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Abstract

Thecutwidthof a graphG is defined to be the smallest integesuch that the vertices @ can be
arranged in a vertex orderirigy, ..., vy] in a way that, forevery=1,...,n — 1, there are at most
k edges with one endpoint ivs, ..., v;} and the other ifv; 11, ..., v, }. We examine the problem
of computing in polynomial time the cutwidth of azpartialrtree with bounded degree. In particular,
we show how to construct an algorithm thatzifl w4 steps, computes the cutwidth of any partial
w-tree with vertices of degree bounded by a fixed consfa®ur algorithm is constructive in the
sense that it can be adapted to output a corresponding optimal vertex ordering. Also, it is the main
subroutine of an algorithm computing the pathwidth of a bounded degree pastiak with the
same time complexity.
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1. Introduction

A wide variety of optimization problems can be formulated using vertex ordering prob-
lems. In many cases, such a problem asks for the optimal value of some function defined
over all the linear orderings of the vertices or the edges of a graph (for a survey, see [19]).
One of the most known problems of this type is the problem of computingutvadthof a
graph. Itis also known as the MiMuM CUT LINEAR ARRANGEMENT problem and has
several applications such as VLSI design [1,2,16,32], network reliability [29], automatic
graph drawing [36,42], and information retrieval [13].

Briefly, thecutwidthof a graphG = (V(G), E(G)) is equal to the minimurk for which
there exists a vertex ordering Gf such that for any “gap” (place between two successive
vertices) of the ordering, there are at mbstdges crossing the gap. Cutwidth has been ex-
tensively examined from both algorithmic [14,16,22,23,30,35,48] and graph theoretic point
of view [8,14-16,30,33]. Computing cutwidth is an NP-complete problem [25,26] and it
remains NP-complete even if the input is restricted to planar graphs with maximum degree
3 [35] (see also [33]). There is a polynomial time approximation algorithm with a ratio of
O(log|V(G)|loglog|V(G)]) [21] and there is a polynomial time approximation scheme
if |E(G)| =©(V(G)|?) [3]. Results for different models of random graphs can be found
in [17,18,20]. Relatively few work has been done on detecting special graph classes where
computing cutwidth can be done in polynomial time. In [16], an algorithm was given that
computes the cutwidth of any tree with maximum degree boundetiiny (n(logn)?—2)
time. This result was improved in 1983 by Yannakakis [48], who present&d(atogn)
algorithm computing the cutwidth of any tree. Since then, the only others polynomial al-
gorithms reported for the cutwidth of graph classes different than trees, concerned special
cases such as hypercubes [28] ardimensionat-ary cliques [37]. In this paper, we move
one step further presenting a polynomial time algorithm for the cutwidth of bounded degree
graphs with small treewidth.

The notions oftreewidthand pathwidthappear to play a central role in many areas
of graph theory. Roughly, a graph has small treewidth if it can be constructed by assem-
bling small graphs together in a tree structure, namely a tree decomposition of small width
(graphs with treewidth at most are alternatively callepartial w-trees—see Section 2
for the formal definitions). A big variety of graph classes appear to have small treewidth,
such as trees, outerplanar graphs, series parallel graphs, and Halin graphs (for a detailed
survey of classes with bounded treewidth, see [7]). The pathwidth of a graph is defined
similarly to treewidth, but now the tree in its definition is required to be a simple line
(path). That way, treewidth can be seen as a “tree”-generalization of pathwidth. Pathwidth
and treewidth were introduced by Robertson and Seymour in [39,40] and served as some of
the cornerstones of their lengthy proof of the Wagner conjecture, known now as the Graph
Minors Theorem (for a survey see [41]). Treewidth appears to have interesting applications
in algorithmic graph theory. In particular, a wide range of, otherwise intractable, combi-
natorial problems are polynomially, even linearly, solvable when restricted to graphs with
bounded treewidth or pathwidth. In this direction, numerous techniques have been devel-
oped in order to construct dynamic programming algorithms making use of the “tree” or
“line” structure of the input graph (see, e.g., [6]). The results of this paper show how these
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techniques can be used for constructing a polynomial time algorithm for the cutwidth of
partial w-trees with vertices of degrees bounded by fixed constants.

This paper is strongly based on the previous one of this series [46] where there is a linear
time algorithm that for any fixed decides whether an input grapghhas cutwidth at most
k and, if so, constructs the corresponding linear layout. Most of the basic tools used in this
paper are defined and developed in [46]. We warn the reader that the understanding of this
paper is not possible if he/she is not familiar with the notation, concepts, and results used
and/or introduced in [46] such as typical sequences, characteristics, sets of characteristics,
and the basic algorithmstroduce-Node andForget-Node.

At this point, we want to give an informal description of our algorithm. Our algorithm
starts computing a “nice” tree decomposition of bounded width of the input grafibr
a formal definition see Section 2). The tree decomposition allows the definition of an ap-
propriate subgraph associated to each node, in such a way that the root has associated
the graphG. The algorithm proceeds from bottom to top of the tree decomposition. First,
consider the following exponential algorithm, that builds the set of all layouts of cutwidth
at mostk. The algorithm goes through the tree decomposition in a bottom-up direction,
having at each point a data structure of the set of all layouts of cutwidth atimadghe
subgraph induced by the vertices encountered so far. When a new vertex is encountered,
we try to insert it at all different spots in all the layouts in the data structure; from the
layouts we thus obtain, we keep those whose cutwidth is at lmdsthen we arrive to a
tree branching the two sets of layouts have to be merged, the data structure will keep all
those layouts with cutwidth at mokt Clearly, this algorithm can use exponential time, but
solves the problemG has cutwidth at most, if and only if the data structure contains at
least one layout when the whole tree decomposition has been processed. As in [46], we
fasten this possibly exponential time algorithm by not keeping all layouts, but only the
characteristics of the layouts. Layouts with the same characteristic thus are treated only
once.

In this paper we design a polynomial time algorithm for computing a vertex ordering
with minimum cutwidth when the input graph is a partiatrees of bounded degree. This
is possible due to the observation that the “hidden constants” of all the subroutines used
by our algorithm remain polynomial even when we ask whethdras cutwidth at most
O (dk) -logn. As this upper bound for cutwidth is indeed satisfied (see Corollary 4), our al-
gorithm is able to compute in®®*® steps the cutwidth of bounded degree paitidrees.

The proposed algorithm extends the algorithm in [46] in the sense that it uses all of its sub-
routines and it solves the problem of [46] for graphs with bounded treewidth. The main
technical contribution of this paper is an algorithm (algoritbsim-Node in Section 4) that
performs the merging of the representatives at a branching of the tree decomposition. This
algorithm uses the “small treewidth” property of the input graph.

An interesting consequence of our result is that the pathwidth of bounded degree partial
w-trees can be computed i @® steps. We mention that the existence of a polynomial
time algorithm for this problem, without the degree restriction, has been proved in [11].
However, the time complexity of the involved algorithm appears to be very large and
has not been reported. Our technique, described in Section 6, reduces the computation
of pathwidth to the problem of computing the cutwidth on hypergraphs. Then the path-
width is computed using a generalization of our algorithm for hypergraphs with bounded



28 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25-49

treewidth. That way, we report more reasonable time bounds, provided that the input graph
has bounded degree.

The paper is organized as follows. Section 2 contains the definitions of treewidth, path-
width and cutwidth. Sections 3 and 4 concern operations on “interleavings” of sequences
of integers and are building on the definitions and results of Section 2 of [46]. These new
concepts will be the main ingredient for the algorittiain-Node that is presented in Sec-
tion 4. The algorithmioin-Node only helps to compute the cutwidth of a bounded degree
partial w-tree G but not toconstructthe corresponding vertex ordering. In Section 5, we
describe how to transform this algorithm te@nstructiveone in the sense that we now can
output a linear arrangement 6fwith optimal cutwidth. This uses the analogous construc-
tions of [46] and the procedurésin-Orderings andConstruct-Join-Orderings described in
Section 4.

