
r

lands

t

r,
ial
e
e main

-14186
70-CE

ded

u.nl
Journal of Algorithms 56 (2005) 25–49

www.elsevier.com/locate/jalgo

Cutwidth II: Algorithms for partialw-trees
of bounded degree✩ ,✩✩

Dimitrios M. Thilikosa,∗, Maria Sernaa, Hans L. Bodlaenderb

a Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
Campus Nord – EdificiΩ, c/Jordi Girona Salgado 1-3, 08034 Barcelona, Spain

b Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Nether

Received 7 February 2001

Available online 21 February 2005

Abstract

Thecutwidthof a graphG is defined to be the smallest integerk such that the vertices ofG can be
arranged in a vertex ordering[v1, . . . , vn] in a way that, for everyi = 1, . . . , n − 1, there are at mos
k edges with one endpoint in{v1, . . . , vi} and the other in{vi+1, . . . , vn}. We examine the problem
of computing in polynomial time the cutwidth of a partialw-tree with bounded degree. In particula
we show how to construct an algorithm that, innO(w2d) steps, computes the cutwidth of any part
w-tree with vertices of degree bounded by a fixed constantd. Our algorithm is constructive in th
sense that it can be adapted to output a corresponding optimal vertex ordering. Also, it is th
subroutine of an algorithm computing the pathwidth of a bounded degree partialw-tree with the
same time complexity.
 2005 Elsevier Inc. All rights reserved.

Keywords:Cutwidth; Treewidth; Pathwidth; Graph layout

DOI of related article: 10.1016/j.jalgor.2004.12.001.
✩ The work of all the authors was supported by the IST Program of the EU under contract number IST-99

(ALCOM-FT). The research of the first author was supported by the Spanish CICYT project TIC2000-19
and the Ministry of Education and Culture of Spain (Resolución 31/7/00 – BOE 16/8/00).
✩✩ This paper is the full version of the paper titled “A polynomial time algorithm for the cutwidth of boun
degree graphs with small treewidth” which appeared in the proceedings of ESA 2001.

* Corresponding author.
E-mail addresses:sedthilk@lsi.upc.edu (D.M. Thilikos), mjserna@lsi.upc.edu (M. Serna), hansb@cs.u
(H.L. Bodlaender).

0196-6774/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2004.12.003

26 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

rob-
efined
[19]).

atic

sive
ex-
point

nd it
egree
io of
me
und
where
that

al al-
special
e
egree

as
ssem-
l width

idth,
detailed
efined
line
width
ome of
Graph
ations
mbi-

s with
devel-
e” or
1. Introduction

A wide variety of optimization problems can be formulated using vertex ordering p
lems. In many cases, such a problem asks for the optimal value of some function d
over all the linear orderings of the vertices or the edges of a graph (for a survey, see
One of the most known problems of this type is the problem of computing thecutwidthof a
graph. It is also known as the MINIMUM CUT LINEAR ARRANGEMENT problem and has
several applications such as VLSI design [1,2,16,32], network reliability [29], autom
graph drawing [36,42], and information retrieval [13].

Briefly, thecutwidthof a graphG = (V (G),E(G)) is equal to the minimumk for which
there exists a vertex ordering ofG such that for any “gap” (place between two succes
vertices) of the ordering, there are at mostk edges crossing the gap. Cutwidth has been
tensively examined from both algorithmic [14,16,22,23,30,35,48] and graph theoretic
of view [8,14–16,30,33]. Computing cutwidth is an NP-complete problem [25,26] a
remains NP-complete even if the input is restricted to planar graphs with maximum d
3 [35] (see also [33]). There is a polynomial time approximation algorithm with a rat
O(log|V (G)| log log|V (G)|) [21] and there is a polynomial time approximation sche
if |E(G)| = Θ(|V (G)|2) [3]. Results for different models of random graphs can be fo
in [17,18,20]. Relatively few work has been done on detecting special graph classes
computing cutwidth can be done in polynomial time. In [16], an algorithm was given
computes the cutwidth of any tree with maximum degree bounded byd in O(n(logn)d−2)

time. This result was improved in 1983 by Yannakakis [48], who presented anO(n logn)

algorithm computing the cutwidth of any tree. Since then, the only others polynomi
gorithms reported for the cutwidth of graph classes different than trees, concerned
cases such as hypercubes [28] andb-dimensionalc-ary cliques [37]. In this paper, we mov
one step further presenting a polynomial time algorithm for the cutwidth of bounded d
graphs with small treewidth.

The notions oftreewidthand pathwidthappear to play a central role in many are
of graph theory. Roughly, a graph has small treewidth if it can be constructed by a
bling small graphs together in a tree structure, namely a tree decomposition of smal
(graphs with treewidth at mostw are alternatively calledpartial w-trees—see Section 2
for the formal definitions). A big variety of graph classes appear to have small treew
such as trees, outerplanar graphs, series parallel graphs, and Halin graphs (for a
survey of classes with bounded treewidth, see [7]). The pathwidth of a graph is d
similarly to treewidth, but now the tree in its definition is required to be a simple
(path). That way, treewidth can be seen as a “tree”-generalization of pathwidth. Path
and treewidth were introduced by Robertson and Seymour in [39,40] and served as s
the cornerstones of their lengthy proof of the Wagner conjecture, known now as the
Minors Theorem (for a survey see [41]). Treewidth appears to have interesting applic
in algorithmic graph theory. In particular, a wide range of, otherwise intractable, co
natorial problems are polynomially, even linearly, solvable when restricted to graph
bounded treewidth or pathwidth. In this direction, numerous techniques have been
oped in order to construct dynamic programming algorithms making use of the “tre

“line” structure of the input graph (see, e.g., [6]). The results of this paper show how these

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 27

th of

linear
t
in this
of this

s used
eristics,

thm

n ap-
sociated
First,
idth

ction,

ntered,
the

eep all
but
at
6], we

y the
d only

ring
is
s used
t
r al-

s sub-
main

n. This

partial
ial
[11].
and
utation
path-
techniques can be used for constructing a polynomial time algorithm for the cutwid
partialw-trees with vertices of degrees bounded by fixed constants.

This paper is strongly based on the previous one of this series [46] where there is a
time algorithm that for any fixedk decides whether an input graphG has cutwidth at mos
k and, if so, constructs the corresponding linear layout. Most of the basic tools used
paper are defined and developed in [46]. We warn the reader that the understanding
paper is not possible if he/she is not familiar with the notation, concepts, and result
and/or introduced in [46] such as typical sequences, characteristics, sets of charact
and the basic algorithmsIntroduce-Node andForget-Node.

At this point, we want to give an informal description of our algorithm. Our algori
starts computing a “nice” tree decomposition of bounded width of the input graphG (for
a formal definition see Section 2). The tree decomposition allows the definition of a
propriate subgraph associated to each node, in such a way that the root has as
the graphG. The algorithm proceeds from bottom to top of the tree decomposition.
consider the following exponential algorithm, that builds the set of all layouts of cutw
at mostk. The algorithm goes through the tree decomposition in a bottom–up dire
having at each point a data structure of the set of all layouts of cutwidth at mostk of the
subgraph induced by the vertices encountered so far. When a new vertex is encou
we try to insert it at all different spots in all the layouts in the data structure; from
layouts we thus obtain, we keep those whose cutwidth is at mostk. When we arrive to a
tree branching the two sets of layouts have to be merged, the data structure will k
those layouts with cutwidth at mostk. Clearly, this algorithm can use exponential time,
solves the problem:G has cutwidth at mostk, if and only if the data structure contains
least one layout when the whole tree decomposition has been processed. As in [4
fasten this possibly exponential time algorithm by not keeping all layouts, but onl
characteristics of the layouts. Layouts with the same characteristic thus are treate
once.

In this paper we design a polynomial time algorithm for computing a vertex orde
with minimum cutwidth when the input graph is a partialw-trees of bounded degree. Th
is possible due to the observation that the “hidden constants” of all the subroutine
by our algorithm remain polynomial even when we ask whetherG has cutwidth at mos
O(dk) · logn. As this upper bound for cutwidth is indeed satisfied (see Corollary 4), ou
gorithm is able to compute innO(w2d) steps the cutwidth of bounded degree partialw-trees.
The proposed algorithm extends the algorithm in [46] in the sense that it uses all of it
routines and it solves the problem of [46] for graphs with bounded treewidth. The
technical contribution of this paper is an algorithm (algorithmJoin-Node in Section 4) that
performs the merging of the representatives at a branching of the tree decompositio
algorithm uses the “small treewidth” property of the input graph.

An interesting consequence of our result is that the pathwidth of bounded degree
w-trees can be computed innO(w2d) steps. We mention that the existence of a polynom
time algorithm for this problem, without the degree restriction, has been proved in
However, the time complexity of the involved algorithm appears to be very large
has not been reported. Our technique, described in Section 6, reduces the comp
of pathwidth to the problem of computing the cutwidth on hypergraphs. Then the

width is computed using a generalization of our algorithm for hypergraphs with bounded

28 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

t graph

path-
ences
e new
-
ree
we
an
uc-

some
ltiple

striction

nce

e

treewidth. That way, we report more reasonable time bounds, provided that the inpu
has bounded degree.

The paper is organized as follows. Section 2 contains the definitions of treewidth,
width and cutwidth. Sections 3 and 4 concern operations on “interleavings” of sequ
of integers and are building on the definitions and results of Section 2 of [46]. Thes
concepts will be the main ingredient for the algorithmJoin-Node that is presented in Sec
tion 4. The algorithmJoin-Node only helps to compute the cutwidth of a bounded deg
partialw-treeG but not toconstructthe corresponding vertex ordering. In Section 5,
describe how to transform this algorithm to aconstructiveone in the sense that we now c
output a linear arrangement ofG with optimal cutwidth. This uses the analogous constr
tions of [46] and the proceduresJoin-Orderings andConstruct-Join-Orderings described in
Section 4.

