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Abstract

The r-domination search game on graphs is a game-theoretical
approach to several graph and hypergraph parameters including
treewidth and hypertree width. The task is to identify the minimum
number of cops sufficient to catch the visible and very fast robber. To
catch the robber, at least one of the cops should be within at most r
edges from him. We give a constant factor approximation algorithm
that for every fixed r and graph H , computes the minimum number
of cops required to capture the robber in the r-domination game on
graphs excluding H as a minor.

1 Introduction

Graph searching games are played on graphs (in this paper all graphs are
undirected and simple), where a group of searchers (cops) tries to catch a
fugitive (robber). In the model known as a node searching, the robber stands
on a vertex of the graph and at any moment he can run (arbitrarily fast) to
another vertex along a path in the graph. However he is not allowed to run
through a vertex occupied by a cop. Each cop at any time either stands on a
vertex or is in a helicopter (that is, is temporarily removed from the game).
The aim of cops is to capture the robber by landing a cop via helicopter
on a vertex occupied by the robber and the robber’s objective is to avoid
capture. There are two variants of the game, which were studied intensively
depending on if cops posses complete information on the current location of
the robber (i.e. the robber is visible to cops) [20] or when the cops have no
such information (i.e. the robber is invisible) [13, 15, 16, 18]. It appeared
that the visible case is strongly related to the fundamental graph parameter
called treewidth, and that the invisible case is related to the pathwidth of a
graph. We refer to [10] for further references on graph searching.
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In the domination or r-domination versions of graph searching, cops’ aim
is more modest: instead of capturing the robber their task is that during
the game at least one of the cops will be at distance r or closer to the robber
(the distance is in the standard shortest path metric of the graph). Another
interpretation of the r-domination game is that cops have more power and
can catch the robber not just by occupying his vertex but by entering the
r-neighborhood of the robber’s position. As in the case with classical search
games, there are two versions of the game, one with visible [14] and the
other with invisible robber [2, 9].

In this paper we study the r-domination search game with visible rob-
ber. This game is a natural generalization of the search game introduced
by Seymour and Thomas [20], and thus for r = 0, k + 1 cops can capture
the robber on a graph G if and only if the treewidth of G is at most k.
For r = 1 the r-domination searching is a generalization of the Marshals
and Robber game played on hypergraphs. The Marshals and Robber game
is game-theoretic approach to hypertree-width, another intensively studied
parameter within context of several applications [1, 11, 12]. Kreutzer and
Ordyniak have shown in [14] that computing the minimum number of mar-
shals required to win on a hypegraph can be reduced to the computations of
the the 1-domination cop number of a specific graph. Thus the r-domination
search game is an interesting model serving as a general game-theoretical
model for a number of fundamental parameters.

However, there is a price one has to pay for such a generality—the compu-
tational complexity of the game changes drastically with even small changes
of r, like from 0 to 1. For example, computing the treewidth of a graph, and
thus the minimum number of cops for r = 0 is fixed parameter tractable [3],
while for r = 1 the problem becomes W [1]-hard [14]. The main explanation
of this behavior is that for r ≥ 1 the problem is not closed under the op-
eration of taking a graph minor, and thus most of the powerful techniques
from Graph Minor Theory cannot be applied.

In this paper we give several algorithms computing the minimum num-
ber of cops required to win in the r-dominating search games for graphs
excluding some fixed graph as a minor. For planar graphs, and more gen-
erally, for graphs excluding some fixed apex graph as a minor, we show for
every fixed r ≥ 1, the r-domination cop number of a graph G can be ap-
proximated within the constant multiplicative factor by the treewidth of G.
Since there are constant factor approximation algorithms for the treewidth
of such graphs, our results yields the approximation algorithms. While tech-
niques from Graph Minor Theory do not seem to be applicable for r ≥ 1, we
use the recent results from [8] on contractions in graphs. This type of argu-
ments cannot be extended further. For example, it is well known that the
treewidth of an n×n grid is n. If we add one universal vertex v adjacent to
all vertices of the grid, we obtain a graph of treewdith n+1. This graph also
does not contain a complete graph on 6 vertices K6 as a minor. However, for
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r = 1, one cop placed on v is at distance at most one to every vertex of the
graph, and one cop can always win. Thus on graphs excluding some fixes
graph H as a minor, the r-domination cop number of a graph cannot be
approximated by its treewidth of G. Our approximation algorithm comput-
ing the r-domination cop number of an H-minor free graph G is technical
and its main idea is to find in polynomial time a specific subgraph of G and
to construct from this subgraph of G another H-minor free graph, which
treewidth up to constant factor sandwiches the cop number of G. It can
be noticed that similar approach can be used for a number of graph or hy-
pergraph parameters including fractional and generalized hypertree-width
[7].