2. Treewidth—pathwidth—cutwidth

Although we assume the reader familiar with the notation of [46] we repeat here some
basic items. All the graphs of this paper are finite, undirected, and without loops or multiple
edges (our results can be straightforwardly generalized to the case where the last restriction
is altered). We denote the vertex (edge) set of a g@phy V(G) (E(G)) and setn =
|V (G)|. As our graphs will not have multiple edges, we represent an edge€ (G) by
a two vertex subset. A linear (one-dimensional) layout of the vertic&s isfa bijection,
mappingV (G) to the integers in1,...,n}. We denote such a layout by the sequence
[vi,..., v,].

We deal with finite sequences (i.e., ordered sets) of a given finit€ sahd denote by
S the set of all finite sequences of non-negative integers.

A tree decompositionf a graphG is a pair(X, U) whereU is a tree whose vertices we
will call nodesandX = ({X; | i € V(U)}) is a collection of subsets of (G) such that

D) Uievw) Xi = V(G),
(2) for each edgév, w} € E(G), thereis an € V(U) such thaw, w € X;, and
(3) for eachv € V(G) the set of node§ | v € X;} forms a subtree of.

Thewidth of a tree decompositiodX; | i € V(U)}, U) equals maxy ){|X;| — 1}. The
treewidthof a graphG is the minimum width over all tree decompositions®f

A rootedtree decomposition is a tripl® = (X, U, r) in which U is a tree rooted at
and(X, U) is a tree decomposition.

Let D = (X, U, r) be a rooted tree decomposition of a graphwhereX = {X; |i €
V(U)}. D is called anicetree decomposition if the following are satisfied

(1) every node ot has at most two children,

(2) ifanodei has two childrery, iz thenX; = X; = X},

(3) ifanodei has one child, then eithetX;| = |X;|4+1andX; C X; or |X;|=|X;| -1
andX; C X;.
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Notice that a nice tree decomposition is always a rooted tree decomposition. For the fol-
lowing, see, e.g., [11].

Lemma 1. For any constank > 1, given a tree decomposition of a graphof width < k,
there exists an algorithm that, i@ (n) steps, constructs a nice tree decompositioty aff
width < k and with at mostn nodes.

We now observe that a nice tree decompositigty | i € V(U)}, U, r) contains nodes
of the following four possible types. A nodes V (U) is called ‘start’ if i is a leaf ofU,
“join” if i has two children,forget' if i has only one chilg and|X;| < |X |, “introduce
if i has only one childi and|X;| > |X;|. We may also assume thatiifis a start node
then|X;| = 1: the effect ofstartnodes with| X;| > 1 can be obtained by usingstart node
with a set containing 1 vertex, and thgx; | — 1 introducenodes, which add all the other
vertices.

Let D = (X, U, r) be a nice tree decomposition of a grafh For each node of U,
let U; be the subtree df/, rooted at nodé. For anyi € V(U), we setV; = | J,cy ) Xv
andG; = G[V;]. For anyp € V(U) we refineG , in a top down fashion as follows. if is
ajoin with children p and p’, select one of its two children, sgy. Then, for anyi € U,
remove fromG; any edge inthe séi(G,[X,]) (in fact, any partition o (G, [ X, ]) for the
edges induced bg ,[ X ,] andG /[ X /] would be suitable for the purposes of this paper).
In this construction, we hav&(G,) =V, for any p € V(U) and we guarantee that if
¢ is ajoin node with childrenp andp’ thenV(G,) = V(G ) = V(Gy), E(G,[X4]) N
E(Gy[X4]) =9, andE(G,) U E(G ) = E(G,4). Notice that ifr is the root ofU, then
G, = G. We call G; the subgraph of; rootedat i. We finally set, for anyi € V(U),
D; = (X', U;,i) whereX' = {X, | v e V(U;)}. Observe that for each node= V (U), D;
is a nice tree decomposition 6f;.

A tree decompositioiX, U) is a path decomposition, i’ is a path (i.e., tre& has no
nodes of degree more than two). The pathwidth of a g@ph defined as the minimum
width of a path decomposition @f.

We will need the following result given in [10].

Lemma 2. For any graphG,
treewidth G) < pathwidth G) < (treewidth(G) + 1) - log(n).

The cutwidth of a graplG with n vertices is defined as follows. Lét= [vy, ..., v,]
be a layout ofV(G). Fori =1,...,n — 1, we define thecut at positioni, denoted by
01,6 (i), as the set of crossover edges@®@fthat have one endpoint ifi1,:] and one in
I[i +1,n],ie.0.6G) = Ecg([L,i])NEg([i +1,n]). Thecutwidth of a layout of V(G)
is max 1<i<n—11{161,6 () |}. Thecutwidthof a graph is the minimum cutwidth over all the
vertex orderings of/ (G).

It is easy to see the following (see also [16]).

Lemma 3. For any graphG, with vertices of degree bounded by pathwidthG) <
cutwidth(G) < d - pathwidth(G).
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The following is a direct consequence of Lemmata 2 and 3.

Coroallary 4. Any graphG with treewidth at mostv and maximum degree at masthas
cutwidth bounded byw + 1)d logn.

3. Interleavings of sequences

Building on Section 2.3 of [46], we introduce some further notation on interleavings
of sequences of non-negative numbers. This new operation will be need to deal with join
nodes. We assume that the reader knows the definitions of funéionsrelations <",

“C", " <", and the concept dypical anddensesequence defined in [46].

Let A andB two equal-size sequences of non-negative integers whef¢a;, ..., a,],

=[b1,...,b,]. We defineA + B = [a1 + b1, ...,a, + b,] and we say tha#A ~ B iff
Vigi<r @i # ai+1 < b = bj11 (and, therefore); # b1 < a; = a;+1). As an example,
we mention that

[1,1,8,55,6,7]~[3,6,6,6,9,9, 9].

TheinterleavingA ® B of two typical sequenced andB is a set of typical sequences
defined as follows

A®B={t(A+B)|Ac&(A),Bec&B)andA ~ B}.

We stress out that the above definition of interleaving is an important ingredient for the
algorithm and the proofs of this paper (a similar, but simpler, definition of “interleaving”
was used in [11]). Notice that the length of the resulting sequences is ajAestB| —

For an example for the case whete=[1, 2, 1, 3] andB = [4, 3, 6, 3], see Fig. 1.

A useful geometrical interpretation of the operatid® B wherep = |A| andg = | B|,
can be given by the labellegh x ¢)-grid

Fog={G. H11<i<p, 1<j<q},
(G ()i, j<j i —i+j —j=1})

whose vertex, j) is labelled by the sumi (i) + B(j). Notice that there exists a one to
one correspondence between the labels of the paths connecting vetititeand(p, ¢) in

F, 4 and the sumgl + B whereA € £(A), B € S(B) and,A ~ B. For an example, ifi =
[1,2,1,3]andB =[4, 3, 6, 3], then the sun + B whereA =[1,2,2,2,2,1,3] andB =
[4,4,3,6, 3,3, 3] corresponds to the patiil, 1), (2, 1), (2,2), (2,3), (2,4), (3,4), (4,4))
(see Fig. 2). This observation is used in the proof the following lemma.

Lemmab. Let A and B be typical sequences of integerg k}. Then,|A ® B| < 28¢—D
andA ® B can be computed if (k - 24k—D) steps.