2. Treewidth—pathwidth—cutwidth

Although we assume the reader familiar with the notation of [46] we repeat here
basic items. All the graphs of this paper are finite, undirected, and without loops or mu
edges (our results can be straightforwardly generalized to the case where the last re
is altered). We denote the vertex (edge) set of a graphG by V (G) (E(G)) and setn =
|V (G)|. As our graphs will not have multiple edges, we represent an edgee ∈ E(G) by
a two vertex subset. A linear (one-dimensional) layout of the vertices ofG is a bijection,
mappingV (G) to the integers in{1, . . . , n}. We denote such a layout by the seque
[v1, . . . , vn].

We deal with finite sequences (i.e., ordered sets) of a given finite setO. And denote by
S the set of all finite sequences of non-negative integers.

A tree decompositionof a graphG is a pair(X,U) whereU is a tree whose vertices w
will call nodesandX = ({Xi | i ∈ V (U)}) is a collection of subsets ofV (G) such that

(1)
⋃

i∈V (U) Xi = V (G),
(2) for each edge{v,w} ∈ E(G), there is ani ∈ V (U) such thatv,w ∈ Xi , and
(3) for eachv ∈ V (G) the set of nodes{i | v ∈ Xi} forms a subtree ofU .

Thewidth of a tree decomposition({Xi | i ∈ V (U)},U) equals maxi∈V (U){|Xi | − 1}. The
treewidthof a graphG is the minimum width over all tree decompositions ofG.

A rootedtree decomposition is a tripleD = (X,U, r) in which U is a tree rooted atr
and(X,U) is a tree decomposition.

Let D = (X,U, r) be a rooted tree decomposition of a graphG whereX = {Xi | i ∈
V (U)}. D is called anicetree decomposition if the following are satisfied

(1) every node ofU has at most two children,
(2) if a nodei has two childrenj , h thenXi = Xj = Xh,
(3) if a nodei has one childj , then either|Xi | = |Xj |+1 andXj ⊂ Xi or |Xi | = |Xj |−1
andXi ⊂ Xj .

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 29

he fol-

r

er).
if

e

Notice that a nice tree decomposition is always a rooted tree decomposition. For t
lowing, see, e.g., [11].

Lemma 1. For any constantk � 1, given a tree decomposition of a graphG of width� k,
there exists an algorithm that, inO(n) steps, constructs a nice tree decomposition ofG of
width� k and with at most4n nodes.

We now observe that a nice tree decomposition({Xi | i ∈ V (U)},U, r) contains nodes
of the following four possible types. A nodei ∈ V (U) is called “start” if i is a leaf ofU ,
“ join” if i has two children, “forget” if i has only one childj and|Xi | < |Xj |, “ introduce”
if i has only one childj and |Xi | > |Xj |. We may also assume that ifi is a start node
then|Xi | = 1: the effect ofstartnodes with|Xi | > 1 can be obtained by using astartnode
with a set containing 1 vertex, and then|Xi | − 1 introducenodes, which add all the othe
vertices.

Let D = (X,U, r) be a nice tree decomposition of a graphG. For each nodei of U ,
let Ui be the subtree ofU , rooted at nodei. For anyi ∈ V (U), we setVi = ⋃

v∈V (Ui)
Xv

andGi = G[Vi]. For anyp ∈ V (U) we refineGp in a top down fashion as follows. Ifq is
a join with childrenp andp′, select one of its two children, sayp. Then, for anyi ∈ Up

remove fromGi any edge in the setE(Gq [Xq]) (in fact, any partition ofE(Gq [Xq]) for the
edges induced byGp[Xp] andGp′ [Xp′] would be suitable for the purposes of this pap
In this construction, we haveV (Gp) = Vp for any p ∈ V (U) and we guarantee that
q is a join node with childrenp andp′ thenV (Gp) = V (Gp′) = V (Gq), E(Gp[Xq]) ∩
E(Gp′ [Xq]) = ∅, andE(Gp) ∪ E(Gp′) = E(Gq). Notice that ifr is the root ofU , then
Gr = G. We call Gi the subgraph ofG rooted at i. We finally set, for anyi ∈ V (U),
Di = (Xi,Ui, i) whereXi = {Xv | v ∈ V (Ui)}. Observe that for each nodei ∈ V (U), Di

is a nice tree decomposition ofGi .
A tree decomposition(X,U) is a path decomposition, ifU is a path (i.e., treeU has no

nodes of degree more than two). The pathwidth of a graphG is defined as the minimum
width of a path decomposition ofG.

We will need the following result given in [10].

Lemma 2. For any graphG,

treewidth(G) � pathwidth(G) �
(
treewidth(G) + 1

) · log(n).

The cutwidth of a graphG with n vertices is defined as follows. Letl = [v1, . . . , vn]
be a layout ofV (G). For i = 1, . . . , n − 1, we define thecut at positioni, denoted by
θl,G(i), as the set of crossover edges ofG that have one endpoint inl[1, i] and one in
l[i +1, n], i.e.,θl,G(i) = EG(l[1, i])∩EG(l[i +1, n]). Thecutwidth of a layoutl of V (G)

is maxi,1�i�n−1{|θl,G(i)|}. Thecutwidthof a graph is the minimum cutwidth over all th
vertex orderings ofV (G).

It is easy to see the following (see also [16]).

Lemma 3. For any graphG, with vertices of degree bounded byd , pathwidth(G) �

cutwidth(G) � d · pathwidth(G).

30 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

ings
th join

,

s

r the
ing”

to

l

The following is a direct consequence of Lemmata 2 and 3.

Corollary 4. Any graphG with treewidth at mostw and maximum degree at mostd , has
cutwidth bounded by(w + 1)d logn.

3. Interleavings of sequences

Building on Section 2.3 of [46], we introduce some further notation on interleav
of sequences of non-negative numbers. This new operation will be need to deal wi
nodes. We assume that the reader knows the definitions of functionsE , τ , relations “�”,
“�”, “ ≺”, and the concept oftypicalanddensesequence defined in [46].

Let A andB two equal-size sequences of non-negative integers whereA = [a1, . . . , ar],
B = [b1, . . . , br]. We defineA + B = [a1 + b1, . . . , ar + br] and we say thatA ∼ B iff
∀1�i<r ai �= ai+1 ⇔ bi = bi+1 (and, therefore,bi �= bi+1 ⇔ ai = ai+1). As an example
we mention that

[1,1,8,5,5,6,7] ∼ [3,6,6,6,9,9,9].
The interleavingA ⊗ B of two typical sequencesA andB is a set of typical sequence

defined as follows

A ⊗ B = {
τ
(
Ã + B̃

) | Ã ∈ E(A), B̃ ∈ E(B) andÃ ∼ B̃
}
.

We stress out that the above definition of interleaving is an important ingredient fo
algorithm and the proofs of this paper (a similar, but simpler, definition of “interleav
was used in [11]). Notice that the length of the resulting sequences is at most|A|+ |B|−1.

For an example for the case whereA = [1,2,1,3] andB = [4,3,6,3], see Fig. 1.
A useful geometrical interpretation of the operationA ⊗ B wherep = |A| andq = |B|,

can be given by the labelled(p × q)-grid

Fp,q = ({
(i, j) | 1� i � p, 1� j � q

}
,{(

(i, j),
(
i′, j ′)) | i � i′, j � j ′, i′ − i + j ′ − j = 1

})
whose vertex(i, j) is labelled by the sumA(i) + B(j). Notice that there exists a one
one correspondence between the labels of the paths connecting vertices(1,1) and(p, q) in
Fp,q and the sums̃A + B̃ whereÃ ∈ E(A), B̃ ∈ E(B) and,Ã ∼ B̃. For an example, ifA =
[1,2,1,3] andB = [4,3,6,3], then the sumÃ + B̃ whereÃ = [1,2,2,2,2,1,3] andB̃ =
[4,4,3,6,3,3,3] corresponds to the path((1,1), (2,1), (2,2), (2,3), (2,4), (3,4), (4,4))

(see Fig. 2). This observation is used in the proof the following lemma.

Lemma 5. LetA andB be typical sequences of integers in{0, k}. Then,|A⊗B| � 24(k−1)

andA ⊗ B can be computed inO(k · 24(k−1)) steps.

Proof. From [46, Lemma 2.6] we obtain thatp � 2k − 1 andq � 2k − 1. LetP(Fp,q) be
the set of directed paths inFp,q connecting(1,1) to (p, q). By labelling each horizonta

arrow inFp,q with a 2 and each vertical arrow inFp,q with an 1 we easily derive that there

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 31

ave

ed in

tegers
A ⊗ B = {
τ
([1,1,1,1,2,1,3] + [4,3,6,3,3,3,3]), τ([1,1,1,2,2,1,3] + [4,3,6,6,3,3,3]),

τ
([1,1,1,2,1,1,3] + [4,3,6,6,6,3,3]), τ([1,1,1,2,1,3,3] + [4,3,6,6,6,6,3]),

τ
([1,1,2,2,2,1,3] + [4,3,3,6,3,3,3]), τ([1,1,2,2,1,1,3] + [4,3,3,6,6,3,3]),

τ
([1,1,2,2,1,3,3] + [4,3,3,6,6,6,3]), τ([1,1,2,1,1,1,3] + [4,3,3,3,6,3,3]),

τ
([1,1,2,1,1,3,3] + [4,3,3,3,6,6,3]), τ([1,1,2,1,3,3,3] + [4,3,3,3,3,6,3]),

τ
([1,2,2,2,2,1,3] + [4,4,3,6,3,3,3]), τ([1,2,2,2,1,1,3] + [4,4,3,6,6,3,3]),

τ
([1,2,2,2,1,3,3] + [4,4,3,6,6,6,3]), τ([1,2,2,1,1,1,3] + [4,4,3,3,6,3,3]),

τ
([1,2,2,1,1,3,3] + [4,4,3,3,6,6,3]), τ([1,2,2,1,3,3,3] + [4,4,3,3,3,6,3]),

τ
([1,2,1,1,1,1,3] + [4,4,4,3,6,3,3]), τ([1,2,1,1,1,3,3] + [4,4,4,3,6,6,3]),

τ
([1,2,1,1,3,3,3] + [4,4,4,3,3,6,3]), τ([1,2,1,3,3,3,3] + [4,4,4,4,3,6,3,])}

= {
τ
([5,4,7,4,5,4,6]), τ([5,4,7,8,5,4,6]), τ([5,4,7,8,7,4,6]), τ([5,4,7,8,7,9,6]),

