For the induction case assume that
the input graph G has vertex set partitioned into X, Y , and Z, |Z| � 2. This implies that either
Case 1 or Case 2 applies. Let OPT be an optimum dominating set for G. By our choice of t
we have that there exists a non-dominated vertex in Z \ (t) that is not contained in �(t) and
all its neighbors in G are in �(t). This implies that OPT \ �(t) 6= ;. Let OPT

1

= OPT \ �(t).
Suppose that Case 1 applies. Let OPT

1

\X⇤ = OPT 0
1

. Then clearly OPT
1

\OPT 0
1

dominates
all the vertices of Z⇤. However all the vertices in OPT

1

\OPT 0
1

can dominate at most h vertices
of Z⇤ and thus (h+1)|OPT

1

\OPT 0
1

| � |Z⇤|. This implies that |X⇤|+ |Z⇤|  2h+(h+1)|OPT
1

\
OPT 0

1

|  (3h+1)|OPT
1

|. Observe that OPT \OPT
1

is still a dominating set for the graph after
we have updated X, Y and Z. However, the new set Z has been decreased as all the vertices in
⌧(t) are dominated now. Thus by appling the induction hypothesis, we obtain a dominating set
of size at most 5h|OPT \OPT

1

|. This implies that the total size of the dominating set returned
by the algorithm in this case is at most 5h|OPT |.

The proof for the Case 2 is similar. Observe that every vertex not present in  (t) can
dominate only h vertices of  (t). Now we show that there exists a dominating set D0 of G[ (t)]
of size at most h|OPT

1

|+h. We construct D0 as follows. We add all the vertices in OPT
1

\ (t)
and �(t) to D0. Moreover for every vertex in OPT

1

that is not in  (t), we add all its neighbors in
 (t) to D0. Clearly the size of D0 is at most h|OPT

1

|+h and D0 is a dominating set of G[ (t)].
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This implies that the set D returned by the algorithm is of size at most 2h|OPT
1

|+ 2h. Hence
|D [ �(t)|  2h|OPT

1

|+ 3h. Observe that OPT \OPT
1

is still a dominating set for the graph
after we have updated X, Y and Z. However, the new set Z is smaller, as all the vertices in the
⌧(t) are dominated now. Thus by induction hypothesis, we can obtain a dominating set with
size at most 5h|OPT \ OPT

1

|. This implies that the total size of the dominating set returned
by the algorithm does not exceed 5h|OPT |. This completes the proof.

For CDS we need the following proposition attributed to [25].

Proposition 1. Let G be a connected graph and let Q be a dominating set of G such that G[Q]
has at most ⇢ connected components. Then there exists a set Z ✓ V (G) of size at most 2 ·(⇢�1)
such that Q [ Z is a connected dominating set in G.

Combining Lemma 1 and Proposition 1 we arrive to the following.

Lemma 2. Let H be a graph and ⌘(H) the constant from Lemma 1. Then CDS admits a
3⌘(H)-factor approximation algorithm on CH .

4 Generalized Protrusions

A parameterized graph problem ⇧ can be seen as a subset of ⌃⇤ ⇥ Z+ where, in each instance
(x, k) of ⇧, x encodes a graph and k is the parameter (we denote by Z+ the set of all non-
negative integers). Here we define the notion of t-boundaried graphs and various operations on
them.

Definition 1. [t-Boundaried Graphs] A t-boundaried graph is a graph G with a set B ✓ V (G)
of at most t distinguished vertices and an injective labeling from B to the set {1, . . . , t}, . The
set B is called the boundary of G and vertices in B are called boundary vertices or terminals.
Given a t-boundaried graph G we denote its boundary by �(G). We use the notation Ft to denote
the class of al t-boundaried graphs.

We remark that in the labeling of the boundary of a t-boundaried graph, not all t available
labels are necessary used.

Definition 2. [Gluing by �] Let G
1

and G
2

be two t-boundaried graphs. We denote by G
1

�G
2

the graph obtained by taking the disjoint union of G
1

and G
2

and identifying equally-labeled
vertices of the boundaries of G

1

and G
2

. In G
1

�G
2

there is an edge between two labeled vertices
if there is an edge between them in G

1

or in G
2

. When we are dealing with a gluing operation we
use the term common boundary in G

1

and G
2

in order to denote the set of identified vertices
in G

1

�G
2

.

Definition 3. [Gluing by ��] The boundaried gluing operation �� is similar to the normal
gluing operation, but results in a t-boundaried graph rather than a graph. Specifically G

1

�� G
2

results in a t-boundaried graph where the graph is G = G
1

�G
2

and a vertex is in the boundary
of G if it was in the boundary of G

1

or G
2

. Vertices in the boundary of G keep their label from
G

1

or G
2

.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say that a
boundaried graph belongs in a graph class G if the underlying graph belongs in G.

Definition 4. [Replacement] Let G be a t-boundaried graph containing a set X ✓ V (G)
such that @G(X) = �(G). Let G

1

be a t-boundaried graph. The result of replacing X with G
1

is the graph G? � G
1

, where G? = G \ (X \ @(X)) is treated as a t-boundaried graph, where
�(G?) = �(G).

8



4.1 Finite Integer Index

Definition 5. [Equivalence of t-boundaried graphs] Let ⇧ be a parameterized graph prob-
lem whose instances are pairs of the form (G, k). Given two t-boundaried graphs G

1

, G
2

, we say
that G

1

⌘
⇧,t G

2

if there exist a transposition constant c 2 Z such that

8(F, k) 2 Ft ⇥ Z (G
1

� F, k) 2 ⇧, (G
2

� F, k + c) 2 ⇧.

Note that for every t, the relation ⌘
⇧,t on t-boundaried graphs is an equivalence relation.

Next we define a notion of “transposition-minimality” for the members of each equivalence
class of ⌘

⇧,t .

Definition 6. [Progressive representatives] Let ⇧ be a parameterized graph problem whose
instances are pairs of the form (G, k) and let C be some equivalence class of ⌘

⇧,t for some
t 2 Z+. We say that J 2 C is a progressive representative of C if for every H 2 C there exist
c 2 Z�, such that

8(F, k) 2 Ft ⇥ Z (H � F, k) 2 ⇧, (J � F, k + c) 2 ⇧. (1)

The following lemma guaranties the existence of a progressive representative for each equiv-
alence class of ⌘

⇧,t .

Lemma 3 ([9]). Let ⇧ be a parameterized graph problem whose instances are pairs of the form
(G, k) and let t 2 Z+. Then each equivalence class of ⌘

⇧,t has a progressive representative.