Proof. From [46, Lemma 2.6] we obtain that< 2k — 1 andg < 2k — 1. LetP(F, 4) be
the set of directed paths if, ;, connecting(1, 1) to (p, ¢). By labelling each horizontal
arrow inF, , with a 2 and each vertical arrow ifj, , with an 1 we easily derive that there
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A®B=1{r(1,1,1,1,213]+[436,3,3,3.3]),7(11,1,1,2,2,1,3] +[4,3,6,6,3,3,3]),
7([1,1,1,2,1,1,3] +[4,3,6,6,6,3,3]), 7([1,1,1,2,1,3,3] +[4, 3,6,6,6,6, 3]),
7([1,1,2,2,2,1,3]+1[4,3,3,6,3,3,3]),7([1,1,2,2,1,1,3] +[4,3,3,6,6,3,3]),

7([1,1,2,2,1,3,3]+[4,3,3,6,6,6,3]),7([1,1,2,1,1,1,3] +[4,3,3,3,6,3, 3]),

7([1,2,2,2,1,3,3]+[4,4,3,6,6,6,3]),7([1,2,2,1,1,1,3] +[4,4,3,3,6,3,3)),
7([1,2,2,1,1,3,3]+[4,4,3,3,6,6,3]),7([1,2,2,1,3,3,3] +[4,4,3,3,3,6,3]),

) )
) )
) )
7(11,1,2,1,1,3,3]+[4,3,3,3,6,6,3)), 7((1, 1,2, 1,3,3,3] + 4,3, 3,3, 3,6, 3]),
) )
) )
) )
(11,2,1,1,1,1,3]+[4,4,4,3,6,3,3)), 7(11. 2. 1,1, 1,3, 3] + [4,4,4,3, 6,6, 3]),

( (
( (
( (
( (
(11,2,2,2,2,1,31+(4,4,3,6,3,3,31), 7((1,2.2,2,1, 1, 3] + [4,4, 3,6, 6,3, 3]),
( (
( (
( (
( (

7([4,2,1,1,3,3,3] +[4,4,4,3,3,6,3]), 7([1,2,1,3,3,3,3] +[4,4,4,4,3,6,3,])}
={(5,4.7,4,5,4,6]), 7((5,.4.7.8.,5,4,6]), 7([5.4.7,8,7,4,6]), 7([5,4,7,8,7,9,6]),
7((5.4,5,8,5,4,6]),7(5,4,5,8,7,4,6]),7([5,4,5,8,7,9,6]), ([5.4,5.4, 7, 4, 6]),
7([5,4,5,5,7,9,6]), 7([5,4,5,4,6,9,6]),7([5,6,5,8,5,4,6]), 7([5,6,5,8,7, 4, 6]),
7((5,6,5,8,7,9,6]),7([5,6,5,4,7,4,6]), 7([5.6,5.4,7,9,6]), 7 (
( )

([5.6,5,4,7,4,6]), 7

)

[5,6,5,4,7,9,6]),

(5.6.,5,4,7,9,6]), 7([5.5,6,4,6,9,6]), 7([5,6,5,7,6,9, 6])}

={[5.4,7,4,61,[5,4,8,4,61,[5,4,9,6],[5,8,4,61,[5,9, 6, [5,6,4, 7,4, 6], [5,6,4,9, 6],
[5,6,4,9,6],[5,6,5,9, 6]}

Fig. 1. An example of the interleaving of the typical sequentes([1,2,1,3] andB = [4, 3, 6, 3].

exists a bijection betweeR(F, ,) and the set of all sequences of 1's and 2's that have
lengthp — 1+ ¢ — 1 and exactlyp — 1 1's. One can easily bouri®(F, ;)| by observing

that there are2-1+7—1 sequences consisting of 1’s and 2's and with lengthl+ p — 1,
thus|P(Fp.q)| < 27~ br=1 < 28D As we mentioned above, the constructioro® B
requires the generation of all paths7h each corresponding to a Suli+ B whereA e
E(A), B € £(B) and, A ~ B. The result follows as each such _path can be generated in
O (k) steps and the compression of the corresponding sequeneeB can be done in
O(k) steps. O

As we did in [46], we will use bold letters to denote sequences of sequences of integers
and we will assume that they are indexed starting from O.

The interleaving of two sequences of typical sequenge= [Ao, ..., Ay,] andB =
[Bo, ..., By] wherew = |A| = |B| is defined as follows:

AQB={[Co,....CulICi € A; ® Bi, i =0,...,w}.
The following lemma is a direct consequence of Lemma 5 and the definitiar§oB.
Lemma 6. Let A and B be two sequences of sequences of integef®,in ., k}, with

A|=|B| =w + 1. Then|A ® B| < 24*k=D®@+D) and A ® B can be computed i (k -
24(k—1)(w+1)) Steps.



32 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25-49

(1,1) 2 (2,1) > (2,1) > (4,1) 1+4=:>2+4=6—>1—+—4=5—>3+4=7
2 2 2 2 ’

(1,2) 2 (2,2) 2 (3,2) > (4,2) 1+3=4——>243=5——>1+3=4—>3+3=6
2 2 2 2 -

q

(1,3) 2 (2,3) 2 (3,3) =2 (4,3) 1+6:7—>2+6::>1+6:7—>3+6:9

2 2 2 2
RN
(1,4) 2 (2,4) 2 (3,4) > (4,4) 1+3=4*>2+3=5:1+3::>3+3:E

...... 7

Fig. 2. An example off4 4 and its labeling whemt =[1, 2, 1, 3] and B = [4, 3, 6, 3]. The double-lined arrows
define the two paths in that are able to generate the typical seq&®:d, 6].

We will now introduce some more notation using the geometrical interpretation
of A ® B. Given two sequence®1 and B, where B; ~ B> we define function
vg B, {1, ..., |B1l — 1} — {1, 2}, vp, 5,(j) = 1 if B1(j) # B1(j + 1) andv(j) = 2 if
B1(j) = B1(j + 1) (vB,,B,(j) indicates which one oB1, B, changes value between in-
dexesj andj + 1). When the sequencéy and B, are obvious, we simply denotg, 5,
by v.

As an example, we considdt, =[1,2,2,2,2,1,3] and B> =[4,4,3,6, 3,3, 3]. We
have

v =1, v@=2 vA=2 vd=2 vB=1 v6)=1

(Notice that in Fig. 2, these values correspond to the labels of the edges in the path
(1,1),(2,1),(2,2),(2,3),2,49,3,4,(4,4) of Fy4.)

The following lemma will be useful in order to adapt some auxiliary results of [11] to
our definition ofA ® B.

Lemma 7. For any two dense sequencas and A, of equal length there exists a typical
sequence € (A1) ® t(Az) such thatS < (A1 + A2).

Proof. In other words, we have to prove that there exist two sequeﬁlgesf(r(Al)) and
Ay € £(t(A2)) such thatd, ~ Ay, andt (A1 + A2) < (A1 + Ap). We setC = A1 + Aa
andr = |A4|. Fori =1, 2, we set up a function : {1, ...,r — 1} — {0, 1} such that, for
Ji=1. . r=114()=i-1if A1(j)+A2(j + 1) < A1(j +1) + A2(j) ands; (j) =2—i
otherwise. Notice thatj = 1,...,r — 1, 11(j) + 2(j) = 1. Fori = 1,2, we construct
a sequenced’ from A; by settingAf(2j — 1) = A;(j) and Af(2j) = A;(j + t:(j)),
j=1,...,|A|. Notice that the density of; and the construction o} implies thatA? is
also dense fof = 1,2. Moreover,A; E A%, i = 1,2, hencer (A7) =1(A;), i =1,2. Let
C* = A] + A5 and notice that, by the construction 4f we have that forany =1,.. .,
r—1,
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C*(2j) =min{A1(j) + A2(j + D), A1(j + D) + A2())}
=m|n{ 12/ —D+A52j +1),A72j + D + A5(2j — 1)}
max{A$(2j — 1) + A5(2j — 1), AL(2j + 1) + A3(2j + D)
= maX{Al(J) + A2(j), A1 + 1D + A2(j + D}
=max{C(j),C(j +D}. (1)