τ
([5,4,5,8,5,4,6]), τ([5,4,5,8,7,4,6]), τ([5,4,5,8,7,9,6]), τ([5,4,5,4,7,4,6]),

τ
([5,4,5,5,7,9,6]), τ([5,4,5,4,6,9,6]), τ([5,6,5,8,5,4,6]), τ([5,6,5,8,7,4,6]),

τ
([5,6,5,8,7,9,6]), τ([5,6,5,4,7,4,6]), τ([5,6,5,4,7,9,6]), τ([5,6,5,4,7,9,6]),

τ
([5,6,5,4,7,4,6]), τ([5,6,5,4,7,9,6]), τ([5,5,6,4,6,9,6]), τ([5,6,5,7,6,9,6])}

= {[5,4,7,4,6], [5,4,8,4,6], [5,4,9,6], [5,8,4,6], [5,9,6], [5,6,4,7,4,6], [5,6,4,9,6],
[5,6,4,9,6], [5,6,5,9,6]}

Fig. 1. An example of the interleaving of the typical sequencesA = [1,2,1,3] andB = [4,3,6,3].

exists a bijection betweenP(Fp,q) and the set of all sequences of 1’s and 2’s that h
lengthp − 1+ q − 1 and exactlyp − 1 1’s. One can easily bound|P(Fp,q)| by observing
that there are 2p−1+p−1 sequences consisting of 1’s and 2’s and with lengthp −1+p −1,
thus|P(Fp,q)| < 2p−1+p−1 � 24(k−1). As we mentioned above, the construction ofA⊗B

requires the generation of all paths inP , each corresponding to a sum̃A + B̃ whereÃ ∈
E(A), B̃ ∈ E(B) and,Ã ∼ B̃. The result follows as each such path can be generat
O(k) steps and the compression of the corresponding sequenceÃ + B̃ can be done in
O(k) steps. �

As we did in [46], we will use bold letters to denote sequences of sequences of in
and we will assume that they are indexed starting from 0.

The interleavingof two sequences of typical sequenceA = [A0, . . . ,Aw] and B =
[B0, . . . ,Bw] wherew = |A| = |B| is defined as follows:

A
⊗

B = {[C0, . . . ,Cw] | Ci ∈ Ai ⊗ Bi, i = 0, . . . ,w
}
.

The following lemma is a direct consequence of Lemma 5 and the definition ofA
⊗

B.

Lemma 6. Let A and B be two sequences of sequences of integers in{0, . . . , k}, with
|A| = |B| = w + 1. Then|A⊗

B| � 24(k−1)(w+1) and A
⊗

B can be computed inO(k ·

24(k−1)(w+1)) steps.

32 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

ation

n-

e path

] to

al

t

Fig. 2. An example ofF4,4 and its labeling whenA = [1,2,1,3] andB = [4,3,6,3]. The double-lined arrows
define the two paths in that are able to generate the typical sequence[5,8,4,6].

We will now introduce some more notation using the geometrical interpret
of A ⊗ B. Given two sequencesB1 and B2 where B1 ∼ B2 we define function
νB1,B2 : {1, . . . , |B1| − 1} → {1,2}, νB1,B2(j) = 1 if B1(j) �= B1(j + 1) andν(j) = 2 if
B1(j) = B1(j + 1) (νB1,B2(j) indicates which one ofB1,B2 changes value between i
dexesj andj + 1). When the sequencesB1 andB2 are obvious, we simply denoteνB1,B2

by ν.
As an example, we considerB1 = [1,2,2,2,2,1,3] andB2 = [4,4,3,6,3,3,3]. We

have

ν(1) = 1, ν(2) = 2, ν(3) = 2, ν(4) = 2, ν(5) = 1, ν(6) = 1.

(Notice that in Fig. 2, these values correspond to the labels of the edges in th
((1,1), (2,1), (2,2), (2,3), (2,4), (3,4), (4,4)) of F4,4.)

The following lemma will be useful in order to adapt some auxiliary results of [11
our definition ofA ⊗ B.

Lemma 7. For any two dense sequencesA1 andA2 of equal length there exists a typic
sequenceS ∈ τ(A1) ⊗ τ(A2) such thatS ≺ τ(A1 + A2).

Proof. In other words, we have to prove that there exist two sequencesÃ1 ∈ E(τ (A1)) and
Ã2 ∈ E(τ (A2)) such thatÃ1 ∼ Ã2, andτ(Ã1 + Ã2) ≺ τ(A1 + A2). We setC = A1 + A2
andr = |A1|. For i = 1,2, we set up a functionti : {1, . . . , r − 1} → {0,1} such that, for
j = 1, . . . , r −1, ti (j) = i −1 if A1(j)+A2(j +1) � A1(j +1)+A2(j) andti (j) = 2− i

otherwise. Notice that,j = 1, . . . , r − 1, t1(j) + t2(j) = 1. For i = 1,2, we construc
a sequenceA∗

i from Ai by settingA∗
i (2j − 1) = Ai(j) and A∗

i (2j) = Ai(j + ti (j)),
j = 1, . . . , |A|. Notice that the density ofAi and the construction ofA∗

i implies thatA∗
i is

also dense fori = 1,2. Moreover,Ai � A∗
i , i = 1,2, henceτ(A∗

i) = τ(Ai), i = 1,2. Let
C∗ = A∗

1 + A∗
2 and notice that, by the construction ofA∗

i we have that for anyj = 1, . . . ,
r − 1,

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 33

e

ents
r, it
ll.

exists
C∗(2j) = min
{
A1(j) + A2(j + 1),A1(j + 1) + A2(j)

}
= min

{
A∗

1(2j − 1) + A∗
2(2j + 1),A∗

1(2j + 1) + A∗
2(2j − 1)

}
� max

{
A∗

1(2j − 1) + A∗
2(2j − 1),A∗

1(2j + 1) + A∗
2(2j + 1)

}
= max

{
A1(j) + A2(j),A1(j + 1) + A2(j + 1)

}
= max

{
C(j),C(j + 1)

}
. (1)

We now defineCext = [c1, c
′
1, c2, c

′
2, . . . , cr−1, c

′
r−1, cr] where∀j,1�j�r cj = A1(j) +

A2(j) = C(j) = C∗(2j − 1) and∀j,1�j<r c′
j = max{cj , cj+1}. Notice thatC � Cext and,

from (1),Cext � C∗. ThereforeC∗ ≺ C and thus,τ(C∗) ≺ τ(C). Notice also that

∀i=1,2 ∀1�j<r A∗
i (j) �= A∗

i (j + 1) ⇒ A∗
3−i (j) �= A∗

3−i (j + 1). (2)

Apply now the following operation onA∗
1 andA∗

2 as long as this is possible: if for som
j , 1 � j < |A∗

1|, A∗
i (j) = A∗

i (j + 1), i = 1,2, then setA∗
i ← A∗

i (1, j) · A∗
i (j + 2, r),

i = 1,2 (in other words, we apply operation (i) in parallel as long as it removes elem
of the same ranks inA∗

1 andA∗
2). Clearly, (2) is invariant under this operation. Moreove

returns two sequences̃Ai , i = 1,2, where|Ã1| = |Ã2| and the inverse of (2) holds as we
ThereforeÃ1 ∼ Ã2. Clearly,Ãi � A∗

i , i = 1,2, and asA∗
i is dense we get̃Ai = E(τ (A∗

i)),
i = 1,2. Recall thatτ(A∗

i) = τ(Ai) and thereforeÃi ∈ E(τ (Ai)), i = 1,2. Notice now that
Ã1+Ã2 � A∗

1+A∗
2. We conclude thatS = τ(Ã1+Ã2) = τ(C∗) and the result follows. �

Lemma 8. LetA, B be two typical sequences and letC be a sequence such thatC ∈ A⊗B.
Suppose also thatA′, B ′ are two typical sequence such thatA ≺ A′ andB ≺ B ′. Then there
exists a sequenceC′ ∈ A′ ⊗ B ′ such thatC′ ≺ C.

Proof. As C ∈ A ⊗ B, there exist three integer sequences of equal lengthY , A∗ andB∗
such thatC = τ(Y), A∗ = E(A), B∗ = E(B), Y = A∗ + B∗ andA∗ ∼ B∗. From A∗ =
E(A), we have thatτ(A∗) = τ(A) and, asA′ ≺ A, [46, Lemma 2.8] implies thatA′ ≺ A∗.
Similarly, we get thatB ′ ≺ B∗. From [46, Lemma 2.9], there exist sequencesA′∗ ∈ E(A′)
andB ′∗ ∈ E(B ′) such thatτ(A′∗ + B ′∗) ≺ τ(Y) = C. We setC′ = τ(A′∗ + B ′∗). Notice
now thatA′∗ andB ′∗ are both dense. Therefore, Lemma 7 can be applied and ifC′ =
τ(A′∗ + B ′∗) there exists anS ∈ τ(A′∗) ⊗ τ(B ′∗) = τ(A′) ⊗ τ(B ′) such thatC′ ≺ S. �

The following lemma is a direct consequence of Lemma 8.

Lemma 9. Let A, B be two sequences of typical sequences where|A| = |B| and C a
sequence of typical sequences such thatC ∈ A

⊗
B. Suppose also thatA′, B′ are two

typical sequence such thatA ≺ A′ andB ≺ B′. Then there exists a sequenceC′ ∈ A′ ⊗ B′
such thatC ≺ C′.

The following lemma is just a special case of Lemma 3.14 in [11].

Lemma 10. LetA andB be two integer sequences with the same length. Then there
two equal length integer sequencesA′ ∈ E(τ (A)), and B ′ ∈ E(τ (B)), whereA′ + B ′ ≺

A + B.

34 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

r se-

ence

iar
nces

-
of

pond

s the
h.
Lemma 11. Let A,B,C be sequences such that|A| = |B| and C = A + B. Then there
exists a sequenceC′ ∈ τ(A) ⊗ τ(B) such thatτ(C′) ≺ τ(C).