Proof. Let C be an equivalence class of ⌘
⇧,t . We distinguish two cases:

Case 1. Suppose first that for every H 2 C, every F 2 Ft, and every integer k 2 Z+ it holds
that (H � F, k) 62 ⇧. Then we set J to be an arbitrary chosen graph in C and c⇤ = 0. In this
case, it is obvious that (1) holds for every (F, k) 2 Ft ⇥ Z.

Case 2. Suppose now that for some H
0

2 C, there exist an F
0

2 Ft and a non-negative integer
k

0

such that (H
0

� F
0

, k
0

) 2 ⇧. Moreover choose k
0

as the minimum non-negative integer for
which (H

0

� F
0

, k
0

) 2 ⇧.
Let H 2 C. As H

0

⌘
⇧,t H, there is a constant c⇤ such that

8(F, k) 2 Ft ⇥ Z (H
0

� F, k) 2 ⇧, (H � F, k + c⇤) 2 ⇧ (2)

and we denote by c(H) the minimum such constant c⇤. To see that c(H) is well defined, we
claim that no such a c⇤ can be smaller than �k

0

. Indeed, suppose that (2) holds for some c⇤.
When (2) is can be applied for (F

0

, k
0

) and along with the fact that (H
0

�F
0

, k
0

) 2 ⇧, it implies
that (H � F

0

, k
0

+ c⇤) 2 ⇧, where k
0

+ c⇤ is a parameter that is always a nonnegative integer.
We conclude that c⇤ � �k

0

as claimed.
By the choice of k

0

, we obtain c(H) = 0. We define J to be a member of C where

c(J) = min{c(H) | H 2 C}. (3)

From 3, we obtain that c(J)  c(H), for every H 2 C. Therefore, the fact that c(H
0

) = 0 implies
that c(J)  0. We set c0 = c(J).

Let H 2 C. We set c00 = c(H) and notice that c0�c00  0. From H
0

⌘
⇧,t H and the definition

of c(H),

8(F, k) 2 Ft ⇥ Z (H
0

� F, k) 2 ⇧, (H � F, k + c00) 2 ⇧ (4)

Similarly, H
0

⌘ J implies that

8(F, k) 2 Ft ⇥ Z (H
0

� F, k) 2 ⇧, (J � F, k + c0) 2 ⇧ (5)
9



We rewrite (4) and (5) as follows:

8(F, k) 2 Ft ⇥ Z (H � F, k) 2 ⇧ , (H
0

� F, k � c00) 2 ⇧ (6)
8(F, k) 2 Ft ⇥ Z (H

0

� F, k � c00) 2 ⇧ , (J � F, k + c0 � c00) 2 ⇧ (7)

It follows from (6) and (7) that

8(F, k) 2 Ft ⇥ Z (H � F, k) 2 ⇧, (J � F, k + c0 � c00) 2 ⇧ (8)

Clearly (8) together with the fact that c0 � c00 2 Z� implies that (1) holds if we set c = c0 � c00

as required.

After Lemma 3 we are in position to give the following definition.

Definition 7. A parameterized graph problem ⇧ whose instances are pairs of the form (G, k) has
Finite Integer Index (or simply has FII), if and only if for every t 2 Z+, the equivalence relation
⌘

⇧,t is of finite index, that is, has a finite number of equivalence classes. For each t 2 Z+, we
define St to be a set containing exactly one progressive representative of each equivalence class
of ⌘

⇧,t .

Definition 8. We say that a parameterized graph problem ⇧ is positive monotone if for every
graph G there exists a unique ` 2 N such that for all `0 2 N and `0 � `, (G, `0) 2 ⇧ and for all
`0 2 N and `0 < `, (G, `0) /2 ⇧. A parameterized graph problem ⇧ is negative monotone if for
every graph G there exists a unique ` 2 N such that for all `0 2 N and `0 � `, (G, `0) /2 ⇧ and for
all `0 2 N and `0 < `, (G, `0) 2 ⇧. ⇧ is monotone if it is either positive monotone or negative
monotone. We denote the integer ` by Thr(G).

Definition 9. Let ⇧ be a monotone parameterized graph problem that is FII. Let St to be a
set containing exactly one progressive representative of each equivalence class of ⌘

⇧,t . For a
t-boundaried graph G by (G) we denote

max
G02St

Thr(G�G0).

Lemma 4. Let ⇧ be a monotone parameterized graph problem that is FII. Furthermore, let A
be an algorithm for ⇧ that given a pair (G, k) decides whether it is in ⇧ in time f(|V (G)|, k).
Then for every t 2 N, there exists a ⇠t 2 Z+ (depending on ⇧ and t), and an algorithm that,
given a t-boundaried graph G with |V (G)| > ⇠t, outputs, in O((G)(f(|V (G)|+ ⇠t, (G))) steps,
a t-boundaried graph G⇤ such that G ⌘

⇧,t G⇤ and |V (G⇤)| < ⇠t. Moreover we can compute the
translation constant c from G to G⇤ in the same time.

We remark that the algorithm whose existence is guaranteed by the Lemma 4 assumes that
the set St of representatives are hardwired in the algorithm and that in general there is no
procedure that for FII problems ⇧ outputs such a representative set.

Proof. We give proof only for positive monotone problem ⇧, the proof for negative monotone
is identical. Recall that we denote by St a set of (progressive) representatives for (⇧, t) and let
⇠t = maxY 2St |Y |. The set St is hardwired in the code of the algorithm. Let Y

1

, . . . , Y⇢ be the
set of progressive representatives in St. Our objective is to find a representative Y` for G such
that

8(F, k) 2 Ft ⇥ Z (G� F, k) 2 ⇧, (Y` � F, k � ⌘(X,Y`)) 2 ⇧. (9)

Here, ⌘(X,Y`) is a constant that depends on G and Y`. Towards this we make the following
matrix for the set of representatives. Let

A[Yi, Yj ] = Thr(Yi � Yj)

10



The matrix A has constant size and is also hardwired in the code of the algorithm.
Now given G we find its representative as follows.

• Compute the following row vector X = [Thr(G� Y
1

),Thr(G� Y
2

), . . . ,Thr(G� Y⇢))].
For each Yi we decide whether (G� Yi, k) 2 ⇧ using the assumed algorithm for deciding
⇧, letting k increase from 1 until the first time (G � Yi, k) 2 ⇧. Since ⇧ is positive
monotone this will happen for some k  (G). Thus the total time to compute the X is
O((G)(f(|V (G)|+ ⇠t, (G))).