We now defineC®! = [c1, ¢}, c2, ch, .. Ler-1,€ .ol wherev g ¢j = A1(j) +
A2(j) = C(j) = C*(2j — 1) andV, 1< ;< ¢} =maxc;, c;+1}. Notice thatC C C*and,
from (1), C®t < C*. ThereforeC* < C and thUS‘E(C*) < 7(C). Notice also that

Vici2Vigi<r AT(D#A;(G+D = A3 () #A5,(+D. )

Apply now the following operation o} and A5 as long as this is possible: if for some

5 IS <AL AT =AY +D,i=12, then setA’ < AF(L,j) - AT(j + 2,r),
i=12(n other words, we apply operation (i) in parallel as long as it removes elements
of the same ranks in] andA3). Clearly, (2) is invariant under this operation. Moreover, it
returns two sequences i =1,2, where|A1| = |A»| and the inverse of (2) holds as well.
ThereforeA; ~ A,. Clearly,A; Af,i=12,and asA} is dense we ged; = =E(1(AY)),

i =1,2. Recall that (A]) = 7 (A; )and thereforel; € S(r(A )), i =1, 2. Notice now that
A1+ ArC A7+ A3. We conclude thaf = 1(A1+A2) = (C*) and the result follows. O

Lemma8. LetA, B be two typical sequences and &be a sequence such thatc A® B.
Suppose also that’, B” are two typical sequence such thitx A’ andB < B’. Then there
exists a sequend®’ € A’ ® B’ such thatC’ < C.

Proof. As C € A ® B, there exist three integer sequences of equal lefigth* and B*
such thatC =t (Y), A* =&£(A), B*=&(B), Y = A* + B* and A* ~ B*. From A* =
E£(A), we have that (A*) = 7(A) and, asA’ < A, [46, Lemma 2.8] implies thal’ < A*.
Similarly, we get thatB’ < B*. From [46, Lemma 2.9], there exist sequendé&se £(A")
and B”* € £(B’) such thatr (A™* + B’*) < 7(Y) = C. We setC’ = t(A™* + B’*). Notice
now thatA’* and B’* are both dense. Therefore, Lemma 7 can be applied aad -
T(A™ + B™*) there exists al ¢ 1(A*) @ 1(B*)=t(A) ® t(B’) suchthatC’ < S. O

The following lemma is a direct consequence of Lemma 8.

Lemma 9. Let A, B be two sequences of typical sequences wiwefe= |B| and C a
sequence of typical sequences such that A X)B. Suppose also tha’, B’ are two
typical sequence such that< A’ andB < B’. Then there exists a sequertec A’ ® B’
such thatC < C'.

The following lemma is just a special case of Lemma 3.14 in [11].
Lemma 10. Let A and B be two integer sequences with the same length. Then there exists

two equal length integer sequencése £(x(A)), and B’ € £(z(B)), whereA’ + B’ <
A+ B.
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Lemma 11. Let A, B, C be sequences such thiat| = |B| and C = A + B. Then there
exists a sequend®’ € t(A) ® t(B) such thatr (C’) < 7(C).

Proof. From Lemma 10 and [46, Lemma 2.8], there exist two equal length integer se-
quencesA’ € £(t(A)) and B’ € £(r(B)) such thatt (A’ + B') < t(A + B) = 7(C).
Notice now thatA’ and B’ are dense, and, from Lemma 7, there exists a typical sequence
C' et(A) ® 1(B’) such thatC’ < 1 (A’ + B’) and the result follows. O

4. A decision algorithm for cutwidth

In this section, we give for any pair of integer constants, an algorithm that, given
a graphG with maximum degree! and a nice tree decompositigX, U) of width at
mostw, decides whetheG has cutwidth at most. We assume that the reader is familiar
with the concept of arX -characteristic of a layout as well as the sequence of sequences
Qg defined in Section 2.2 of [46] (for an example of the sequépge see Fig. 3).

Assume from now on that we have a gra@hand that(X, U) is a nice tree decompo-
sition of G, with width at mostw. A setFS(i) of X;-characteristics of vertex orderings of
the graphG; with cutwidth at mosk is called afull set of characteristics for nodeif for
each vertex ordering of G; with cutwidth at mosk, there is a vertex ordering of G;
such thatCx, (G;, 1) < Cx,(G;,1) andCx, (G;, ") € FS(i), i.e., theX;-characteristic of
isin FS().

The following bound on the number of characteristics of a vertex ordering correspond
to Lemma 3.1 of [46].

Lemma 12. Let G be a graph and le{X, U) be a nice tree decomposition 6f with
width at mostw. Let X;, i € V(U), be some node @X, U). The number of different;-
characteristics of all possible vertex orderings@f with cutwidth at mosk, is bounded
by (w+1)!- (%22k)11)+l.

The following lemma, that can be derived directly from the definitions, establishes the
validity of the concept of full set of characteristics for checking the cutwidth of a graph.

b v&
a b c d e f g9 h i
4 6 8 10 8 6 6 4

c

QG,Z = [[0]7 [4]7 [6]7 [8]7 [10]’ [8]7 [6}7 [6]7 [4]7 [0”

d

Fig. 3. A graphG, a vertex ordering of G, and the sequence of sequenggs;.
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Algorithm Join-Node.

Input A full set of characteristic§S(j1) for j4 and
a full set of characteristidBS(j») for jo.
Output A full set of characteristicE§S(i) for i.

Initialize FS(i) = @.

Forany pair ofX ;, -characteristicgr, A;) € FS(j), h =1,2,do
ForanyA e A1 ® A, do

If max(r, A) < k, setFS(i) < FS(i) U {(x, A)}.

OutputFS(i).

End.

Fig. 4. The algorithm to compute a full set of characteristics for a join node.

QR wNE

Lemma 13. A full set of characteristics for a noddés non-empty if and only if the cutwidth
of G; is at mostk. If some full set of characteristics foris non-empty, then any full set of
characteristics fo G; is non-empty.

An important consequence of Lemma 13 is that the cutwidty & at mostk, if and
only if any full set of characteristics for the rostis non-empty (recall thaG, = G).
In [46] there are given algorithms able to construct a full set of characteristics fosart
or aforgetnode when a full set of characteristics for the unique childisfgiven. These
algorithms, as well as the way to obtain a full set of characteristics $taranode, can be
found in [46]. In what follows, we will show how to compute a full set of characteristics
for ajoin nodei when two full set of characteristics for its childrgn j» are given.

We consider now the case that nads ajoin node andj,, » = 1, 2, are the two children
of i in U. We observe tha¥V (G ;) N V(Gj,) = X;, Gj, U G}, = G; and we recall that
E(Gj,[Xi) N E(G ;,[X;]) = 0. Given a full set of characteristidsS(j1) for ji1 and a full
set of characteristicg’;, for j», we show that the algorithrdoin-Node, given in Fig. 4,
correctly computes a full set of characteristis(i) for .

We need the following lemma that relates the interleaving of sequences with particular
types of layouts.

Lemma 14. Let G, G1 and G2 be graphs whergs1 U Go = G and G1 N G2 = (S, 0).
Let alsol1, I> be vertex orderings of;1 and G, respectively wheré [S] = I2[S] = A. If
Cs(Gi, ;) = (A, A), i =1,2, then, for anyA € A1 Q) Ay, there exists a vertex orderirig
of G wherel[V(G)]=1;,i=12,andCs(G,]) = (A, A).

Proof. We claim that the orderingin question is constructed by the proceduCesastruct-
Join-Ordering andJoin-Orderings given in Fig. 5. Figure 6 gives an example of the opera-
tion of the procedurdoin-Orderings as well as for the proof that follows.