2 Definitions and preliminaries

We consider finite undirected graphs without loops or multiple edges. The
vertex set of a graph G is denoted by V (G) and its edge set by E(G), or
simply by V and E if this does not create confusion. If U ⊆ V (G) then
the subgraph of G induced by U is denoted by G[U ]. For a vertex v, the
set of vertices which are adjacent to v is called the (open) neighborhood of
v and denoted by NG(v). The closed neighborhood of v is the set NG[v] =
NG(v) ∪ {v}. For U ⊆ V (G), we put

NG[U ] =
⋃

v∈U

NG[v].

The distance distG(u, v) between vertices u and v in a connected graph G
is the number of edges in a shortest (u, v)-path in G. For a positive integer
r, N r

G[v] = {u ∈ V (G) : distG(u, v) ≤ r} and for U ⊆ V (G),

N (r)
G [U ] =

⋃

v∈U

N (r)
G [v].

Whenever there is no ambiguity we omit the subscripts. If U ⊆ V (G) (resp.
u ∈ V (G) or E ⊂ E(G) or e ∈ E(G)) then G−U (resp. G− u or G−E or
G− e) is the graph obtained from G by the removal of vertices of U (resp.
of vertex u or edges of E or of the edge e). For graphs G1 and G2, G1 ∩G2

(G1 ∪G2 respectively) is the graph with the vertex set V (G1) ∩ V (G2) and
the edge set E(G1)∩E(G2) (the vertex set V (G1)∪V (G2) and the edge set
E(G1) ∪ E(G2) respectively).

Cops and Robber game. We consider a generalization of the Helicopter
Cops and Robber game introduced by Seymour and Thomas [20]. Let G
be a connected undirected graph, and let r be a nonnegative integer. The
distance r domination search game is played by two players: cop and robber.
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The cop-player has a team of cops who attempt to capture the robber. The
robber stands on a vertex of the graph, and can at any time run at great
speed to any other vertex along a path of the graph. However, he is not
permitted to run through a vertex at distance at least r from a vertex
occupied by a cop. Each cop at any time either stands on a vertex or is in
a helicopter (that is, is temporarily removed from the game). The aim of
the cop-player is to capture the robber by landing a cop via helicopter on a
vertex at distance at least r from the vertex occupied by the robber, and the
robber’s objective is to avoid capture. The robber can see the movements
of helicopters and may run to a new vertex before the helicopter lands. We
consider the variant of the game when the robber is visible. For an integer r
and a graph G, we denote by dcr(G) the minimum number of cops sufficient
for the cops to win on graph G and call it the r-domination cop number.

Black White Domination Cops and Robber game. It is convenient
for us to consider an annotated variant of the Domination Cop and Robber
Game. In this variant the robber can only occupy vertices from a prescribed
set and move along edges of the subgraph induced by this set. Let G be a
graph, and let B (black vertices) and W (white vertices) be a partition of
the set of vertices V (G). We assume that B ̸= ∅ (the set W can be empty).
We call a graph with a given partition B and W the black and white graph.
By B(G) and W (G) we denote the set of black vertices and the set of white
vertices of G respectively.

Let G be a black and white graph, and let r be a nonnegative and k
be positive integers. We define the position of the cops as a set of vertices
U ⊂ V (G), |U | ≤ k, occupied by the cops (clearly, we can assume that
each vertex is occupied by at most one cop). We denote by Uk the set of
all possible position of the cops. The position of the robber is a vertex of
B(G) occupied by him. The strategy of cops is a function C : Uk ×B(G) →
U . Calls of this function correspond to moves of cops. If the cops have
a position U and the robber has a position v, then the cops move to the
position U ′ = C(U, v): cops remain on the vertices of U ∩U ′, the cops from
U \ U ′ are removed from the graph, and then cops are placed on vertices
of U ′ \ U . Respectively, we define the strategy of the robber as a function
R : Uk × Uk × B(G) → B(G) such that if v′ = R(U,U ′, v) then there is a

(v, v′)-path P in G[B(G)] with the property V (P )∩N (r)
G [U ∩U ′] = ∅. Calls

of this function corresponds to moves of the robber. If the cops are moving
from a position U to U ′ and the robber occupies v, then he moves from v
to v′ = R(U,U ′, v).