• Find a translate row in the matrix A(⇧). That is, find an integer no such that there exists
a representative Y` such that

[Thr(G� Y
1

),Thr(G� Y
2

), . . . ,Thr(G� Y⇢))]
= [Thr(Y` � Y

1

) + n
0

,Thr(Y` � Y
2

) + n
0

, . . . ,Thr(Y` � Y⇢)) + n
0

]

Such a row must exist since St is a set of representatives for ⇧.

• Set Y` to be G⇤ and the translation constant to be �n
0

.

From here it easily follows that G ⌘
⇧,t G⇤. This completes the proof.

5 Slice-Decomposition

In this section our objective is to show that in polynomial time we can partition the graph G
satisfying certain properties. To obtain our decomposition we need to use a more general notion
of protrusion. More precisely, we need the following kind of protrusions.

Definition 10. [r-DS-protrusion] Given a graph G, we say that a set X ✓ V (G) is an r-DS-
protrusion of G if the number of vertices in X with a neighbor in V (G) \ X is at most r and
there exists a subset S ✓ X of size at most r such that X is a dominating set of G[X].

The notion of r-DS-protrusion X di↵ers from normal protrusion in the following way. In
the normal protrusion we demand that tw(X) is at most r while in the r-DS-protrusion we
demand that the dominating set of the graph induced on X is small. We can similarly define
the notion of r-⇧-protrusion for various other graph problems ⇧.

Definition 11. [r-CDS-protrusion] Given a graph G, we say that a set X ✓ V (G) is an
r-CDS-protrusion of G if the number of vertices in X with a neighbor in V (G) \ X is at most
r and there exists a subset S ✓ X of size at most r such that for every connected component C
of G[X] we have that X \ C is a connected dominating set for C.

The next question is what do we achieve if we get a large r-DS-protrusion (or r-CDS-
protrusion). The next lemma shows that in that case we can replace it with an equivalent small
graph. More precisely we have the following.

Lemma 5. Let H be a fixed graph. For very t 2 Z+, there exist a ⇠t 2 Z+ (depending on DS
(CDS), t and H), and an algorithm A such that given a t-DS-protrusion (t-CDS-protrusion)
with |X| > ⇠t, and H 6�T X, A outputs in O(|X|) time (|X|O(1)) time), a t-boundaried graph
X 0 such that X ⌘DS,t X 0 (X ⌘CDS,t X 0) and |X 0|  ⇠t. Moreover in the same time we can also
find the translation constant c from X to X 0.

Proof. For every t 2 Z+ let ⇠t be the constant as defined in Lemma 4. It is also known that
both DS (CDS) are FII [9] and monotone. Furthermore, DS and CDS can be solved in time
O(hk)hkn [4, Theorem 4] and O(kO(h2

)knO(1)) [37, Theorem 1] respectively. Thus, if |X| > ⇠t

then by Lemma 4 in time O(|X|) (|X|O(1))), we can obtain a t-boundaried graph X 0 such that
X ⌘DS,t X 0 (X ⌘CDS,t X 0) and |X 0| < ⇠t. Moreover in the same time we can also find the
translation constant c from X to X 0 as done in Lemma 4.
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1. Apply Lemma 1 (Lemma 2) on the input graph G and compute a (connected)
dominating set D such that the size of D is at most ⌘(H)-factor away from the size
of an optimal dominating set of G.

2. Use Theorem 1 and compute a tree-decomposition (M, ). We call a tree edge
e = uv 2 E(M) heavy if µ(Mu, D) � h + 1 and µ(Mv, D) � h + 1. Mark all the
edges of M that are heavy. We use F to denote the set of edges that have been
marked.

Figure 2: Marking heavy edges.

Let (M, ) be a tree decomposition of a graph G. For a subtree Mi of M , we define E(Mi)
as the set of edges in M such that it has exactly one endpoint in V (Mi). Furthermore we define
R+

i =  (Mi) and

⌧(M 0) := G[R+

i ]) [S

e2E(Mi)
E(K[(e)]).

Our main objective in this section is to obtain the following (↵,�)-slice decomposition for
↵ = � = O(k).

Definition 12. [(↵,�)-slice decomposition] Let G be a graph with H 6�T G and let (M, )
be the tree decomposition given by Theorem 1. An (↵,�)-slice decomposition of a graph G is a
collection P of pairwise disjoint connected subtrees {M

1

, . . . ,M↵} of M such that the following
holds.

• Each of ⌧(Mi) is either H⇤-minor free for some graph H⇤ whose size only depends on h
or ⌧(Mi) has at most h vertices of degree at least h.

• P⇢
i=1

(
P

e2E(Mi)
|(e)|)  �.

We call the sets R+

i , i 2 {1, . . . , ⇢}, slices of P.

Essentially, the slice-decomposition allows us to partition the input graph G into subgraphs
C

0

, C
1

, . . . , C`, such that |C
0

| = O(k); for every i � 1, the neighbourhood N(Ci) ✓ C
0

, and
P

1i` |N(Ci)| = O(k). Now we define a notion of measure.

Definition 13. Let (M, ) be the tree decomposition of a graph G given by the Theorem 1. For
a subset Q ✓ V (G) and a subtree M 0 of M we define µ(M 0, Q) = | (M 0) \Q|. If we delete an
edge e = uv 2 E(M) from the tree M then we get two trees. We call the trees as Mu and Mv

based on whether they contain u or v.

Our main lemma in this section shows that in polynomial time either we find a (O(k),O(k))-
slice decomposition or a large r-DS-protrusion (or r-CDS-protrusion) or a normal protrusion.
In the later cases we can apply either Lemma 5 or a similar lemma developed in [9, Lemma 7]
for normal protrusions and reduce the graph. Towards the proof of our main lemma we first
introduce a marking scheme (see Figure 2).

Before we prove the main result of this section, we prove some combinatorial properties of
the marking schema described in Figure 2 that will be useful later.

Lemma 6. Let M⇤ be the subgraph formed by the edges in F then M⇤ is a subtree of M .

Proof. Clearly, M⇤ is a forest as it is a subgraph of M . To complete the proof we need to show
that it is connected. We prove this using contradiction. Suppose there are two trees M⇤

i and

12



M⇤
j , i 6= j. Then we know that there exists a path P such that the first and the last edges are

heavy and the path P contains a light edge. Furthermore, we can assume that the first edge,
say uivi, belongs to Mi and the last edge, say ujvj belongs to Mj . Let the light edge on the
path be xy. Now when we delete the edge xy from M we get two trees Mx and My. We know
that either M⇤

i ✓ Mx and M⇤
j ✓ My or vice versa. Suppose M⇤

i ✓ Mx and M⇤
j ✓ My. Since

M⇤
i contains the heavy edge uivi we have that µ(Mx, D) � h + 1. Similarly we can show that

µ(My, D) � h+1. This shows that xy is a heavy edge and hence would have been marked. One
can similarly argue that xy is a heavy edge when M⇤

i ✓My and M⇤
j ✓Mx. This is contradiction

to our assumption that M⇤ is not a subtree of M . This completes the proof of the lemma.