By construction/[V (G;)] =1;, i = 1, 2. We have to prove thats(G,[) = (A, A). We
setG; = (V(G), E(G;)),i = 1,2, and we observe thais a vertex ordering for botly;,
i =12, where|l|=r1+r2—p. Letl =[vi,...,v,] andr = [vyy, ..., v, ]. We use the
notations

0i=Qg:1(0)- - - Qgs (), i=12, and  0=Qg(0 - - -Qg,.(r)
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Procedure Construct-Join-Ordering(G1, G2, S, 1,2, A).

Input Two graphsG, G, and a sefS whereG1 N G2 = (S, ¥).

Two vertex ordering$;, andl, of G1 andGy, wherel1[S]=I2[S] = .

A sequence of typical sequencks= A1 @ Ao where(, A;) =Com(G;,1;, S),i=1,2.
Output A vertex ordering of G whereCg(G, 1) = (1, A).

1: Assume thatfor = 1,2, letl; = [v, ..., Vi
2. Let

A= [vjll,...,vi%] = [ka,...,vig] wherep = |S|.

3 Fori=1,2,set
K6:0 and K;)_‘_]_:r,'-i-l.

: Fori=1,2,setQ; =Qg, 1;(0) - - - Qg 1; (ri)-
5. Foranyh =0,..., p, set

N

B =ne}+1ut,—1] and =02 +1.?, —1];
h 1 1 F 2 2 .
01 = 0a[rj. i1 — 1] and Q3 = Qo[xj. 7y —1:
w = Join-Orderings(If, 14, 0%, 04, A(h)).
6 Set!=w®- [A(D]-wh [A@]-w?- - - [A(p = DI wP L [A(p)] - wP.

7: Output!.
8: End.

Procedure Join-Orderings(l1, I, Q1, Q2. A).

Input Two orderingdy, I, two sequence@1, Q> where|Q;|=|l;| + 1,1, 2, and
asequencd € 7(Q1) @ 1(Q2).
Output An ordering!/.

1: ComputeBy, By so thatA = t(B1 + Bp), whereB1 ~ By, andB; € £(7(Q;)),i =1,2.
2: Setw = |B1| =|B>|, and denotea:vBl’Bz. L L

3 Forj=1....w—1setm;=ly;Bo, Bz, () BFo,; Bp, )+ -1l
4: Outputmq - - -my_1.

5: End.

Fig. 5. ProcedureSonstruct-Join-Ordering andJoin-Orderings.

(recall that for the sequence€s 01, andQ, we insisted that their first elements are indexed
by 0). We also seQ" = Q[ky, kp1 — 11 and 0" = Q;[kp, k41 — 1] for i = 1,2 and
h=0,..., p (wherexo =0 andk;1 =r+1). Our target is to prove th&lb<,<, (0" =
A(h).

From the fact thaG1 andG; do not have edges in common we get that

Yo<n<, OF+0h=0" 3)

We may assume that for any=0, ..., p, the computation of, is based on a paiB{’, Bé’
where

A(h) =t(B] + B}),
h h
Bl ~ Bz,

Bl az(0l), i=12 (4)

i
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h
018 g By ]
I h (7 a76607
r(Qi):[Ggl] Qi:[68766979674738]1

h 2.8 52
leQ’i( )vﬂQg( )1

h h
my mg

B:{l:[ﬁmi] |=[e0eee0eeeeocceeeoe:]

ol i) o @)
1 1 Ql

ini 3

Q’i:[6666668766979999999999967473&1
mg mg
— ——~—

wh:[-OOOOO.......OOOOOOOOOOO.......-]

— —_—
h h h
my mg my

@g=[15236888888885665625223777777]77

Bg:[l |=[fo0oo0o0o00000000000O0:]
= [ —

h h h
my mg my

T} =11827 (Qh=[15236856656252237
1 1 1 0

Fig. 6. An example of the proof of Lemma 14.

Notice that the result follows by [46, Lemma 2.3], (3), (4), and (5) bellow.

Vic12Yo<ns, OF 2B 5)

It now remains to prove the correctness of (5). We will examine only the case whete
(the caseé = 2 is symmetric). Letnﬁ, et mhw_1 be the vertex orderings produced during
step3 of Join-Orderings(I?, 12, O, 0% A(h)). Let

g =|mh| 4+, 1<j<w-1

(assume thay) = 0 andw = |B}| = |B4). The result follows from [46, Lemma 2.3]
taking into account that

Vitcj<w-1 Oild) 1 +14} +1]2[B{()), Bi(j +D]. (6)
Towards proving (6) we make first some observations. We will cglijzof a vertex order-
ing the “space” between two consecutive vertices, the “space” on the left of the first vertex,
and the “space” on the right of the last vertex. Clearly, each gap of a vertex ordering is
crossed by the edges with endpoints on different sides. Notic@fﬂ) corresponds to
the number of edges that cross the “gap! tifat is on the left of vertew” (1) and that for
anyj,1<j<w-—1,andany, 1<t < |m?|, 0%(g"_, +1t+1) corresponds to the num-
ber of edges that cross the “gap” on the right of]venté(q;?fl + t). Moreover, for any
Jyl<j<w—-1, Qﬁ(qj‘_l + 1) corresponds to the number of edges that cross the “gap”
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on the left of vertexn” (1) and for anyr, 1<t < |m B Qh (g" joi Tt 1) corresponds to
the number of edges that cross the “gap” on the rlght of veﬁ%o() Let j be an integer
1I<j<w—-1.

Let

V=Vph ph-.
B7,B;

We will consider two cases depending on whettBr(j) = Bf(j + 1) or B} (j) #
BI(j+1).

If v(j) =1, thenm; is a copy of a part of the linear orderitigof G1. As the relative
position of the vertices o7, are the same in as in/; and E(G}) = E(G1), the edges
crossing the “gaps” of delimiting the vertices ofin; are the same as the edges crossing
the “gaps” delimiting the same verticeslin Therefore, the sequence of their cardinalities

; 1, 1,
is QQ[ﬂQQ B (1), By B (1) + 1)]. Therefore,
v(H=1 = 0Offqj-1+14q}+1]
= 0[Boy (B (1), By (B4 () + D). )
If v(j) =2, thenm; is a copy of a part of the linear orderifgof G». We define

left = max{t | the “gap” corresponding t@’{(t) is on the left ofm ; (1) and has the
vertex on its left (if exists) id; and the vertex on its right not Erj}

fright = min{t | the “gap” corresponding t@’{(t) is on the right ofn ; (Jm ;|) and
has the vertex on its left not ia and the vertex on its right
(if exists) inly}.
Notice thatfiert < g;—1+ 1 andg; + 1 < tight. Observe that the vertices in" that are de-
limited by “gaps” corresponding t@ [t1eft, tright] are all vertices not itV (G1). Hence they
are all isolated vertices @}. Recall that if we remove frorhall the vertices iV (G») —
what remains i¢;. This operatlon replaces the “gaps’ correspondlngf@eﬁ, tright] Wlth
only one “gap” corresponding to tIfth (sj)th gap on" where
§ =By (/-

However, the fact that the relative position of the vertice€ ois the same iid as in/; and

the fact that all the removed vertices are isolated makes the crossing edges of the replaced
“gaps” to be exactly the same as the crossing edges of the resulting “gap”. Resuming, we
have the following.

V=2 = Vg 010 = 01(Bgy (B (D)) 8)
From [46, Lemma 2.6], we have that
w(Q4[B oy (B (D), By (B () +1)])
=[01(Bgs (B, (1)) Q1(Boy (B (1) +1))] ©)
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and applying [46, Lemma 2.7(1)]
01 (B oy (Byy (1)) = BL(), (10)
01(Bgy (Byy (U +1)) =Bi(j +1). (11)

If v(j) =1 then [46, Lemma 2.7(2)] mphq&‘l(] +1)=p,;(j) +1 and therefore (11)
can be written B

01(Bgy (Byy () +1)) = Bi(j +1). (12)
From (7), (9), (10), and (12) we conclude that
Viagi<w-tag=t  T(Q1[gj-1+1.q] + 1]) =[B(j). Bi(j + D] (13)

which clearly yields (6) for the cases whergj) =
If v(j) =2 then [46, Lemma 2.7(3)] |mpI|e,S (j +1)= ﬂBh (j) and therefore (10)
and (11) give

01(By (B (1) =BL()=Bi(+D (14)
and (14) combined with (8), gives (6) for the cases whe& =2. O

Lemma 15. Let G, G1 and G2 be graphs wheres1 U G2 = G and G1 N G2 = (S, 0).