Proof. From Lemma 10 and [46, Lemma 2.8], there exist two equal length intege
quencesA′ ∈ E(τ (A)) and B ′ ∈ E(τ (B)) such thatτ(A′ + B ′) ≺ τ(A + B) = τ(C).
Notice now thatA′ andB ′ are dense, and, from Lemma 7, there exists a typical sequ
C′ ∈ τ(A′) ⊗ τ(B ′) such thatC′ ≺ τ(A′ + B ′) and the result follows. �

4. A decision algorithm for cutwidth

In this section, we give for any pair of integer constantsk, w, an algorithm that, given
a graphG with maximum degreed and a nice tree decomposition(X,U) of width at
mostw, decides whetherG has cutwidth at mostk. We assume that the reader is famil
with the concept of anX-characteristic of a layout as well as the sequence of seque
QG,l defined in Section 2.2 of [46] (for an example of the sequenceQG,l see Fig. 3).

Assume from now on that we have a graphG and that(X,U) is a nice tree decompo
sition of G, with width at mostw. A setFS(i) of Xi -characteristics of vertex orderings
the graphGi with cutwidth at mostk is called afull set of characteristics for nodei if for
each vertex orderingl of Gi with cutwidth at mostk, there is a vertex orderingl′ of Gi

such thatCXi
(Gi, l

′) ≺ CXi
(Gi, l) andCXi

(Gi, l
′) ∈ FS(i), i.e., theXi -characteristic ofl′

is in FS(i).
The following bound on the number of characteristics of a vertex ordering corres

to Lemma 3.1 of [46].

Lemma 12. Let G be a graph and let(X,U) be a nice tree decomposition ofG with
width at mostw. LetXi , i ∈ V (U), be some node of(X,U). The number of differentXi -
characteristics of all possible vertex orderings ofGi with cutwidth at mostk, is bounded
by (w + 1)! · (8

322k)w+1.

The following lemma, that can be derived directly from the definitions, establishe
validity of the concept of full set of characteristics for checking the cutwidth of a grap
Fig. 3. A graphG, a vertex orderingl of G, and the sequence of sequencesQG,l .

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 35

h
of

tics

t

ticular

ra-
Algorithm Join-Node.

Input: A full set of characteristicsFS(j1) for j1 and
a full set of characteristicsFS(j2) for j2.

Output: A full set of characteristicsFS(i) for i.

1: Initialize FS(i) = ∅.
2: For āny pair ofXjh

-characteristics(λ,Ah) ∈ FS(jh), h = 1,2, do
3: For anyA ∈ A1

⊗
A2, do

4: If max(λ,A) � k, setFS(i) ← FS(i) ∪ {(λ,A)}.
5: OutputFS(i).
6: End.

Fig. 4. The algorithm to compute a full set of characteristics for a join node.

Lemma 13. A full set of characteristics for a nodei is non-empty if and only if the cutwidt
of Gi is at mostk. If some full set of characteristics fori is non-empty, then any full set
characteristics fori Gi is non-empty.

An important consequence of Lemma 13 is that the cutwidth ofG is at mostk, if and
only if any full set of characteristics for the rootr is non-empty (recall thatGr = G).
In [46] there are given algorithms able to construct a full set of characteristics for aninsert
or a forgetnode when a full set of characteristics for the unique child ofi is given. These
algorithms, as well as the way to obtain a full set of characteristics for astartnode, can be
found in [46]. In what follows, we will show how to compute a full set of characteris
for a join nodei when two full set of characteristics for its childrenj1, j2 are given.

We consider now the case that nodei is ajoin node andjh, h = 1,2, are the two children
of i in U . We observe thatV (Gj1) ∩ V (Gj2) = Xi , Gj1 ∪ Gj2 = Gi and we recall tha
E(Gj1[Xi]) ∩ E(Gj2[Xi]) = ∅. Given a full set of characteristicsFS(j1) for j1 and a full
set of characteristicsFj2 for j2, we show that the algorithmJoin-Node, given in Fig. 4,
correctly computes a full set of characteristicsFS(i) for i.

We need the following lemma that relates the interleaving of sequences with par
types of layouts.

Lemma 14. Let G, G1 and G2 be graphs whereG1 ∪ G2 = G and G1 ∩ G2 = (S,∅).
Let alsol1, l2 be vertex orderings ofG1 andG2 respectively wherel1[S] = l2[S] = λ. If
CS(Gi, li) = (λ,Ai), i = 1,2, then, for anyA ∈ A1

⊗
A2, there exists a vertex orderingl

of G wherel[V (Gi)] = li , i = 1,2, andCS(G, l) = (λ,A).

Proof. We claim that the orderingl in question is constructed by the proceduresConstruct-
Join-Ordering andJoin-Orderings given in Fig. 5. Figure 6 gives an example of the ope
tion of the procedureJoin-Orderings as well as for the proof that follows.

By construction,l[V (Gi)] = li , i = 1,2. We have to prove thatCS(G, l) = (λ,A). We
setG∗

i = (V (G),E(Gi)), i = 1,2, and we observe thatl is a vertex ordering for bothGi ,
i = 1,2, where|l| = r1 + r2 − ρ. Let l = [v1, . . . , vr] andλ = [vκ1, . . . , vκρ]. We use the
notations
Qi =QG∗
i ,l

(0) · · · · · QG∗
i ,l

(r), i =1,2, and Q=QG,l(0) · · · · · QGi,l(r)

36 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

ed
Procedure Construct-Join-Ordering(G1,G2, S, l1, l2,A).

Input: Two graphsG1, G2 and a setS whereG1 ∩ G2 = (S,∅).
Two vertex orderingsl1 andl2 of G1 andG2, wherel1[S] = l2[S] = λ.
A sequence of typical sequencesA ∈ A1

⊗
A2 where(λ,Ai) = Com(Gi, li , S), i = 1,2.

Output: A vertex orderingl of G whereCS(G, l) = (λ,A).

1: Assume that fori = 1,2, let li = [vi
1, . . . , vi

ri
].

2: Let

λ = [
v1
κ1

1
, . . . , v1

κ1
ρ

] = [
v2
κ2

1
, . . . , v2

κ2
ρ

]
whereρ = |S|.

3: For i = 1,2, set

κi
0 = 0 and κi

ρ+1 = ri + 1.

4: For i = 1,2, setQi = QGi,li
(0) · · · · · QGi,li

(ri).
5: For anyh = 0, . . . , ρ, set

lh1 = l1
[
κ1
h + 1, κ1

i+1 − 1
]

and lh2 = l2
[
κ2
h + 1, κ2

i+1 − 1
];

Qh
1 = Q1

[
κ1
h, κ1

i+1 − 1
]

and Qh
2 = Q2

[
κ2
h, κ2

i+1 − 1
];

wh = Join-Orderings
(
lh1 , lh2 ,Qh

1,Qh
2,A(h)

)
.

6: Setl = w0 · [λ(1)] · w1 · [λ(2)] · w2 · · · · · [λ(ρ − 1)] · wρ−1 · [λ(ρ)] · wρ .
7: Outputl.
8: End.

Procedure Join-Orderings(l1, l2,Q1,Q2,A).

Input: Two orderingsl1, l2, two sequencesQ1,Q2 where|Qi | = |li | + 1,1,2, and
a sequenceA ∈ τ(Q1) ⊗ τ(Q2).

Output: An orderingl.

1: ComputeB1, B2 so thatA = τ(B1 + B2), whereB1 ∼ B2, andBi ∈ E(τ (Qi)), i = 1,2.
2: Setw = |B1| = |B2|, and denoteν = νB1,B2.
3: For j = 1, . . . ,w − 1 setmj = lν(j)[βQν(j)

(β−1
Bν(j)

(j)), βQν(j)
(β−1

Bν(j)
(j) + 1)) − 1].

4: Outputm1 · · · · · mw−1.
5: End.

Fig. 5. ProceduresConstruct-Join-Ordering andJoin-Orderings.

(recall that for the sequencesQ, Q1, andQ2 we insisted that their first elements are index
by 0). We also setQh = Q[κh, κh+1 − 1] andQh

i = Qi[κh, κh+1 − 1] for i = 1,2 and
h = 0, . . . , ρ (whereκ0 = 0 andκh+1 = r +1). Our target is to prove that∀0�h�ρ τ (Qh) =
A(h).

From the fact thatG1 andG2 do not have edges in common we get that

∀0�h�ρ Qh
1 + Qh

2 = Qh. (3)

We may assume that for anyh = 0, . . . , ρ, the computation oflh is based on a pairBh
1 , Bh

2
where

A(h) = τ
(
Bh

1 + Bh
2

)
,

Bh
1 ∼ Bh

2 ,()

Bh

i � τ Qh
i , i = 1,2. (4)

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 37

ng

]

ertex,
ing is

-

τ(Qh
1) = [6 9 1] Qh

1 = [

Qh
1[β

Qh
1

(1),β
Qh

1
(2)]︷ ︸︸ ︷

6 8 7 6 6 9 7 9 6 7 4 7 3 8 1︸ ︷︷ ︸
Qh

1[β
Qh

1
(2),β

Qh
1

(2)]

]

Bh
1 = [6 69 9 91] l = [·

mh
2︷ ︸︸ ︷• • • • • • •

mh
5︷ ︸︸ ︷• • • • • • • ·]

Qh
1(β

Qh
1

(1)) Qh
1(β

Qh
1

(2))

Qh
1 = [6

↓
6 6 6 6 6 8 7 6 6 9 7 9

↓
9 9 9 9 9 9 9 9 9 9 9 6 7 4 7 3 8 1]

wh = [· ◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸
mh

1

mh
2︷ ︸︸ ︷• • • • • • • ◦ ◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸

mh
3

◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸
mh

4

mh
5︷ ︸︸ ︷• • • • • • • ·]

Qh
2 = [1 5 2 3 6 8 8 8 8 8 8 8 8 5 6 6 5 6 2 5 2 2 3 7 7 7 7 7 7 7 7]

Bh
2 = [1 8 82 7 7] l = [· ◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸

mh
1

◦ ◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸
mh

3

◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸
mh

4

·]

τ(Qh
2) = [1 8 2 7] Qh

2 = [1
↑

5 2 3 6 8
↑

5 6 6 5 6 2
↑

5 2 2 3 7
↑
]

Fig. 6. An example of the proof of Lemma 14.