For our next proof we first give some well known observations about trees. Given a tree T ,
we call a node leaf, link or branch if its degree in T is 1, 2 or � 3 respectively. Let S�3

(T ) be
the set of branch nodes, S

2

(T ) be the set of link nodes and L(T ) be the set of leaves in the tree
T . Let P

2

(T ) be the set of maximal paths consisting of link nodes.

Fact 1. |S�3

(T )|  |L(T )|� 1.

Fact 2. |P
2

(T )|  2|L(T )|� 1.

Proof. Root the tree at an arbitrary node of degree at least 3. If there is no node of degree
3 or more in T then we know that the T is a path and the assertion follows. Consider T [S

2

]
which is the disjoint union of paths P 2P

2

(T ). With every path P 2P
2

(T ), we associate the
unique child of the last node of this path in T . Observe that this association is injective and
the associated node is either a leaf or a branch node. Hence

|P
2

(T )|  |L(T )|+ |S�3

(T )|  2|L(T )|� 1

from Fact 1.

Lemma 7. If (G, k) is a yes instance to DS (CDS) then (a) |L(M⇤)|  ⌘(H)k; (b) |S�3

(M⇤)| 
⌘(H)k � 1; and (c) |P

2

(M⇤)|  2⌘(H)k � 1. Here ⌘(H) is the factor of approximation in
Lemma 1 (Lemma 2).

Proof. Root the tree at an arbitrary node of degree at least 3, say r. If there is no node of
degree 3 or more in M⇤ then we know that the T is a path and the proof follows. We call a
pair of nodes u and v siblings if they do not belong to the same path from the root r in M⇤.
Observe that all the leaves of M⇤ are siblings.

Let w
1

, . . . , w` be the leaves of M⇤ and let e
1

, . . . , e` be the corresponding edges incident to
w

1

, . . . , w`, respectively. To prove our first statement we will show that for every i, we have a
vertex qi 2 D such that qi 2 �(wi) and for all j 6= i, qi /2 �(wj). This will establish an injection
from the set of leaves to the dominating set D and thus the bound will follow. Towards this
observe that since the edge ei is marked we have that |�(wi) \ D| � h + 1. Furthermore, for
every pair of vertices wi, wj 2 L(M⇤), wi 6= wj , we have that |�(wi) \ �(wj)|  h. The last
assertion follows from the fact that for a pair of siblings wi and wj the only vertices that can be
in the intersection of �(wi) and �(wj) must belong to both �(wi) and �(wj). However, the size
of any �(wi) is upper bounded by h. This together with the fact that |�(wi)\D| � h+1 implies
that for every i, we have a vertex qi 2 D such that qi 2 �(wi) and for all j 6= i, qi /2 �(wj).
This implies that |L(M⇤)|  |D|. However since (G, k) is a yes instance to DS we have that
|D|  ⌘(H)k. This completes the proof of part (a) of the lemma. Proofs for part (b) and part
(c) of the lemma follow from Facts 1 and 2.

Before we prove our next lemma we show a lemma about dominating set of subgraphs of G.
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Lemma 8. Let G be a graph such that H 6�T G and (M, ) be the tree decomposition given by
Theorem 1. Let M 0 be a subtree of M then (D \  (M 0)) [e2E(M 0

)

(e) is a dominating set for
G[ (M 0)].

Proof. The proof follows from the fact that D \  (M 0) dominates all the vertices in  (M 0)
except the ones that have neighbors in V (G) \ ([e2E(M 0

)

(e)). Thus, (D\ (M 0))[e2E(M 0

)

(e)
is a dominating set for G[ (M 0)].

Let P
1

, . . . , Pl be the paths in P
2

(M⇤). We use si and ti to denote the first and the last
vertex of the path Pi. Since Pi is a path consisting of link vertices we have that si and ti have
unique neighbors s⇤i and t⇤i respectively in M⇤. Observe that since M⇤ is a subtree of M , we
have that for every i, Pi is also a path in M . If we delete the edges s⇤i si and t⇤i ti from the tree
M , we get a subtree that contains the path Pi, we call this subtree M(Pi). For any two vertices
a and b on the path Pi by Pi(a, b) we denote the subpath between a and b in Pi. Furthermore
for any subpath Pi(a, b), if we delete the edges incident to a and b on Pi and not present in
Pi(a, b) from the tree M , we get a subtree that contains the path Pi(a, b), we call this subtree
M(Pi(a, b)). Now we are ready to state our next lemma.

Lemma 9. Let (G, k) be an instance to DS(CDS). Then, if for any path Pi, i 2 {1, . . . , `}, we
have that |Pi| > ⇠

2h2(2h + ki) then G contains a 2h-DS-protrusion of size at least ⇠
2h. Here,

ki = |D \ (M(Pi))|.
Proof. We prove this lemma using contradiction. Suppose for some i 2 {1, . . . , `}, we have that
|Pi| > 2�

2

(|D\ (M(Pi))|. Let Pi := si = ai
1

· · · ai
ti = ti. For every vertex w in D\ (M(Pi)) and

�(s⇤i )[�(ti) we mark two vertices of the path Pi. We mark the first and the last vertices on Pi,
say ai

x and ai
y, such that w 2  (M(Pi(ai

x)) and w 2  (M(Pi(ai
y))). That is, w 2  (M(Pi(ai

x))
and w 2  (M(Pi(ai

y)) and for all z < x or z > y we have that w /2  (M(Pi(ai
z)). This

way we will only mark at most 2(2h + |D \  (M(Pi))|) = 2(2h + ki) vertices of the path Pi.
However the path is longer than 2⇠

2h(2h + ki) and thus by pigeonhole principle we have that
there exists a subpath of Pi, say Pi(ai

x, ai
y), such that no vertex of this subpath is marked and

|Pi(ai
x, ai

y)| > ⇠
2h. Let W =  (M(Pi(ai

x, ai
y))). Let a be the neighbor of ai

x in M⇤ that is
not present on Pi(ai

x, ai
y). Clearly, the only vertices in W that have neighbors in V (G) \ W

belong to �(a) [ �(ai
y). Thus it is upper bounded by 2h. Furthermore, since no vertex on the

path Pi(ai
x, ai

y) is marked we have that all the vertices in D belonging to W also belongs to
�(a) [ �(ai

y). Thus by Lemma 8 we have that �(a) [ �(ai
y) dominates all the vertices in W .