Let also! be a vertex ordering ofG. We denotd; = I[V(G;)], Cs(G,I) = (x,A),

and Cs(G;, ;) = (A, A;), i =1,2. Then there exists a sequence of typical sequences
A e A1 ®A; such thatA <A,

Proof. Letr; =|/;|,i =1,2,andp = |A| = |S]. Asin the proof of Lemma 14, we s€t =
(V(G), E(G))),i=1,2, and we observe thatis a vertex ordering for boty?, i =1, 2,
where|l| = r1 + r, — p. We use the notationg; = QG* 1(0) - QG* (r),i=1,2,and
0=Qg,(0) - - -Qg,1(r). As E(G1) N E(G2) = ¥ and E(Gl) U E(Gp) = E(G) we
get,

0= 01+ 0>. (15)
We denoteQ; = Qg, ;,(0) - --- - Qg, 1(r), i = 1,2, and we observe that the facts that
V(G;) S V(GY),i=1,2,andE(G;) = E(G}), i = 1,2, imply that,

Viz12 Qi C 0. (16)
We assume that if = [v1, ..., v, ], theni = [y, ..., v, ] and ifl; = [uf.'L, s uii] then
that = [’ ,,...,u”,] 1—1 2. We set

My
Q" = Qlkp. kg1 — 11, Q?=QM}ML¢—ﬂ,i=LZ and
0" = Qilkn, kns1—1, i=1,2andh=0,...

(Wherexg = /LO = /LO =0andk,;1= /Lh+1 “h+1 =r+ 1) From the view point of these
new notations, (15) and (16) can be rewritten as follows
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Vio<h<, Q"= 04+ 05, (17)
Viosh<p Vie12 QOF C O (18)

Notice also that

Vic12 Vho<h<, Ai(h) =7(0P), (19)
Vio<n<p A =1(0"), (20)
(18) and (19), implies that

Vic12 VYio<h<, Ai(h) =t(0F). (21)

Our target is to prove that far =0, ..., p there exists a typical sequendein A1 (h) ®
A2(h) such thatd” < A(h). This follows from (17), (20), and (21) if, fot =0, ..., p, we
apply Lemma 11 fop", 0% andQ4. O

Lemma 16. If i is a join node with childrery,, h =1, 2, and, forh = 1, 2, FS(j) is a full
set of characteristics foy,. Then, the set K$) constructed by the algorithgoin-Node is
a full set of characteristics for.

Proof. We will prove first that-S(i) is a set of characteristics. To avoid overloaded expres-
sions, whenever we refer to a characteristic, we will insist that its width is boundéd by
For this, it is sufficient to show that for arfy, A) € FS(i), there exists a vertex orderiiig
of G such thatCy, (G, 1) = (A, A).

By the algorithmJoin Node we can assume that there exist two pasA;), h =1, 2,
where

(A, An) € FS(jn), h=1,2, (22)

AecA; ® As. (23)

As FS(jn), h =1, 2, are both sets of characteristics (22) implies that there exist two order-
ings!y, I of GX_/1 and GX_/.2 respectively such that

A=N0[X;]=Db[X}], (24)

A Ap) =Cx;, (Gp,lp), =12 (25)
Using now (23)—(25), we can apply Lemma 14 and conclude that there exists a vertex
ordering! of G; such thaiCx, (G,1) = (A, A). Therefore FS(i) is a set of characteristics.

It remains now to prove thdS(i) is a full set of characteristics. To prove this we have
to show that, for any vertex orderirigpf G; there exists a vertex orderiri§y of G; such
thathl. (Gy, l*) e FS(i) andCXl. (G;, D) < CX,- (Gy, l*). ~

Letl, =I[V(G;)], h=1,2, and se(r,A,) = ijh (Gj,,In), h=1,2, and(x, A) =
Cx,(G;,1). From Lemma 15, there exist a typical sequeAcguch that

AcA1RA,, (26)

O, A) < (1, A). (27)
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Algorithm Check-Cutwidth(G, X, k).
Input A graphG, a tree decompositiok of G with width w, and an integek.
Output Whether cutwidthG) < k.

Assume that the nodes dghare topologically sorted, and th&t=[X4, ..., Xr].

1: For anyi, 1<i < r, compute a full set ok; -characteristicg; for G;
settingF; = {[x], [[0][O]]} whenX; is a start node and; = {x};
using F; whenX; is an introduce or a forget node, relatively to somg j < i;
using Fj; andFj, if X; is the join ofX ;, andX ,.

2: OutputF, # 9.

3: End.

Fig. 7. AlgorithmCheck-Cutwidth.

Recall now that, foh = 1, 2, thatFS(jj,) is a full set of characteristics fgy, and therefore,
for h =1, 2, there exists a vertex orderifigof G ;, where
Cx,, (G 1) € FSU). (28)
Cth (G]h ’ ll*) < Cth (Gjh ’ lh) (29)
Let (A, A}) = Cx,, (Gj,,1}), h=1,2,and (28) and (29) can be rewritten as follows.

(A, A}) €FS(in), h=12, (30)
(A AY) <A, h=12 (31)
From (26), (31), and applying Lemma 9, there exists a charactefist&*) such that

A* e ATRAS, (32)
(h, A%) < (1, A). (33)

Notice now that, from (32), and Lemma 14, there exists a vertex ordEriolgG such that
Cx,(G;,I*) = (A, A¥). The fact thatCy, (G;, [*) € FS(i) follows from (30), (32), and the
algorithmJoin-Node. Finally, (27), and (33) imply tha€y, (G;,*) = (A, A*) < (A A) =
Cx,(G;, 1) and this completes the proof of the lemmaw

We can now put together the results on this section and those of Section 3 of [46] to
define the algorithnCutwidth, as given in Fig. 7.

Theorem 17. The algorithmCheck-Cutwidth, given a graphG with » vertices and a tree
decompositiofiX, U) of G of O (n) nodes and width at most, checks whether there exists
an vertex ordering o¥ (G) of cutwidth at most in O (wk - ((w + 1)!)2(§)2w2k-8w+D)
steps.

Proof. From Lemma 1 there exists an algorithm thatiin) steps transforméX, U) to a
nice tree decompositiofX, U, r). We have to determine the cost of computkgi) for
all the nodes ot/. Leti be such a node.

If i is astartnode then the computation BS(i) heedsO (1) steps.
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If i is anintroducenode then Lemma 12 bounds the number of repetitions ofXtdp
the algorithmintroduce-Node by (w + l)!(:—§22")“’+1. Moreover, ste8 involves at most
w repetitions and step at most 2 — 1 calls of the procedurms [46, Lemma 2.4]. The
procedurens is dominated by its 2nd step which requir@$w?k) steps:O (w) for each
of the edges inserted, at mast+ 1 for the sequences @&’ whose elements should be
incremented, and at mosk 2- 1 for the elements of each one of these sequences [46,
Lemma 2.4]. Similarly, calculating m&&’) requires at mostw + 1)(2k — 1) = O (wk)
steps. Therefore, computirgS(i) requiresO (w3k? - (w + 1)!(82%)+1) steps.

If i is aforgetnode then Lemma 12 bounds the number of repetitions ofstéghe
algorithmForget-Node by (w + 1)!1(§2%)»+1. As the procedur®el needsO (wk) steps,
computingFS(i) requiresO (wk - (w + 1)!(§2%)»+1) steps.