Notice that the result follows by [46, Lemma 2.3], (3), (4), and (5) bellow.

∀i=1,2 ∀0�h�ρ Qh
i � B

j
i . (5)

It now remains to prove the correctness of (5). We will examine only the case wherei = 1
(the casei = 2 is symmetric). Letmh

1, . . . ,mh
w−1 be the vertex orderings produced duri

step3 of Join-Orderings(lh1 , lh2 ,Qh
1,Qh

2,A(h)). Let

qh
j = ∣∣mh

1

∣∣ + · · · + ∣∣mh
j

∣∣, 1� j � w − 1

(assume thatqh
0 = 0 andw = |Bh

1 | = |Bh
2 |). The result follows from [46, Lemma 2.3

taking into account that

∀j,1�j�w−1 Qh
1

[
qh
j−1 + 1, qh

j + 1
] � [

Bh
1 (j),Bh

1 (j + 1)
]
. (6)

Towards proving (6) we make first some observations. We will call agapof a vertex order-
ing the “space” between two consecutive vertices, the “space” on the left of the first v
and the “space” on the right of the last vertex. Clearly, each gap of a vertex order
crossed by the edges with endpoints on different sides. Notice thatQh

1(1) corresponds to
the number of edges that cross the “gap” ofl that is on the left of vertexwh(1) and that for
anyj , 1� j � w − 1, and anyt , 1� t � |mh

j |, Qh
1(qh

j−1 + t + 1) corresponds to the num
ber of edges that cross the “gap” on the right of vertexwh(qh

j−1 + t). Moreover, for any

j , 1� j � w − 1, Qh

1(qh
j−1 + 1) corresponds to the number of edges that cross the “gap”

38 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

ing
ies

eplaced
ng, we
on the left of vertexmh
j (1) and for anyt , 1� t � |mh

j |, Qh
1(qh

j−1 + t + 1) corresponds to
the number of edges that cross the “gap” on the right of vertexmh

j (t). Let j be an integer
1� j � w − 1.

Let

ν = νBh
1 ,Bh

2
.

We will consider two cases depending on whetherBh
1 (j) = Bh

1 (j + 1) or Bh
1 (j) �=

Bh
1 (j + 1).
If ν(j) = 1, thenmj is a copy of a part of the linear orderingl1 of G1. As the relative

position of the vertices ofG1 are the same inl as in l1 andE(G∗
1) = E(G1), the edges

crossing the “gaps” ofl delimiting the vertices ofmj are the same as the edges cross
the “gaps” delimiting the same vertices inl1. Therefore, the sequence of their cardinalit
is Qh

1[βQh
1
(β−1

Bh
1
(j)), βQh

1
(β−1

Bh
1
(j) + 1)]. Therefore,

ν(j) = 1 ⇒ Qh
1

[
qj−1 + 1, qh

j + 1
]

= Qh
1

[
βQh

1

(
β−1

Bh
1
(j)

)
, βQh

1

(
β−1

Bh
1
(j) + 1

)]
. (7)

If ν(j) = 2, thenmj is a copy of a part of the linear orderingl2 of G2. We define

tleft = max
{
t | the “gap” corresponding toQh

1(t) is on the left ofmj(1) and has the

vertex on its left (if exists) inl1 and the vertex on its right not inl1
}
,

tright = min
{
t | the “gap” corresponding toQh

1(t) is on the right ofmj(|mj |) and

has the vertex on its left not inl1 and the vertex on its right

(if exists) inl1
}
.

Notice thattleft � qj−1 + 1 andqj + 1� tright. Observe that the vertices inwh that are de-
limited by “gaps” corresponding toQh

1[tleft, tright] are all vertices not inV (G1). Hence they
are all isolated vertices ofG∗

1. Recall that if we remove froml all the vertices inV (G2)−S,
what remains isl1. This operation replaces the “gaps” corresponding toQh

1[tleft, tright] with
only one “gap” corresponding to theβQh

1
(sj)th gap ofQh

1 where

s = β−1
Bh

1
(j).

However, the fact that the relative position of the vertices ofG1 is the same inl as inl1 and
the fact that all the removed vertices are isolated makes the crossing edges of the r
“gaps” to be exactly the same as the crossing edges of the resulting “gap”. Resumi
have the following.

ν(j) = 2 ⇒ ∀t,qj−1+1�t�qh
j +1 Qh

1(t) = Qh
1

(
βQh

1

(
β−1

Bh
1
(j)

))
. (8)

From [46, Lemma 2.6], we have that

τ
(
Qh

1

[
βQh

1

(
β−1

Bh
1
(j)

)
, βQh

1

(
β−1

Bh
1
(j) + 1

)])
[

h
((−1))

h
((−1))]
= Q1 βQh

1
β

Bh
1
(j) ,Q1 βQh

1
β

Bh
1
(j) + 1 (9)

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 39

)

)

nces

at

e

and applying [46, Lemma 2.7(1)]

Qh
1

(
βQh

1

(
β−1

Bh
1
(j)

)) = Bh
1 (j), (10)

Qh
1

(
βQh

1

(
β−1

Bh
1
(j + 1)

)) = Bh
1 (j + 1). (11)

If ν(j) = 1 then [46, Lemma 2.7(2)] impliesβ−1
Bh

1
(j + 1) = β−1

Bh
1
(j) + 1 and therefore (11

can be written

Qh
1

(
βQh

1

(
β−1

Bh
1
(j) + 1

)) = Bh
1 (j + 1). (12)

From (7), (9), (10), and (12) we conclude that

∀j,1�j�w−1,ν(j)=1 τ
(
Qh

1

[
qj−1 + 1, qh

j + 1
]) = [

Bh
1 (j),Bh

1 (j + 1)
]

(13)

which clearly yields (6) for the cases whereν(j) = 1.
If ν(j) = 2 then [46, Lemma 2.7(3)] impliesβ−1

Bh
1
(j + 1) = β−1

Bh
1
(j) and therefore (10

and (11) give

Qh
1

(
βQh

1

(
β−1

Bh
1
(j)

)) = Bh
1 (j) = Bh

1 (j + 1) (14)

and (14) combined with (8), gives (6) for the cases whereν(j) = 2. �
Lemma 15. Let G, G1 and G2 be graphs whereG1 ∪ G2 = G and G1 ∩ G2 = (S,∅).
Let also l be a vertex ordering ofG. We denoteli = l[V (Gi)], CS(G, l) = (λ, Ā),
and CS(Gi, li) = (λ,Ai), i = 1,2. Then there exists a sequence of typical seque
A ∈ A1

⊗
A2 such thatA ≺ Ā.

Proof. Let ri = |li |, i = 1,2, andρ = |λ| = |S|. As in the proof of Lemma 14, we setG∗
i =

(V (G),E(Gi)), i = 1,2, and we observe thatl is a vertex ordering for bothG∗
i , i = 1,2,

where|l| = r1 + r2 − ρ. We use the notationsQi = QG∗
i ,l

(0) · · · · · QG∗
i ,l

(r), i = 1,2, and
Q = QG,l(0) · · · · · QGi,l(r). As E(G1) ∩ E(G2) = ∅ andE(G1) ∪ E(G2) = E(G) we
get,

Q = Q1 + Q2. (15)

We denoteQi = QGi,li (0) · · · · · QGi,l(r), i = 1,2, and we observe that the facts th
V (Gi) ⊆ V (G∗

i), i = 1,2, andE(Gi) = E(G∗
i), i = 1,2, imply that,

∀i=1,2 Qi � Qi. (16)

We assume that ifl = [v1, . . . , vr], thenλ = [vκ1, . . . , vκρ] and if li = [ui
1, . . . , u

i
ri
] then

thatλ = [ui

µi
1
, . . . , ui

µi
ρ
], i = 1,2. We set

Qh = Q[κh, κh+1 − 1], Qh
i = Q

[
µi

h,µ
i
h+1 − 1

]
, i = 1,2, and

Qh
i = Qi[κh, κh+1 − 1], i = 1,2 andh = 0, . . . , ρ

(whereκ0 = µ1
0 = µ2

0 = 0 andκh+1 = µ1
h+1 = µ2

h+1 = r +1). From the view point of thes

new notations, (15) and (16) can be rewritten as follows

40 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

res-
by

rder-

vertex
.
ve
∀h,0�h�ρ Qh = Qh
1 + Qh

2, (17)

∀h,0�h�ρ ∀i=1,2 Qh
i � Qh

i . (18)

Notice also that

∀i=1,2 ∀h,0�h�ρ Ai (h) = τ
(
Qh

i

)
, (19)

∀h,0�h�ρ Ā(h) = τ
(
Qh

)
, (20)

(18) and (19), implies that

∀i=1,2 ∀h,0�h�ρ Ai (h) = τ
(
Qh

i

)
. (21)

Our target is to prove that forh = 0, . . . , ρ there exists a typical sequenceA′ in A1(h) ⊗
A2(h) such thatA′ ≺ Ā(h). This follows from (17), (20), and (21) if, forh = 0, . . . , ρ, we
apply Lemma 11 forQh, Qh

1 andQh
2. �

Lemma 16. If i is a join node with childrenjh, h = 1,2, and, forh = 1,2, FS(jh) is a full
set of characteristics forjh. Then, the set FS(i) constructed by the algorithmJoin-Node is
a full set of characteristics fori.