The game is defined by the (possibly infinite) sequence of pairs from
U × B(G) (U0, v0), (U1, v1), . . ., where U0 = ∅, Ui = C(Ui−1, vi−1) and vi =
R(Ui−1, Ui, vi−1). This sequence is finite if there is m ≥ 1 such that vm ∈
Nr(Um). In this case we say that the cop-player wins, otherwise it is said
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that the robber-player wins.
A strategy of cops is called the winning strategy, if cop-players wins

for any choice of a strategy by the robber-player. The r-domination cop
number dcr(G,B(G)) is the minimum number of cops k such that they have
a winning strategy of cops. For W (G) = ∅, we let dcr(G) = dcr(G,V (G)).
The winning strategy for the robber is a strategy such that the robber
wins against any strategy of cops. In what follows we usually give informal
descriptions of strategies of the cops and the robber by describing their
movements.

It is easy to make the following observation.

Proposition 1. For any nonnegative integers r, r′, r ≤ r′, and any black
and white graph G, dcr(G,B(G)) ≥ dcr′(G,B(G)).

Notice also the following.

Proposition 2. Let G be a black and white graph, X ⊆ W (G) and N (r)
G [X]∩

B(G) = ∅. Then dcr(G,B(G)) = dcr(G \X,B(G)).

The complexity of the r-Domination Cops and Robbers problem
was considered in [14]. This problem asks for given nonnegative integer r,
positive integer k and a given connected graph G, whether dcr(G) ≤ k.

Proposition 3 ([14]). For r ≥ 1, the r-Domination Cops and Robbers
problem

• NP-hard,

• W[2]-hard when parameterized by k, and

• there is a constant c such that there is no polynomial time algorithm
that approximates the r-domination cop number for n-vertex graphs
within a multiplicative factor c · log n, unless P ̸= NP.

Contractions and minors. Given an edge e = {x, y} of a graph G, the
graph G/e is obtained from G by contracting the edge e, i.e. the endpoints x
and y are replaced by a new vertex vxy which is adjacent to the old neighbors
of x and y (except x and y). We say that x and y are contracted to vxy,
and we also sometimes say that x is contracted to y (or y to x). For a black
and white graph G, it is assumed that if x ∈ B(G) or y ∈ B(G) then the
obtained vertex vxy is black and vx,y is white otherwise. A graphH obtained
by a sequence of edge-contractions is said to be a contraction of G.

It can be observed that the r-domination cop number is a contraction-
closed parameter.

Proposition 4. Let H be a contraction of a connected black and white
graph G, and let B′ be the set of black vertices of H. For any r ≥ 0,
dcr(H,B(H)) ≤ dcr(G,B(G)).
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It is said that a graph H is a minor of a graph G if H is the contraction
of some subgraph of G.

We say that a graph G is H-minor-free when it does not contain H as a
minor. We also say that a graph class G is H-minor-free (or, excludes H as
a minor) when all its members are H-minor-free.

An apex graph is a graph obtained from a planar graph G by adding a
vertex and making it adjacent to some of the vertices of G. A graph class
G is apex-minor-free if G excludes a fixed apex graph H as a minor.

Grids and their triangulations. Let k and r be positive integers where
k, r ≥ 2. The (k × r)-grid is the Cartesian product of two paths of lengths
k − 1 and r − 1 respectively. A vertex of a (k × r)-grid is a corner if it has
degree 2. Thus each (k× r)-grid has 4 corners. A vertex of a (k× r)-grid is
called internal if it has degree 4, otherwise it is called external.

A partial triangulation of a (k × r)-grid is a planar graph obtained from
a (k × r)-grid (we call it the underlying grid) by adding edges. Let us note
that there are many non-isomorphic partial triangulations of on underlying
grid. For each partial triangulation of a (k×r)-grid we use the terms corner,
internal and external referring to the corners, the internal and the external
vertices of the underlying grid.