If i is ajoin node then Lemma 12 bounds the number of repetitions olZbéthe algo-
rithm Join-Node by ((w + 1)!(§2%)»+1)2. From Lemma 6, the computation 8% @ A2
costsO (k - 24k=Dw+D)y steps and

|A1®A2| < 24(k—1)(w+1) < 24k(w+l).

As step4 costsO (wk) steps, we conclude that computiR§() requires

2(8 2w+2
0<wk 2% D (4 1)) (522’<> )

2 8 2w+2
= O(wk. ((w + 1)!) (é) 2k(8w+8)>
steps.

Notice that according to the analysis above, the prevailing time is the one gfithe
nodes. AdJ containsO (n) nodes, the result follows. O

Let us refer as theCutwidth algorithm to the algorithm that for ang = 1,...,
| (w+1)d logn | checks whether cutwidtler) < & by calling the algorithn€heck-Cutwidth
as a subroutine. From Corollary 4 and Theorem 17, if w&set{w + 1)d logn, we have
the following result.

Theorem 18. The algorithmCutwidth, given a graphG with n vertices of degree no more
thand and a tree decompositiqiX, U) of G of O (n) nodes and width at most, computes
the cutwidth ofG in k in O (w3d? - log?n - (w + 1)!)2(%)2%8"(’”“)2) steps.

5. Computing a vertex ordering

In this section we show how the algoritheck-Cutwidth given in Fig. 7 can be mod-
ified in a way that, in the case that the graph has cutwidihalso construct a vertex order-
ing with cutwidthk, we will refer to such modification as the algorithrayout-Cutwidth.

Suppose now that, given a tree decompositi®nl) = (X; | i € V(U), U) of G with
width bounded byw, after running the algorithm described in the previous subsections we
know that a graplG has cutwidth at most, i.e., the computed s&S(r) is not empty. We
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will now describe a method to construct a vertex ordering afith cutwidth at mosk. By
observing the flow of the algorithm, it follows that we can assign to each hofiex, U),
a characteristi€);, A;) witness on nodg, in a bottom—up fashion:

o If i is astart node then(;, A;) = ([x], [[0], [O]]) is the unique characteristic of the
vertex ordering consisting of the unique vertein X;.

e If i is anintroducenode then();, A;) is one of the characteristics constructed after the
application of the algorithnmtroduce-Node on characteristi¢a ;, A ;) wherej is the
unique child ofi.

o If i is aforgetnode then(i;, A;) is one of the characteristics constructed after the
application of the algorithnforget-Node on characteristiqi ;, A;) wherej is the
unique child ofi.

o If i is ajoin node then(};, A;) is one of the characteristics constructed after the ap-
plication of the algorithndoin-Node on characteristicé. ;,, A ;) and(i j,, A ;,) where
j1 and j» are the children of.

e (A, A,) is one of the characteristics FS(r).

We call the collectionV = ((A;, A;),i € V(U)), witnesstree. Notice that if at each
time a new characteristic is computed, we set up a pointer to the characteristic it was
constructed from, we obviously have a suitable structure for constructing also a witness
tree inO(|V (U)]) steps. Let us show now how to compute, using the information/of
a vertex ordering oV (G,) with cutwidth < k. Towards this, we will compute, for each
nodei € V(U) a vertex orderind; of V(G;) such thatCx, (G;, ;) = (A;,A;). The case
wherei is a start node is obvious. The cases whidseeither an insert or a forget node are
omitted as they are presented in detail in Section 4 of [46]. In each of these cases the new
vertex ordering; can be constructed i@ (wk) steps.

Assume now that is ajoin node with childrenj; and j». Let alsol;,, h = 1,2, be
two vertex orderings ot ,, h = 1, 2, respectively, such thaty, (G,.l;,) = (xj,,Aj,),
h =1,2. We show how to construct a vertex orderipguch thaiCx, (G;, ;) = (A;, A;).

Notice that, from the algorithmoin-Node, .A4; is a member ofA;; @ A;,. Recall now
that, from Lemma 14, the procedu@®nstruct-Join-Ordering(Gj,, G j,, X;, 1j;,1j,, A) is
able to construct such a vertex ordering. Notice that if, Aot 1,2, we maintain for
eachv € X, a pointer indicating the position of the same vertex jjn the procedure
Construct-Join-Ordering(G j;, G j,, X;,1j;,1j,, A) will call the procedureloin-Orderings
| X;| times. If now, fork = 1, 2, we additionally maintain a data structure associating each
of the “gaps” ofi, to the limits of its corresponding sequence of “gaps? in we can
implement ste8 of the procedurdoin-Orderings in O (k) steps. Resuming, we have that
the construction of; costsO (kw) steps.

Therefore, the computation of a vertex orderipgvhereCy, (G, 1) = (A, A;,), can
be done inO (nkw) steps. Therefore, we have the following analogue of Theorem 17.

Theorem 19. Given a graphG with n vertices and a tree decompositig¥, U) of G
of O(n) nodes and width at most, the algorithmLayout-Cutwidth checks whether there
exists a vertex ordering of (G) of cutwidth at mosk and, if this is the case, outputs a
vertex ordering o (G) of cutwidth at most in O (wk - (w + 1))?(§)2w 2k-8w+1)) steps.
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As k < (w + 1)d logn, we obtain that the algorith@utwidth can be modified to output
an optimal vertex ordering with an additional calltayout-Cutwidth once the cutwidth
of G has been computed. We refer to this modification as the algoriffnyiLayout-
Cutwidth. Theorem 18, can now be rewritten as follows.

Theorem 20. Given a graphG with n vertices of degree no more thahand a tree
decomposition X, U) of G with O(n) nodes and width at most, the algorithmMin-
Layout-Cutwidth outputs a vertex ordering of (G) of minimum cutwidth in0 (w3d4? -

log?n - (w + 1)!)2(§)an8d(w+1)2) steps.

According to the main result in [5], a minimum width tree decomposition of any partial
w-tree can be constructed M(w?® 20 ) steps (see also [31,34,38]). This algorithm
can serve as a preprocessing step to the algotitiyout-Cutwidth of Theorem 20 that with
input a partialw-tree G with vertices of degree at most outputs a vertex ordering @
of minimum cutwidth.

6. Computing the pathwidth of bounded degree partial w-trees

We will now show how to use the algorithms of the previous sections in order to com-
pute the pathwidth of a partial-tree with bounded maximum degree.

The definition of treewidth is extended to hypergraphs by replacing edges with hy-
peredges. We define cutwidth for hypergraphs by extending the definitidh($®¥ for
S C V(G) such thatE (S) contains all the hyperedges with at least one endpoifit We
can prove the following extension of 19.

Theorem 21. Given a hypergraplé; with n vertices and a tree decompositi¢ki, U) of G

of O(n) nodes and width at most, the algorithmLayout-Cutwidth checks whether there
exists a vertex ordering df (G) of cutwidth at mosk and, if this is the case, outputs a
vertex ordering o (G) of cutwidth at most in O (wk - (w + 1))?(§)2w 2k-8w+1)) steps.

Proof. By extending Lemma 1 for hypergraphs we assume that, r) is a nice tree-
decomposition o6;. To prove the theorem, it is sufficient to observe that all the algorithms

of the previous sections and [46] can be straightforwardly generalized to hypergraphs with
the same time costs. In particular, the algorithifasget-Node andJoin-Node are exactly

the same as they involve only operations on sequences of integers. The only changes re-
quired, concern the procedure, described in [46], and are the following two:

1. The setN should now represent the séf1, ..., U,} where{U, U{u} | 1<t <o}
are the hyperedges @f; that containu as endpoint. For an¥/;, 1 <t < o, we set upj,|
(j;) as the smallest (biggest) of the indices corresponding to the verti¢gésiofi. (notice
that in the case wher@ is a graphj! = ;).