Proof. We will prove first thatFS(i) is a set of characteristics. To avoid overloaded exp
sions, whenever we refer to a characteristic, we will insist that its width is boundedk.
For this, it is sufficient to show that for any(λ,A) ∈ FS(i), there exists a vertex orderingl
of G such thatCXi

(G,λ) = (λ,A).
By the algorithmJoin Node we can assume that there exist two pairs(λ,Ah), h = 1,2,

where

(λ,Ah) ∈ FS(jh), h = 1,2, (22)

A ∈ A1
⊗

A2. (23)

As FS(jh), h = 1,2, are both sets of characteristics (22) implies that there exist two o
ings l1, l2 of GXj1

andGXj2
respectively such that

λ = l1[Xj1] = l2[Xj2], (24)

(λ,Ah) = CXjh
(Gh, lh), i = 1,2. (25)

Using now (23)–(25), we can apply Lemma 14 and conclude that there exists a
orderingl of Gi such thatCXi

(G, l) = (λ,A). Therefore,FS(i) is a set of characteristics
It remains now to prove thatFS(i) is a full set of characteristics. To prove this we ha

to show that, for any vertex orderingl of Gi there exists a vertex orderingl∗ of Gi such
thatCXi

(Gi, l
∗) ∈ FS(i) andCXi

(Gi, l) ≺ CXi
(Gi, l

∗).
Let lh = l[V (Gjh

)], h = 1,2, and set(λ,Ah) = CXjh
(Gjh

, lh), h = 1,2, and(λ, Ā) =
CXi

(Gi, l). From Lemma 15, there exist a typical sequenceA such that

A ∈ A1
⊗

A2, (26)()

(λ,A) ≺ λ, Ā . (27)

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 41

,

46] to

ts
Algorithm Check-Cutwidth(G,X,k).

Input: A graphG, a tree decompositionX of G with width w, and an integerk.
Output: Whether cutwidth(G) � k.

Assume that the nodes onX are topologically sorted, and thatX = [X1, . . . ,Xr].
1: For anyi, 1� i � r , compute a full set ofXi -characteristicsFi for Gi

settingFi = {[x], [[0][0]]} whenXi is a start node andXi = {x};
usingFj whenXi is an introduce or a forget node, relatively to someXj , j < i;
usingFj1 andFj2 if Xi is the join ofXj1 andXj2.

2: OutputFr �= ∅.
3: End.

Fig. 7. AlgorithmCheck-Cutwidth.

Recall now that, forh = 1,2, thatFS(jh) is a full set of characteristics forjh and therefore
for h = 1,2, there exists a vertex orderingl∗h of Gjh

where

CXjh

(
Gjh

, l∗i
) ∈ FS(jh), (28)

CXjh

(
Gjh

, l∗i
) ≺ CXjh

(
Gjh

, lh
)
. (29)

Let (λ,A∗
i) = CXjh

(Gjh
, l∗h), h = 1,2, and (28) and (29) can be rewritten as follows.(

λ,A∗
h

) ∈ FS(jh), h = 1,2, (30)(
λ,A∗

h

) ≺ (λ,Ah), h = 1,2. (31)

From (26), (31), and applying Lemma 9, there exists a characteristic(λ,A∗) such that

A∗ ∈ A∗
1
⊗

A∗
2, (32)(

λ,A∗) ≺ (λ,A). (33)

Notice now that, from (32), and Lemma 14, there exists a vertex orderingl∗ of G such that
CXi

(Gi, l
∗) = (λ,A∗). The fact thatCXi

(Gi, l
∗) ∈ FS(i) follows from (30), (32), and the

algorithmJoin-Node. Finally, (27), and (33) imply thatCXi
(Gi, l

∗) = (λ,A∗) ≺ (λ, Ā) =
CXi

(Gi, l) and this completes the proof of the lemma.�
We can now put together the results on this section and those of Section 3 of [

define the algorithmCutwidth, as given in Fig. 7.

Theorem 17. The algorithmCheck-Cutwidth, given a graphG with n vertices and a tree
decomposition(X,U) ofG ofO(n) nodes and width at mostw, checks whether there exis
an vertex ordering ofV (G) of cutwidth at mostk in O(wk · ((w + 1)!)2(8

3)2w2k·8(w+1))

steps.

Proof. From Lemma 1 there exists an algorithm that inO(n) steps transforms(X,U) to a
nice tree decomposition(X,U, r). We have to determine the cost of computingFS(i) for
all the nodes ofU . Let i be such a node.
If i is astartnode then the computation ofFS(i) needsO(1) steps.

42 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

e
[46,

e

e

-
r-

s we
If i is anintroducenode then Lemma 12 bounds the number of repetitions of step2 of
the algorithmIntroduce-Node by (w + 1)!(8

322k)w+1. Moreover, step3 involves at most
w repetitions and step4 at most 2k − 1 calls of the procedureIns [46, Lemma 2.4]. The
procedureIns is dominated by its 2nd step which requiresO(w2k) steps:O(w) for each
of the edges inserted, at mostw + 1 for the sequences ofA′ whose elements should b
incremented, and at most 2k − 1 for the elements of each one of these sequences
Lemma 2.4]. Similarly, calculating max(A′) requires at most(w + 1)(2k − 1) = O(wk)

steps. Therefore, computingFS(i) requiresO(w3k2 · (w + 1)!(8
322k)w+1) steps.

If i is a forgetnode then Lemma 12 bounds the number of repetitions of step2 of the
algorithmForget-Node by (w + 1)!(8

322k)w+1. As the procedureDel needsO(wk) steps,
computingFS(i) requiresO(wk · (w + 1)!(8

322k)w+1) steps.
If i is ajoin node then Lemma 12 bounds the number of repetitions of step2 of the algo-

rithm Join-Node by ((w + 1)!(8
322k)w+1)2. From Lemma 6, the computation ofA1

⊗
A2

costsO(k · 24(k−1)(w+1)) steps and∣∣A1
⊗

A2
∣∣ � 24(k−1)(w+1) � 24k(w+1).

As step4 costsO(wk) steps, we conclude that computingFS(i) requires

O

(
wk · 24k(w+1) · ((w + 1)!)2

(
8

3
22k

)2w+2)

= O

(
wk · ((w + 1)!)2

(
8

3

)2w+2

2k(8w+8)

)
steps.

Notice that according to the analysis above, the prevailing time is the one of thjoin
nodes. AsU containsO(n) nodes, the result follows.�

Let us refer as theCutwidth algorithm to the algorithm that for anyk = 1, . . . ,

�(w+1)d logn� checks whether cutwidth(G) � k by calling the algorithmCheck-Cutwidth
as a subroutine. From Corollary 4 and Theorem 17, if we setk = (w + 1)d logn, we have
the following result.

Theorem 18. The algorithmCutwidth, given a graphG with n vertices of degree no mor
thand and a tree decomposition(X,U) ofG ofO(n) nodes and width at mostw, computes
the cutwidth ofG in k in O(w3d2 · log2 n · ((w + 1)!)2(8

3)2wn8d(w+1)2
) steps.

5. Computing a vertex ordering

In this section we show how the algorithmsCheck-Cutwidth given in Fig. 7 can be mod
ified in a way that, in the case that the graph has cutwidthk, it also construct a vertex orde
ing with cutwidthk, we will refer to such modification as the algorithmLayout-Cutwidth.

Suppose now that, given a tree decomposition(X,U) = (Xi | i ∈ V (U),U) of G with
width bounded byw, after running the algorithm described in the previous subsection

know that a graphG has cutwidth at mostk, i.e., the computed setFS(r) is not empty. We

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 43

e

the

the

ap-

h
it was
itness

h

re
he new

ach

at

.

e
a

will now describe a method to construct a vertex ordering ofG with cutwidth at mostk. By
observing the flow of the algorithm, it follows that we can assign to each nodei of (X,U),
a characteristic(λi,Ai) witness on nodei, in a bottom–up fashion:

• If i is a start node then(λi,Ai) = ([x], [[0], [0]]) is the unique characteristic of th
vertex ordering consisting of the unique vertexx in Xi .

• If i is anintroducenode then(λi,Ai) is one of the characteristics constructed after
application of the algorithmIntroduce-Node on characteristic(λj ,Aj) wherej is the
unique child ofi.

• If i is a forget node then(λi,Ai) is one of the characteristics constructed after
application of the algorithmForget-Node on characteristic(λj ,Aj) wherej is the
unique child ofi.

• If i is a join node then(λi,Ai) is one of the characteristics constructed after the
plication of the algorithmJoin-Node on characteristics(λj1,Aj1) and(λj2,Aj2) where
j1 andj2 are the children ofi.

• (λr ,Ar) is one of the characteristics inFS(r).

We call the collectionW = ((λi,Ai), i ∈ V (U)), witnesstree. Notice that if at eac
time a new characteristic is computed, we set up a pointer to the characteristic
constructed from, we obviously have a suitable structure for constructing also a w
tree inO(|V (U)|) steps. Let us show now how to compute, using the information ofW ,
a vertex ordering ofV (Gr) with cutwidth � k. Towards this, we will compute, for eac
nodei ∈ V (U) a vertex orderingli of V (Gi) such thatCXi

(Gi, li) = (λi,Ai). The case
wherei is a start node is obvious. The cases wherei is either an insert or a forget node a
omitted as they are presented in detail in Section 4 of [46]. In each of these cases t
vertex orderingli can be constructed inO(wk) steps.

Assume now thati is a join node with childrenj1 and j2. Let alsoljh
, h = 1,2, be

two vertex orderings ofGjh
, h = 1,2, respectively, such thatCXjh

(Gjh
, ljh

) = (λjh
,Ajh

),
h = 1,2. We show how to construct a vertex orderingli such thatCXi

(Gi, li) = (λi,Ai).
Notice that, from the algorithmJoin-Node, Ai is a member ofAi1

⊗
Ai2. Recall now

that, from Lemma 14, the procedureConstruct-Join-Ordering(Gj1,Gj2,Xi, lj1, lj2,A) is
able to construct such a vertex ordering. Notice that if, forh = 1,2, we maintain for
eachv ∈ Xjh

a pointer indicating the position of the same vertex inljh
, the procedure

Construct-Join-Ordering(Gj1,Gj2,Xi, lj1, lj2,A) will call the procedureJoin-Orderings
|Xi | times. If now, forh = 1,2, we additionally maintain a data structure associating e
of the “gaps” ofλjh

to the limits of its corresponding sequence of “gaps” inljh
, we can

implement step3 of the procedureJoin-Orderings in O(k) steps. Resuming, we have th
the construction ofli costsO(kw) steps.