Furthermore, in (M, ), no bag is contained in other and thus |W | > ⇠
2h. This shows that W

is a 2h-DS-protrusion of desired size.

Lemma 10. Let H be a fixed graph and CH be the class of graphs excluding H as a topological
minor. Then there exist two constants �

1

and �
2

(depending on DS (CDS)) such that given a
yes instance (G, k) of DS (CDS), in polynomial time, we can either find

• (�
1

k, �
2

k)-slice decomposition; or
• a 2h-DS-protrusion (or 2h-CDS-protrusion) of size more than ⇠

2h or;
• a h0-protrusion of size more than ⇠h0 where h0 depends only on h.

Proof. Let (G, k) be a yes instance of DS(CDS). This implies that the size of the (connected)
dominating set D returned by Lemma 1(Lemma 2) is at most ⌘(H)k. Now we apply the marking
scheme as described in Figure 2. Let M⇤ be the subtree of M induced on heavy edges. By
Lemma 7, we know that (a) |L(M⇤)|  ⌘(H)k; (b) |S�3

(M⇤)|  ⌘(H)k�1; and (c) |P
2

(M⇤)| 
2⌘(H)k � 1. Recall that for every path Pi 2 P

2

(M⇤), we defined ki = |D \  (M(Pi))|. If for
any path Pi 2 P

2

(M⇤) we have that |Pi| > ⇠
2h2(2h + ki) then by Lemma 9 G contains a
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2h-DS-protrusion of size at least ⇠
2h, and we can find this protrusion in polynomial time. Thus

we assume that for all paths Pi 2P
2

(M⇤) we have that |Pi|  ⇠
2h2(2h + ki).

Let k⇤i denote the number of vertices in D \  (M(Pi)) that are not present in any other
D \  (M(Pj)) for i 6= j. Furthermore, for all i 6= j we have that

�

�

�

⇣

D \  (M(Pi))
⌘

\
⇣

D \
 (M(Pj)

⌘

�

�

�

 h. Thus we have that ki  h + k⇤i . This implies that

|V (M⇤)| = |L(M⇤)|+ |S�3

|+ |S
2

|
 ⌘(H)k + ⌘(H)k � 1 +

X

Pj2P2(M⇤

)

(4h + 2kj)⇠
2h

 2⌘(H)k � 1 + 4h|P
2

(M⇤)|⇠
2h +

X

Pj2P2(M⇤

)

2(h + k⇤j )⇠2h

 2⌘(H)k � 1 + 6h|P
2

(M⇤)|⇠
2h + 2|D|⇠

2h

 (2 + 12h⇠
2h + 2⇠

2h)⌘(H)k

This implies that the number of marked edges is upper bounded by |F|  (2 + 12h⇠
2h +

2⇠
2h)⌘(H)k�1. Let M

1

, . . . ,M↵ be the subtrees of M obtained by deleting all the edges in M⇤,
that is, by deleting all the edges in F . Note that ↵ is upper bounded by (2+12h⇠

2h+2⇠
2h)⌘(H)k.

We now argue that the collection M
1

, . . . ,M↵ forms a (�
1

k, �
2

k)-slice decomposition of G or we
will find a 2h-protrusion or a 2h-DS-protrusion of size more than ⇠

2h in G.
First we show that

P↵
i=1

(
P

e2E(Mi)
|(e)|) = O(k). Specifically since every heavy edge

belongs to at most 2 distinct edge sets E(Mi), we have that

↵
X

i=1

X

e2E(Mi)

|(e)|  2
X

e2E(M⇤

)=F
|(e)|  2h|F|  2h((2 + 12h⇠

2h + 2⇠
2h)⌘(H)k � 1).

We set �
2

= 2h(2 + 12h⇠
2h + 2⇠

2h)⌘(H), and �
1

= ↵
k , since ↵ = O(k) we have that �

1

is a
constant.

Since M⇤ is connected we have that for every tree Mi there is a unique node that is adjacent
to edges in F . We denote this special node by ri. We root the tree Mi at ri. Let w be a child of
ri and let Mw and Mri be the trees of M obtained after deleting the edge riw. Since at least one
edge incident to ri is heavy we have that µ(Mri , D) � h+1. However the edge riw is not heavy
and thus it must be the case that µ(Mw, D)  h. Let W =  (Mw). Then by Lemma 8 we have
that (D \W ) [ (riw) = �(w) is a dominating set of size at most 2h for G[W ]. Furthermore,
the only vertices in W that have neighbors in V (G) \W belong to �(w) and thus its size is also
upper bounded by h. This implies that if |W | > ⇠

2h then it is a 2h-DS-protrusion of size at
least ⇠

2h. Thus from now onwards we assume that this is not the case.
In the case when ⌧(ri) has at most h vertices of degree larger than h, we show there exists

an h0 depending only on h such that either ⌧(Mi) has at most h0 = ⇠h+⇠2h
vertices of degree

larger than h or G contains a 2h-protrusion of size more than ⇠
2h. Suppose some vertex v in

⌧(ri) has degree at most h in ⌧(ri), but has degree at least h0 in ⌧(Mi). Let N be the closed
neighbourhood of v in ⌧(ri) and N 0 be the neighborhood of v in ⌧(Mi). Each vertex in N 0 \N
must lie in a connected component C of ⌧(Mi) \ N on at most ⇠

2h vertices. Furthermore, no
vertex in C sees any vertex outside N even in the graph G. Let X be N plus the union of all
such components. By assumption |N 0 \N | � ⇠

2h and hence |X| � ⇠
2h. Finally, the only vertices

in X that have neighbors outside of X in G are in N , and |N |  h. The treewidth of G[X] is at
most ⇠

2h +h since removing N from X leaves components of size ⇠
2h. Thus X is a h0-protrusion

of size more than ⇠h0 . If no such X exists it follows that every vertex of degree at most h in
⌧(ri) has degree at most h0 in ⌧(Mi). The vertices of ⌧(Mi) that are not in ⌧(ri) have degree at
most ⇠

2h + h < h0. Thus ⌧(Mi) has at most h < h0 vertices of degree at least h0.
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In the case that ⌧(ri) is h-nearly embedded in a surface ⌃ in which H cannot be embedded,
we have that ⌧(ri) excludes some graph H 0 depending only on h as a minor. The graph ⌧(Mi)
can be obtained from ⌧(ri) by joining constant size graphs (of size at most ⇠

2h) to vertex sets
that form cliques in ⌧(ri). Thus there exists a graph H⇤ depending only on h such that ⌧(Mi)
excludes H⇤ as a minor. This completes the proof of this lemma.