Notice that none of the hyperedges®@fcan have size bigger than+ 1, as they have
all to fit in some node of the tree decomposition. Therefdfrd < w + 1, 1<t < o.
Moreover, we can assume that no vertex is an endpoint of more thhyp2redges as in
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such a case the cutwidth 6f should be greater than Thereforeg < 2k. These two facts
imply that computingjt' andj/ for 1<t < o can be done ir0 (kw?) steps.

2. In step2 of Ins, cases (i) and (ii) should now be:

() If ji <jthense® < A'[0, j} —1]- (A'[j}, j1+ 1) -Alj +1, 0 +1].
(i) If ji > j+1thense® < A'[0,j]1- (A'[j +1, i1+ 1) -A[jl +1,p+1].
(i) If j) <j <j}thense® < A'[0, ji —1]- (A'[j} + 1, ji1+ 1) -A'[jl +1,p +1].

The third case above examines the case where the added hyperedge contains vertices re-
siding in both sides of the insertion point. Notice that the time cost of the modifie®step

is the same as the time cost of the old one. Finally, the complexitysafoes not change

with this small modification as the time required to compute the g‘#irj‘i for each of the
inserted hyperedges does not prevail the time cost of the second step.

We call a graphtrunkedif it does not contain vertices of degree 1. Given a trunked
graphG we define itsdual hypergraphas G = (E(G), {Eg(v) | v € V(G)}). In what
follows, we will denote asA(G) the maximum degree of the vertices of a graphThe
following lemma shows how to transform a tree decompositio& ¢6 one ofG”.

Lemma 22. For any trunked graptG, treewidth(G?) < treewidth(G) - A(G).

Proof. Let(X, U) be a tree decomposition 6f with width < k. Notice thatA(G) is equal
to the maximum size of a hyperedge . We construct a tree decomposition, U)
of GP using the same tre& and settingy; = {¢ € E(G) | e N X; # #}. Notice that, for
anyi € V(U), |Y;| < A(G) - |X;|. It remains to prove thatt, U) is a tree decomposition.
Condition (1) is obvious. For condition (2), suppose tiat {e1, ..., ¢, } is a hyperedge
of GP. By the construction o#*, all of its endpoints share a common verienf G. Let
X; be some set irK containingv. From the definition ofY;, all the edges ire* will be
members of; and condition (2) holds. For any two verticeg of U we denote a® (i, j)
the vertices of the path connecting themlin For condition (3), let be a vertex oiG?
such thak e ¥; ande € Y; for two different vertices, j of U. It is sufficient to prove that
for any vertexh € P(i, j), e € Y. From the definition of;, e has an endpoini, € V (G)
that belongs tX; . Similarly, e has an endpoint, € V(G) that belongs t ;. We consider
two cases. I, = u,, then from condition (3) fofX, Y), we get thatv belongs to any},
whereh € P(i, j). From the definition ofY, we have that, since, = u. is an endpoint
of e, e belongs also to any}, for any vertexk € P (i, j). From condition (2) for X, U),
we have that there exists a vertexf U wherev,, u, € Xi. Clearly,k should be a vertex
in P(, j) in U as, otherwise, eithey, € X; or u, € X;, a contradiction. Let: be any
vertex inP (i, k). As v, belongs both td; and toXy, condition (2) for(X, U) implies that
v € X, and from the definition of;, we have thak € Y,. Finally, if h € P(k, j), then
applying the same argument for this path we can concludeethalt;, and condition (3)
holds for(Y, U). O

Notice that the proof of the above lemma gives a method to congputé) from (X, U)
in O(knA(G)) steps.
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The notion of linear-width for graphs was introduced by Thomas [47].

The linear-width of a graplér with » vertices is defined as follows. LEt [eq, ..., e;]
be a linear ordering oE(G). Fori =1,...,r — 1, we defineg; ¢ (i) = Vs ([1,i]) N
Ve (li +1,n]) (i.e., .6 (@) is the set of vertices off that are endpoints of edges in both
I[[1,i]and![i 4+ 1, n]). The linear-width of an orderingof E(G) is max.<i<n—111¢1,6 ()1}
The linear-width of a graph is the minimum linear-width over all the orderingg @?).
From the definitions of dual hypergraph and linear-width, we have the following.

Lemma 23. If G is a trunked graph thefinear-width(G) = cutwidth(G?).

As a consequence of Theorems 21, Lemma 22, and Lemma 23, we have an algorithm
for the linear-width of trunked graphs.

Lemma 24. Given a trunked graple; with n vertices of degree no more tha@rand a tree
decompositioriX, U) of G with O (n) nodes and width at most, an ordering ofE (G) of
minimum linear-width can be computed(d w3 log? n - ((dw + 1)!)221%w 8w+ (dw+1))
steps.

Proof. Let G be an-vertex graph of treewidthw and A(G) < d. Let also(U, X) be a

tree decomposition of;. From Lemma 2, we know that the pathwidth @fis at most

(w+ 1) logn and, as linear-widtfG) < pathwidth(G) + 1 (see, e.g., [44] or [45]), we get

that linear-widtiG) < (w + 1) logn + 1. From Lemma 23 we have that cutwidéh’) =
linear-width(G) < (w + 1) logn + 1. Notice that a vertex ordering @” with minimum
cutwidth corresponds to an edge orderingobf minimum-linear width. Therefore, it is
sufficient to check whether cutwidté ?) < kfork =1, ..., [(w+1)logn+1] and output

the vertex ordering corresponding to the minimiérfor which the result of this check is
positive. To do this, we use the construction of Lemma 22, and get a tree decomposition
(Y, U) of GP with treewidth< dw. From Theorem 21, this check requires

2d
0 (dw3 log?n - ((dw + 1)!)2(§) P '09"+l><8dw+8>)
3

8 2dw
= 0<dw3|092n : ((dw + 1)!)2(§> n(w+1)(8dw+8)28dw>
steps, and the claimed result followsa
For a proof of the following, see [4].

Lemma 25. If G" is the graph obtained frond; by replacing every edge i with two
edges in parallel, thepathwidth G) = linear-width(G").

It is easy to derive a procedure that given an edge ordering of a grapth linear-
width at mostk, transforms it to a path decomposition of width at mb&h O (kn) steps
(e.g., see [4,12]). Also observe that is a trunked graph. These facts along with Lem-
mata 24 and 25 yield the following result.
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Theorem 26. Given a graphG with n vertices of degree no more thdrand a tree decom-
position(X, U) of G of O(n) nodes and width at most, a path decomposition @ with
minimum width can be constructed @(dw3log?n - ((dw + 1)!)221%w,8w+D)(dw+1)y
steps.

We mention that, in general, the problem of computing the pathwidth of partiedes
can be solved in polynomial time. The algorithm for the general case was proposed by
Bodlaender and Kloks in [11]. However, the exponent in the complexity of this algorithm
is quite large for any practical purpose. The algorithm proposed in Theorem 26 is faster
and can serve as a more realistic approach for pastisees with bounded degree.

7. Open problems

We have shown that the cutwidth of graphs with bounded treewidth and maximum de-
gree can be computed in polynomial time. The problem that remains is to prove the same
when the “bounded maximum degree” requirement is removed. Even if this is the case for
pathwidth [11], it seems that our technique cannot be easily modified to solve the gen-
eral problem because it is strongly depending on Lemma 3. However, even in the case of
computing the pathwidth of partiab-trees, it is interesting to find realistic polynomial
algorithms. Another line of research is to try to solve the problem for specific (typically
small) values of the treewidth. No algorithm of this type exists for cutwidth when> 1,
while, for pathwidth, the best known results are approximation algorithms for outerplanar
graphs [9,27] and Halin graphs [24] (see also [43]).
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