Therefore, the computation of a vertex orderinglr whereCXr (G, lr) = (λlr ,Alr), can
be done inO(nkw) steps. Therefore, we have the following analogue of Theorem 17

Theorem 19. Given a graphG with n vertices and a tree decomposition(X,U) of G

of O(n) nodes and width at mostw, the algorithmLayout-Cutwidth checks whether ther
exists a vertex ordering ofV (G) of cutwidth at mostk and, if this is the case, outputs

vertex ordering ofV (G) of cutwidth at mostk in O(wk · ((w +1)!)2(8

3)2w2k·8(w+1)) steps.

44 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

t

rtial
m

com-

h hy-

e
a

hms
s with

ges re-
As k � (w + 1)d logn, we obtain that the algorithmCutwidth can be modified to outpu
an optimal vertex ordering with an additional call toLayout-Cutwidth once the cutwidth
of G has been computed. We refer to this modification as the algorithmMin-Layout-
Cutwidth. Theorem 18, can now be rewritten as follows.

Theorem 20. Given a graphG with n vertices of degree no more thand and a tree
decomposition(X,U) of G with O(n) nodes and width at mostw, the algorithmMin-
Layout-Cutwidth outputs a vertex ordering ofV (G) of minimum cutwidth inO(w3d2 ·
log2 n · ((w + 1)!)2(8

3)2wn8d(w+1)2
) steps.

According to the main result in [5], a minimum width tree decomposition of any pa
w-tree can be constructed inO(wO(w)2O(w3)n) steps (see also [31,34,38]). This algorith
can serve as a preprocessing step to the algorithmLayout-Cutwidth of Theorem 20 that with
input a partialw-treeG with vertices of degree at mostd , outputs a vertex ordering ofG
of minimum cutwidth.

6. Computing the pathwidth of bounded degree partial w-trees

We will now show how to use the algorithms of the previous sections in order to
pute the pathwidth of a partialw-tree with bounded maximum degree.

The definition of treewidth is extended to hypergraphs by replacing edges wit
peredges. We define cutwidth for hypergraphs by extending the definition ofE(S) for
S ⊆ V (G) such thatE(S) contains all the hyperedges with at least one endpoint inS. We
can prove the following extension of 19.

Theorem 21. Given a hypergraphG with n vertices and a tree decomposition(X,U) of G
of O(n) nodes and width at mostw, the algorithmLayout-Cutwidth checks whether ther
exists a vertex ordering ofV (G) of cutwidth at mostk and, if this is the case, outputs
vertex ordering ofV (G) of cutwidth at mostk in O(wk · ((w +1)!)2(8

3)2w2k·8(w+1)) steps.

Proof. By extending Lemma 1 for hypergraphs we assume that(X,U, r) is a nice tree-
decomposition ofG. To prove the theorem, it is sufficient to observe that all the algorit
of the previous sections and [46] can be straightforwardly generalized to hypergraph
the same time costs. In particular, the algorithmsForget-Node andJoin-Node are exactly
the same as they involve only operations on sequences of integers. The only chan
quired, concern the procedureIns, described in [46], and are the following two:

1. The setN should now represent the set{U1, . . . ,Uσ } where{Ut ∪ {u} | 1 � t � σ }
are the hyperedges ofGi that containu as endpoint. For anyUt , 1� t � σ , we set upj l

t

(j r
t) as the smallest (biggest) of the indices corresponding to the vertices ofUt in λ (notice

that in the case whereG is a graphj l
t = j r

t).
Notice that none of the hyperedges ofG can have size bigger thanw + 1, as they have

all to fit in some node of the tree decomposition. Therefore|Ut | � w + 1, 1� t � σ .

Moreover, we can assume that no vertex is an endpoint of more than 2k hyperedges as in

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 45

rtices re-
tep
e

ked

.

t

such a case the cutwidth ofG should be greater thank. Therefore,σ � 2k. These two facts
imply that computingj l

t andj r
t for 1� t � σ can be done inO(kw2) steps.

2. In step2 of Ins, cases (i) and (ii) should now be:

(i) If j r
h � j then setA′ ← A′[0, j l

h − 1] · (A′[j l
h, j] + 1) · A′[j + 1, ρ + 1].

(ii) If j l
h � j + 1 then setA′ ← A′[0, j] · (A′[j + 1, j r

h] + 1) · A′[j r
h + 1, ρ + 1].

(iii) If j l
h � j < j r

h then setA′ ← A′[0, j l
h − 1] · (A′[j l

h + 1, j r
h] + 1) · A′[j r

h + 1, ρ + 1].

The third case above examines the case where the added hyperedge contains ve
siding in both sides of the insertion point. Notice that the time cost of the modified s2
is the same as the time cost of the old one. Finally, the complexity ofIns does not chang
with this small modification as the time required to compute the pairsj l

h, j r
h for each of the

inserted hyperedges does not prevail the time cost of the second step.�
We call a graphtrunked if it does not contain vertices of degree 1. Given a trun

graphG we define itsdual hypergraphasGD = (E(G), {EG(v) | v ∈ V (G)}). In what
follows, we will denote as∆(G) the maximum degree of the vertices of a graphG. The
following lemma shows how to transform a tree decomposition ofG to one ofGD .

Lemma 22. For any trunked graphG, treewidth(GD) � treewidth(G) · ∆(G).

Proof. Let (X,U) be a tree decomposition ofG with width � k. Notice that∆(G) is equal
to the maximum size of a hyperedge inGD . We construct a tree decomposition(Y,U)

of GD using the same treeU and settingYi = {e ∈ E(G) | e ∩ Xi �= ∅}. Notice that, for
any i ∈ V (U), |Yi | � ∆(G) · |Xi |. It remains to prove that(Y,U) is a tree decomposition
Condition (1) is obvious. For condition (2), suppose thate∗ = {e1, . . . , er} is a hyperedge
of GD . By the construction ofe∗, all of its endpoints share a common vertexv of G. Let
Xi be some set inX containingv. From the definition ofYi , all the edges ine∗ will be
members ofYi and condition (2) holds. For any two verticesi, j of U we denote asP(i, j)

the vertices of the path connecting them inU . For condition (3), lete be a vertex ofGD

such thate ∈ Yi ande ∈ Yj for two different verticesi, j of U . It is sufficient to prove tha
for any vertexh ∈ P(i, j), e ∈ Yh. From the definition ofYi , e has an endpointve ∈ V (G)

that belongs toXi . Similarly,e has an endpointue ∈ V (G) that belongs toXj . We consider
two cases. Ifve = ue, then from condition (3) for(X,Y), we get thatv belongs to anyXh

whereh ∈ P(i, j). From the definition ofY , we have that, sinceve = ue is an endpoint
of e, e belongs also to anyYh for any vertexh ∈ P(i, j). From condition (2) for(X,U),
we have that there exists a vertexk of U whereve, ue ∈ Xk . Clearly,k should be a vertex
in P(i, j) in U as, otherwise, eitherve ∈ Xj or ue ∈ Xi , a contradiction. Leth be any
vertex inP(i, k). As ve belongs both toXi and toXk , condition (2) for(X,U) implies that
ve ∈ Xh and from the definition ofYh we have thate ∈ Yh. Finally, if h ∈ P(k, j), then
applying the same argument for this path we can conclude thate ∈ Yh and condition (3)
holds for(Y,U). �

Notice that the proof of the above lemma gives a method to compute(Y,U) from (X,U)
in O(kn∆(G)) steps.

46 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

th

orithm

t

s

s
osition

m-
The notion of linear-width for graphs was introduced by Thomas [47].
The linear-width of a graphG with n vertices is defined as follows. Letl = [e1, . . . , er]

be a linear ordering ofE(G). For i = 1, . . . , r − 1, we defineζl,G(i) = VG(l[1, i]) ∩
VG(l[i + 1, n]) (i.e., ζl,G(i) is the set of vertices ofG that are endpoints of edges in bo
l[1, i] andl[i +1, n]). The linear-width of an orderingl of E(G) is max1�i�n−1{|ζl,G(i)|}.
The linear-width of a graph is the minimum linear-width over all the orderings ofE(G).
From the definitions of dual hypergraph and linear-width, we have the following.

Lemma 23. If G is a trunked graph thenlinear-width(G) = cutwidth(GD).

As a consequence of Theorems 21, Lemma 22, and Lemma 23, we have an alg
for the linear-width of trunked graphs.

Lemma 24. Given a trunked graphG with n vertices of degree no more thand and a tree
decomposition(X,U) of G with O(n) nodes and width at mostw, an ordering ofE(G) of
minimum linear-width can be computed inO(dw3 log2 n ·((dw+1)!)2212dwn8(w+1)(dw+1))

steps.

Proof. Let G be an-vertex graph of treewidthw and∆(G) � d . Let also(U,X) be a
tree decomposition ofG. From Lemma 2, we know that the pathwidth ofG is at most
(w + 1) logn and, as linear-width(G) � pathwidth(G) + 1 (see, e.g., [44] or [45]), we ge
that linear-width(G) � (w + 1) logn + 1. From Lemma 23 we have that cutwidth(GD) =
linear-width(G) � (w + 1) logn + 1. Notice that a vertex ordering ofGD with minimum
cutwidth corresponds to an edge ordering ofG of minimum-linear width. Therefore, it i
sufficient to check whether cutwidth(GD) � k for k = 1, . . . , �(w+1) logn+1� and output
the vertex ordering corresponding to the minimumk for which the result of this check i
positive. To do this, we use the construction of Lemma 22, and get a tree decomp
(Y,U) of GD with treewidth� dw. From Theorem 21, this check requires

O

(
dw3 log2 n · ((dw + 1)!)2

(
8

3

)2dw

2((w+1) logn+1)(8dw+8)

)

= O

(
dw3 log2 n · ((dw + 1)!)2

(
8

3

)2dw

n(w+1)(8dw+8)28dw

)
steps, and the claimed result follows.�

For a proof of the following, see [4].

Lemma 25. If Gn is the graph obtained fromG by replacing every edge inG with two
edges in parallel, thenpathwidth(G) = linear-width(Gn).

It is easy to derive a procedure that given an edge ordering of a graphG with linear-
width at mostk, transforms it to a path decomposition of width at mostk in O(kn) steps
(e.g., see [4,12]). Also observe thatGn is a trunked graph. These facts along with Le

mata 24 and 25 yield the following result.