6 Final Kernel

In this section we use slice-decomposition obtained in the last section and the reduction rules
used in [34] to obtain linear kernels for DS and CDS. We first outline our algorithm for DS
and then explain how we can obtain a linear kernel for CDS.

6.1 Kernelization Algorithm for DS

Given an instance (G, k) of DS we first apply Lemma 1 and find a dominating set D of G. If
|D| > ⌘(H)k we return that (G, k) is a no instance to DS. Else, we apply Lemma 10 and

• either find (�
1

k, �
2

k)-slice decomposition; or
• a 2h-DS-protrusion X of G (or 2h-CDS-protrusion) of size more than ⇠

2h; or
• a h0-protrusion of size more than ⇠h0 where h0 depends only on h.

In the second case we apply Lemma 5. Given X we apply Lemma 5 and obtain a boundaried
graph X 0 such that |X 0|  ⇠

2h and X ⌘DS,2h X 0 (X ⌘CDS,2h X 0). We also compute the
translation constant c between X and X 0. Now we replace the graph X with X 0 and obtain a
new equivalent instance (G0, k + c). (Recall that c is a negative integer). In the third case we
apply the protrusion replacement lemma of [9, Lemma 7] to obtain a new equivalent instance
(G0, k0) for k0  k with |V (G0)| < |V (G)|. We repeat this process until Lemma 10 returns a
slice-decomposition. For simplicity we denote by (G, k) itself the graph on which Lemma 10
returns the slice-decomposition. Since the number of times this process can be repeated is upper
bounded by n = |V (G)|, we can obtain (�

1

k, �
2

k)-slice decomposition for (G, k) in polynomial
time.

Let P be the pairwise disjoint connected subtrees {M
1

, . . . ,M↵} of M coming from the slice-
decomposition of G. Recall that R+

i =  (Mi). Let Qi =
S

e2E(Mi)
(e), Bi = (D \ R+

i ) [ Qi

and bi = |Bi|. In this section we will treat Gi := G[R+

i ] as a graph with boundary Bi. Observe
that by Lemma 8, it follows that Bi is a dominating set for Gi.

We have two kinds of graphs Gi. In one case we have that Gi is H⇤-minor free for a graph
H⇤ whose size only depends on h. In the other case we have that the graph Gi has at most h0

vertices of degree at least h0. To obtain our kernel we will show the following two lemmas.

Lemma 11. There exists a constant � such that graph G with boundary S such that S is a
dominating set for G and G has at most h0 vertices of degree at least h0, then in polynomial
time, we can obtain a graph G0 with boundary S such that

G0 ⌘DS,bi G and |V (G0)|  �|S|.
Furthermore we can also compute the translation constant c of G and G0 in polynomial time.

Lemma 12. There exists a constant � such that given a H-minor free graph G with boundary
S such that S is a dominating set for G, in polynomial time, we can obtain a graph G0 with
boundary S such that

G0 ⌘DS,bi G and |V (G0)|  �|S|.
Furthermore we can also compute the translation constant c of G and G0 in polynomial time.

16



Once we have proved Lemmata 11 and 12, we obtain the linear sized kernel for DS as
follows. Given the graph G we obtain the slice-decomposition and check if any of Gi has size
more than �bi. If yes then we either apply Lemma 11 or Lemma 12 based on the type of Gi and
obtain a graph G0

i such that G0
i ⌘DS,bi Gi and |V (G0

i)|  �bi. We think G = Gi � G?, where
G? = G \ (R+

i \ Bi) as a bi-boundaried graph with boundary Bi. Then we obtain a smaller
equivalent graph G0 = G?�G0

i and k0 = k + c. After this we can repeat the whole process once
again. This implies that when we can not apply Lemmata 12 or 11 on (G, k) we have that each
of |V (Gi)|  �bi. Furthermore notice that [↵

i=1

R+

i = V (G). This implies that in this case we
have the following

↵
X

i=1

|R+

i |  �
↵

X

i=1

bi = �(
↵

X

i=1

(|Qi|+ |(D \R+

i ) \Qi|))

= �(
↵

X

i=1

|Qi|+
↵

X

i=1

|(D \R+

i ) \Qi|)  ��
2

k + �⌘(H)k = O(k).

This brings us to the following theorem.

Theorem 2. DS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

It only remains to prove Lemmas 11 and 12 to complete the proof of Theorem 3.

6.2 Irrelevant Vertex Rule and proofs for Lemmas 11 and 12

For the proofs of Lemmas 11 and 12 we need to use an irrelevant vertex rule developed in [34].
Furthermore, the proof of Lemma 12 is essentially a reformulation of the results presented in [34].

If the graph G is Kh0-minor free then the irrelevant vertex rule will be used in a recursive
fashion. In each recursive step it is used in order to reduce the treewidth of torsos and hence also
the entire graph. Then the graph is split in two pieces and the procedure is applied recursively
to the two pieces. In the bottom of the recursion when the graph becomes smaller but still big
enough then we apply Lemma 5 on it and obtain an equivalent instance.

Let G be a graph given with its tree-decomposition (M, ) as described in Theorem 1, and
⌧(t) be one of its torsos. Let S be a dominating set of G, and Zt = A, |A|  h, be the set
of apices of ⌧(t). The reduction rule essentially “preserves” all dominating sets of size at most
|S| in G, without introducing any new ones. To describe the reduction rule we need several
definitions. The first step in our reduction rule is to classify di↵erent subsets A0 of A into feasible
and infeasible sets. The intuition behind the definition is that a subset A0 of A is feasible if
there exists a set D in G of size at most |S|+1 such that D dominates all but S and D\A = A0.
However, we cannot test in polynomial time whether such a set D exists. We will therefore say
that a subset A0 of A is feasible if the 2-approximation for DS on H-minor-free graphs [19, 31]
outputs a set D of size at most 2(|S|+2) such that D dominates V (G)\(A[S) and D\A = A0.
Observe that if such a set D of size at most |S| + 1 exists then A0 is surely feasible, while if
no such set D of size at most 2|S| + 2 exists, then A0 is surely not feasible. We will frequently
use this in our arguments. Let us remark that there always exists a feasible set A0 ✓ A. In
particular, A0 = S \ A is feasible since S dominates G. For feasible sets A0 we will denote by
D(A0) the set D output by the approximation algorithm.

For every subset A0 ✓ A, we select a vertex v of G such that A0 ✓ NG[v]. If such a vertex
exist, we call it a representative of A0. Let us remark that some sets can have no representatives
and some distinct subsets of A may have the same representative. We define R to be the set
of representative vertices for subsets of A. The size of R is at most 2|A|. For A0 ✓ A, the set
of dominated vertices (by A0) is W (A0) = N(A0) \ A. We say that vertex v 2 V (G) \ A is fully
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dominated by A0 if N [v] \A ✓W (A0). A vertex w 2 V (G) \A is irrelevant with respect to A0 if
w /2 R, w /2 S, and w is fully dominated by A0.

Now we are ready to state the irrelevant vertex rule.

Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A0 ✓ A,
then delete w from G.

Lemma 13. Let S be a dominating set in G, and G0 be the graph obtained by applying the
Irrelevant Vertex Rule on G, where w was the deleted vertex. Then G0 ⌘DS,|S| G.

Proof. Let the transposition constant be 0. To show that G0 ⌘DS,|S| G, we show that given a
|B|-boundaried graph G

1

and a positive integer ` we have that (G�G
1

, `) 2 DS , (G0�G
1

, `) 2
DS . Let Z ⇢ V (G�G

1

) be a dominating set for G�G
1

of size at most `. Let Z
1

= V (G)\Z.
If |Z

1

| > |S| then (Z \Z
1

)[S is a smaller dominating set for G�G
1

. Therefore we assume that
|Z

1

|  |S|. Let A0 = Z \ A, and observe that A0 is feasible because Z
1

dominates all but S. If
w /2 Z, then Z 0 = Z is a dominating set of size at most ` for G0�G

1

. So assume w 2 Z. Observe
that w 2 Z

1

and w /2 S and therefore all the neighbors of w lie in G. Since w is irrelevant with
respect to all feasible subsets of A and A0 is feasible, we have that w is irrelevant with respect
to A0. Hence NG�G1(w) \ NG�G1(Z \ w) ✓ A. There is a representative w0 2 R, w0 6= w (since
w /2 R), such that (NG�G1(w) = NG(w)) \ A ✓ NG(w0) \A. Hence Z 0 = (Z [ {w0}) \ {w} is a
dominating set of G0 �G

1

of size at most `.
Now, let Z 0 ✓ V (G0 � G

1

) be a dominating set of size at most ` for G0 � G
1

. Let Z 0
1

=
V (G0) \ Z 0. As in the forward direction we can assume that |Z 0

1

|  |S|. We show that Z 0 also
dominates w in G � G

1

. Specifically Z 0
1

[ {w} is a dominating set of all but S in G of size
at most |S| + 1 so Z 0

1

\ A is feasible. Since {w} is irrelevant with respect to Z 0
1

\ A, we have
w 2 NG(Z 0

1

\A) and thus Z 0 is a dominating set for G0 �G
1

of size at most `. This concludes
the proof.

For a graph G and its dominating set S, we apply the Irrelevant Vertex Rule exhaustively
on all torsos of G, obtaining an induced subgraph G0 of G. By Lemma 13 and transitivity of
⌘DS,t we have that G0 ⌘DS,|S| G. We now prove that a graph G which can not be reduced by
the irrelevant vertex rule has a property that each of its torso has a small 2-dominating set.

Lemma 14. Let G be a graph which is irreducible by the Irrelevant Vertex Rule and S be a
dominating set of G. For every torso ⌧(t) of the tree-decomposition (M, ) of G, we have that
⌧(t) \Zt has a 2-dominating set of size O(|S|). Furthermore if G is a H-minor free graph then
tw(G) = O(

p|S|).
Proof. Let ⌧(t)⇤ = ⌧(t)\A, where A are the apices of ⌧(t). We will obtain a 2-dominating set of
size O(|S|) in ⌧(t)⇤. Towards this end, consider the following set, Q =

S

A0✓A,A0

is feasible

D(A0)[
R [ S \ A. The number of representative vertices R and the number of feasible subsets A0 is
at most 2|A|  2h, where h is a constant depending only on H. The size of D(A0) is at most
2|S| + 2 for every A0. Thus |Q|  2h(2|S| + 2) + 2h + |S| = O(|S|). We prove that Q is a
2-dominating set of V (G) \ A. Let w 2 V (G) \ A. If w 2 R or w 2 S, then Q dominates w.
So suppose w /2 R [ S. Then, since w is not irrelevant, we have that there is a feasible subset
A0 of A such that w is relevant with respect to A0. Hence w is not fully dominated by A0 and
so w has a neighbour w0 2 V (G) \ N [A0]. But w0 is dominated by D(A0) ✓ Q, and thus w is
2-dominated by Q in G \A. Hence G \A has a 2-dominating set of size O(|S|).

The graph ⌧(t)⇤ can be obtained from G \A by contracting all edges in E(G \A) \E(⌧(t)⇤)
and adding all edges in E(⌧(t)⇤)\E(G\A). Since contracting and adding edges does not increase
the size of a minimum 2-dominating set of a graph, ⌧(t)⇤ has a 2-dominating set of size O(|S|).
This completes the proof for the first part.
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Now assume that G is a H-minor free graph. It is well known that fact that the treewidth of
a H-minor free graph is at most the maximum treewidth of its torsos, see e.g.[18]. Thus to show
that tw(G) = O(

p|S|) it is su�cient to show that its torsos has small treewidth. To conclude,
⌧(t)⇤ excludes an apex graph as a minor (see, e.g. [38, Theorem 13]) and it has a 2-dominating
set of size O(|S|). By the bidimensionality of 2-dominating set, we have that tw(⌧(t)⇤) =
O(

p|S|) [18, 29]. Now we add all the apices of A to all the bags of the tree decomposition of
⌧(t)⇤ to obtain a tree decomposition for ⌧(t)0 of width O(

p|S|) + h = O(
p|S|).

Let us also remark that Irrelevant Vertex Rule is based on the performance of a polynomial
time approximation algorithm. Thus by Lemmata 1, 13 and 14, and the fact that the treewidth
of a graph is at most the maximum treewidth of its torsos, see e.g.[18], we obtain the following
lemma.

Lemma 15. There is a polynomial time algorithm that for a given graph G and a dominating set
S of G, outputs graph G0 such that G0 ⌘DS G and for every torso ⌧(t) of the tree-decomposition
(M, ) of G, we have that ⌧(t) \ Zt has a 2-dominating set of size O(|S|). Furthermore if G is
a H-minor free graph then tw(G) = O(

p|S|).
Having Lemma 15 proving Lemma 11 becomes simple.