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 47

-

ed by
ithm
faster

m de-
same
se for
gen-

ase of
ial
cally

lanar

marks

(1977)

ons to
e, IEEE,

om-

mputer
t. Sci.,
Theorem 26. Given a graphG with n vertices of degree no more thand and a tree decom
position(X,U) of G of O(n) nodes and width at mostw, a path decomposition ofG with
minimum width can be constructed inO(dw3 log2 n · ((dw + 1)!)2212dwn8(w+1)(dw+1))

steps.

We mention that, in general, the problem of computing the pathwidth of partialw-trees
can be solved in polynomial time. The algorithm for the general case was propos
Bodlaender and Kloks in [11]. However, the exponent in the complexity of this algor
is quite large for any practical purpose. The algorithm proposed in Theorem 26 is
and can serve as a more realistic approach for partialw-trees with bounded degree.

7. Open problems

We have shown that the cutwidth of graphs with bounded treewidth and maximu
gree can be computed in polynomial time. The problem that remains is to prove the
when the “bounded maximum degree” requirement is removed. Even if this is the ca
pathwidth [11], it seems that our technique cannot be easily modified to solve the
eral problem because it is strongly depending on Lemma 3. However, even in the c
computing the pathwidth of partialw-trees, it is interesting to find realistic polynom
algorithms. Another line of research is to try to solve the problem for specific (typi
small) values of the treewidthw. No algorithm of this type exists for cutwidth whenw > 1,
while, for pathwidth, the best known results are approximation algorithms for outerp
graphs [9,27] and Halin graphs [24] (see also [43]).

Acknowledgment

We wish to thank one of the anonymous referees for his detailed comments and re
that helped us improving the overall presentation of this work.

References

[1] D. Adolphson, Single machine job sequencing with precedence constraints, SIAM J. Comput. 6
40–54.

[2] D. Adolphson, T.C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25 (3) (1973) 403–423.
[3] S. Arora, A. Frieze, H. Kaplan, A new rounding procedure for the assignment problem with applicati

dense graphs arrangements, in: Proc. 37th IEEE Symposium on Foundations of Computer Scienc
1996, pp. 21–30.

[4] D. Bienstock, P. Seymour, Monotonicity in graph searching, J. Algorithms 12 (2) (1991) 239–245.
[5] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. C

put. 25 (6) (1996) 1305–1317.
[6] H.L. Bodlaender, Treewidth: algorithmic techniques and results, in: Mathematical Foundations of Co

Science 1997, 22nd International Symposium, MFCS’97, Proceedings, in: Lecture Notes in Compu

vol. 1295, Springer-Verlag, 1997, pp. 19–36.

48 D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49

(1–2)

on of
ations

, 2003,

3 (2)

tsize,

aphs,

-CS-

search

Meth-

(1989)

blem

s, J. Al-

random

) 313–

iscrete

metrics,

lems

thms,

ork-

s, Free-

ces and

cess.

relia-

.
1996)

n trees,

crete
[7] H.L. Bodlaender, A partialk-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209
(1998) 1–45.

[8] H.L. Bodlaender, M.R. Fellows, D.M. Thilikos, Starting with nondeterminism: The systematic derivati
linear-time graph layout algorithms, in: Proc. 26th International Symposium on Mathematical Found
of Computer Science, MFCS 2003, in: Lectures Notes in Comput. Sci., vol. 2747, Springer-Verlag
pp. 239–248.

[9] H.L. Bodlaender, F.V. Fomin, Approximation of pathwidth of outerplanar graphs, J. Algorithms 4
(2002) 190–200.

[10] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, fron
and shortest elimination tree, J. Algorithms 18 (2) (1995) 238–255.

[11] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of gr
J. Algorithms 21 (1996) 358–402.

[12] H.L. Bodlaender, D.M. Thilikos, Computing small search numbers in linear time, Technical Report UU
1998-05, Department of Computer Science, Utrecht University, 1998.

[13] R.A. Botafogo, Cluster analysis for hypertext systems, in: 16th Annual ACM SIGIR Conference on Re
and Development in Information Retrieval, ACM, 1993, pp. 116–125.

[14] F.R.K. Chung, On the cutwidth and the topological bandwidth of a tree, SIAM J. Algebraic Discrete
ods 6 (2) (1985) 268–277.

[15] F.R.K. Chung, P.D. Seymour, Graphs with small bandwidth and cutwidth, Discrete Math. 75 (1–3)
113–119.

[16] M.J. Chung, F. Makedon, I.H. Sudborough, J. Turner, Polynomial time algorithms for the MIN CUT pro
on degree restricted trees, SIAM J. Comput. 14 (1) (1985) 158–177.

[17] J. Díaz, M. Penrose, J. Petit, M. Serna, Approximating layout problems on random geometric graph
gorithms 39 (1) (2001) 78–117.

[18] J. Díaz, M.D. Penrose, J. Petit, M.J. Serna, Convergence theorems for some layout measures on
lattice and random geometric graphs, Combin. Probab. Comput. 9 (2000) 489–511.

[19] J. Díaz, J. Petit, M. Serna, A survey on graph layout problems, ACM Comput. Surveys 34 (3) (2002
356.

[20] J. Díaz, J. Petit, M. Serna, L. Trevisan, Approximating graph layout problems on random graphs, D
Math. 235 (2001) 245–253.

[21] G. Even, J. Naor, S. Rao, B. Schieber, Divide-and-conquer approximation algorithms via spreading
in: 36th Proc. Foundations of Computer Science, IEEE, 1995, pp. 62–71.

[22] M.R. Fellows, M.A. Langston, On well-partial-order theory and its application to combinatorial prob
of VLSI design, SIAM J. Discrete Math. 5 (1) (1992) 117–126.

[23] M.R. Fellows, M.A. Langston, On search, decision, and the efficiency of polynomial-time algori
J. Comput. System Sci. 49 (3) (1994) 769–779.

[24] F.V. Fomin, D.M. Thilikos, A 3-approximation for the pathwidth of Halin graphs, in: Cologne Twente W
shop on Graphs and Combinatorial Optimization, CTW 2004, 2004.

[25] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completenes
man, San Francisco, CA, 1979.

[26] F. Gavril, Some NP-complete problems on graphs, in: Proc. 11th Conference on Information Scien
Systems, John Hopkins Univ., Baltimore, 1977, pp. 91–95.

[27] R. Govindan, M.A. Langston, X. Yan, Approximating the pathwidth of outerplanar graphs, Inform. Pro
Lett. 68 (1) (1998) 17–23.

[28] L.H. Harper, Optimal assignments of number to vertices, SIAM J. 12 (1) (1964) 131–135.
[29] D.R. Karger, A randomized fully polynomial time approximation scheme for the all-terminal network

bility problem, SIAM J. Comput. 29 (2) (1999) 492–514.
[30] E. Korach, N. Solel, Tree-width, path-width, and cutwidth, Discrete Appl. Math. 43 (1) (1993) 97–101
[31] J. Lagergren, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms 20 (1) (

20–44.
[32] T. Lengauer, Upper and lower bounds on the complexity of the min-cut linear arrangement problem o

SIAM J. Algebraic Discrete Methods 3 (1) (1982) 99–113.
[33] F.S. Makedon, C.H. Papadimitriou, I.H. Sudborough, Topological bandwidth, SIAM J. Algebraic Dis
Methods 6 (3) (1985) 418–444.

D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 25–49 49

(1991)

58 (1–

.), Eu-
1995,

tational

of the

(1983)

(1984)

, 1985,
3–171.

lem,

linear

37 (2)

Appl.

lgo-

titute of

985)
[34] J. Matoušek, R. Thomas, Algorithms finding tree-decompositions of graphs, J. Algorithms 12 (1)
1–22.

[35] B. Monien, I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoret. Comput. Sci.
3) (1988) 209–229.

[36] P. Mutzel, A polyhedral approach to planar augmentation and related problems, in: P. Spirakis (Ed
ropean Symposium on Algorithms, in: Lecture Notes in Comput. Sci., vol. 979, Springer-Verlag,
pp. 497–507.

[37] K. Nakano, Linear layout of generalized hypercubes, in: Advances in Parallel and Distributed Compu
Models, Ft. Lauderdale, FL, 2002, Internat. J. Found. Comput. Sci. 14 (1) (2003) 137–156.

[38] B.A. Reed, Finding approximate separators and computing tree width quickly, in: Proceedings
Twenty-Fourth Annual ACM Symposium on Theory of Computing, ACM Press, 1992, pp. 221–228.

[39] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1)
39–61.

[40] N. Robertson, P.D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1)
49–64.

[41] N. Robertson, P.D. Seymour, Graph minors—a survey, in: Surveys in Combinatorics 1985, Glasgow
in: London Math. Soc. Lecture Note Ser., vol. 103, Cambridge Univ. Press, Cambridge, 1985, pp. 15

[42] F. Shahrokhi, O. Sýkora, L.A. Székely, I. Vrťo, On bipartite drawings and the linear arrangement prob
SIAM J. Comput. 30 (6) (2001) 1773–1789.

[43] K. Skodinis, Construction of linear tree-layouts which are optimal with respect to vertex separation in
time, J. Algorithms 47 (1) (2003) 40–59.

[44] A. Takahashi, S. Ueno, Y. Kajitani, Mixed searching and proper-path-width, Theoret. Comput. Sci. 1
(1995) 253–268.

[45] D.M. Thilikos, Algorithms and obstructions for linear-width and related search parameters, Discrete
Math. 105 (2000) 239–271.

[46] D.M. Thilikos, M.J. Serna, H.L. Bodlaender, Cutwidth I: A linear time fixed parameter algorithm, J. A
rithms 56 (1) (2005) 1–24.

[47] R. Thomas, Tree-decompositions of graphs, Lecture notes, School of Mathematics, Georgia Ins
Technology, Atlanta, GA 30332, USA, 1996.

[48] M. Yannakakis, A polynomial algorithm for the min-cut linear arrangement of trees, J. ACM 32 (4) (1

950–988.