Proof of Lemma 11. We apply Lemma 15 to G with a decomposition that has a single bag
containing the entire graph and the apices A of the bag being the vertices of degree at least h0.
By Lemma 15, G\A has a 2-dominating set of size �

3

|S|. Since all vertices of G\A have degree
at most h0 it follows that |V (G)|  h0 + �

3

h|S|�
3

h2|S|  �|S|.
We need the following well known lemma, see e.g. [6], on separators in graphs of bounded

treewidth for the proof of Lemma 12.

Lemma 16. Let G be a graph given with a tree-decomposition of width at most t and w :
V (G)! {0, 1} be a weight function. Then in polynomial time we can find a bag X of the given
tree-decomposition such that for every connected component G[C] of G\X, w(C)  w(V (G))/2.
Furthermore, the connected components C

1

, . . . , C` of G\X can be grouped into two sets V
1

and
V

2

such that w(V (G))�w(X)

3

 w(Vi)  2(w(V (G))�w(X))

3

, for i 2 {1, 2}.
Proof of Lemma 12. By (G, S) we denote the graph with boundary S. By Lemma 15, we may
assume that tw(G) = O(

p|S|). We prove the lemma using induction on |S|. If |S| = O(1) we
are done, as in this case we know that G is a |S|-DS protrusion. Thus, if |V (G)| > ⇠|S| then
we can apply Lemma 5 and in polynomial time obtain a graph G⇤ such that G⇤ ⌘DS G and
|V (G⇤)|  ⇠|S|. In the same time we can compute the translation constant depending on G and
G⇤ and return it. Thus, we return G⇤ and the translation constant c.

Otherwise, using a constant factor approximation of treewidth on H-minor-free graphs [26],
we compute a tree-decomposition of G of width d

p|S|. Now, by applying Lemma 16 on this
decomposition, we find a partitioning of V (G) into V

1

, V
2

and X such that there are no edges
from V

1

to V
2

, |X|  d
p|S| + 1, and |Vi \ S|  2|S|/3 for i 2 {1, 2}. Let S0 = S [X. Observe

that S0 is also a dominating set.
Let S

1

= S0 \ (V
1

[X) and S
2

= S0 \ (V
2

[X). Let G
1

= G[V
1

[X] and G
2

= G[V
2

[X].
We now apply the algorithm recursively on (G

1

, S
1

) and (G
2

, S
2

) and obtain graphs G0
1

, G0
2

such that for i 2 {1, 2}, Gi ⌘DS,|Si| Gi. Let c
1

and c
2

be the translation constants returned by
the algorithm. Since X ✓ S0, we have that Si is a dominating set of Gi and hence we actually
can run the algorithm recursively on the two subcases. The algorithm returns G0

1

and G0
2

and
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translation constants c
1

and c
2

. Let G0 = G0
1

�� G0
2

and S0 = S
1

[ S
2

. We will show that
G0 ⌘DS,|S0| G. Let G

3

be a graph with boundary S0 and k be a positive integer. Then

((G
1

�� G
2

)�G
3

, k) 2 DS

() ((G
1

�� G
3

)�G
2

, k) 2 DS

() ((G
1

�� G
3

)�G0
2

, k + c
2

) 2 DS

() ((G0
2

�� G
3

)�G
1

, k + c
2

) 2 DS

() ((G0
2

�� G
3

)�G0
1

, k + c
2

+ c
1

) 2 DS

() ((G0
2

�� G0
1

)�G
3

, k + c
2

+ c
1

) 2 DS.

This proves that G0 ⌘DS,|S0| G. Now we will show that |V (G0)|  O(|S|).
Let µ(|S|) be the largest possible size of the set |V (G0)| output by the algorithm when run

on a graph G with a dominating set S. We upper bound |V (G0)| by the following recursive
formula.

|V (G0)|  max
1/3↵2/3

n

µ
⇣

↵|S|+ d
p

|S|
⌘

+ µ ((1� ↵)|S|) + d
p

|S|
o

.

Using simple induction one can show that the above solves to O(|S|). See for an example [31,
Lemma 2]. Hence we conclude that |V (G0)| = O(|S|) = O(k). This completes the proof of the
lemma.

6.3 Kernelization algorithm for CDS

To obtain kernelization algorithm for CDS the only thing that remains to show are results
analogous to Lemmas 12 and 11 for DS. However to obtain this we need to apply reduction
rules developed in [34] for CDS. Finally we need to adapt the proofs of Lemmas 11, 12, 13
and 14 given in the full-version of [34] available at [35] with the new perspective. Two of these
lemmas essentially shows the correctness of reduction rules for CDS and that every torsoes has
2-dominating set of size at most O(|S|). Here S is a connected dominating set of the input
graph G. The only result that is not proved in [35] is the result analogous to Lemma 11 for DS.
However, the size of a dominating set is at most the size of a connected dominating set. After
this the proof for the case that given a graph G with at most h0 vertices of degree at least h0 we
can return a canonically equivalent graph G0 is verbatim to the proof of Lemma 11. We omit
these adaptation details from this extended abstract.

Theorem 3. CDS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

7 Conclusions

In this paper we give linear kernels for two widely studied parameterized problems, namely DS
and CDS, for every graph class that excludes some graph as a topological minor. The emerging
questions are the following two:

1. Can our techniques be extended to more general sparse graph classes?
2. Can our techniques be applied to more general families of parameterized problems?

We believe that any step towards resolving the first question should be based on significant
graph-theoretical advances. Our results make use of the decomposition theorem of Grohe and
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Marx in [39] that, in turn, can be seen as an extension of seminal results of the Graph Minor
Series by Robertson and Seymour [47]. So far no similar structural theorem is known for more
general sparse graph classes. We also believe that a broadening of the kernelization horizon for
these two problems without the use of some tree-based structural characterization of sparsity
requires completely di↵erent ideas.

The first move towards resolving the second question is to extend our techniques for more
variants of the dominating set problem. Natural candidates in this direction could be the r-
Domination problem (asking for a set S that is within distance r from any other vertex of
the graph), the Independent Domination problem (asking for a dominating set that induces
an edgeless graph), or, more interestingly, the Cycle Domination problem (asking for a set
S that dominates at least one vertex from each cycle of G). However, a more general meta-
algorithmic framework, including general families of parameterized problems, seems to be far
from reach.

Acknowledgement Thanks to Marek Cygan for sending us a copy of [13].
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