We define Γk (see Figure 1)as the following (unique, up to isomorphism)
triangulation of a plane embedding of the (k × k)-grid. Let Γ be a plane
embedding of the (k × k)-grid such that all external vertices are on the
boundary of the external face. We triangulate internal faces of the (k × k)-
grid such that all the internal vertices have degree 6 in the obtained graph
and all non-corner external vertices have degree 4, and then one corner of
degree two is joined by edges with all vertices of the external face (we call
this corner loaded).

Figure 1: The graph Γ6.

We need the following axiliar claim.
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Lemma 1. Let G be a black and white graph such that i) W (G) is an
independent set, ii) for any v ∈ W (G), NG(v) induces a clique in G, and
iii) B(G) induces Γk for some k > 1. Then for any r ≥ 0, dcr(G,B(G)) ≥
k−1
2r+1 .

Proof. We prove that if p < k−1
2r+1 then the robber has a winning strategy on

G against p cops. Let B(G) = {(i, j)|0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1}. It is
assumed that the vertices are numbered in such a way that (i, j) and (i′, j′)
are adjacent in the underlying grid for Γk if and only if i = i′ and |j−j′| = 1
or |i−i′| = 1 and j = j′. Denote byXi the set of vertices {(i, j)|0 ≤ j ≤ k−1}
for i ∈ {0, . . . , k−1}, and let Yj = {(i, j)|0 ≤ i ≤ k−1} for j ∈ {0, . . . , k−1}.
Let also Up be the set of all subset of V (G) with at most p elements (i.e. Up

is the set of all possible positions of p cops). Notice that for any U ∈ Up,

there are i(U), j(U) ∈ {0, . . . , k − 1} such that N (r)
G [U ] ∩ Xi(U) = ∅ and

N (r)
G [U ] ∩ Yj(U) = ∅. We define the robber’s strategy R as follows: for

any U,U ′ ∈ Up and each (i, j) ∈ B(G), R(U,U ′, (i, j)) = (i(U ′), j(U ′)). It
remains to note that if i = i(U) and j = j(U) then Z = Xi∪Yj∪Xi(U ′)∪Yj(U)

induces a connected subgraph in Γk and N (r)
Γk

[U ∩U ′]∩Z = ∅. Therefore R
is a winning strategy for the robber.

Treewidth. A tree decomposition of a graph G is a pair (X , T ) where T
is a tree with nodes {1, . . . ,m} and X = {Xi | i ∈ V (T )} is a collection of
subsets of V (G) (called bags) such that:

1.
⋃

i∈V (T )Xi = V (G);

2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and

3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of
T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi|−
1}. The treewidth of a graph G denoted tw(G) is the minimum width over
all tree decompositions of G.

It is well known that Seymour and Thomas [20] established a close con-
nection between treewidth and graph searching.

Proposition 5 ([20]). For any connected graph G, dc0(G) = tw(G) + 1.

Surfaces. A surface Σ is a compact 2-manifold without boundary (we
always consider connected surfaces). Whenever we refer to a Σ-embedded
graph G we consider a 2-cell embedding of G in Σ. To simplify notations,
we do not distinguish between a vertex of G and the point of Σ used in the
drawing to represent the vertex or between an edge and the line representing
it. We also consider a graph G embedded in Σ as the union of the points
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corresponding to its vertices and edges. That way, a subgraph H of G
can be seen as a graph H, where H ⊆ G. Recall that ∆ ⊆ Σ is an open
(resp. closed) disc if it is homeomorphic to {(x, y) : x2 + y2 < 1} (resp.
{(x, y) : x2 + y2 ≤ 1}). The Euler genus of a non-orientable surface Σ is
equal to the non-orientable genus g̃(Σ) (or the crosscap number). The Euler
genus of an orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus
of Σ. We refer to the book of Mohar and Thomassen [17] for more details
on graphs embeddings. The Euler genus of a graph G (denoted by eg(G))
is the minimum integer γ such that G can be embedded on a surface of the
Euler genus γ.

3 The r-domination cop number for apex-minor-

free graphs

We prove here that the r-domination cop number of an apex-minor-free
graphs can be approximated by its treewidth.

Theorem 1. Let r be a nonnegative integer and let H be an apex graph.
Then for any connected graph G excluding H as a minor, it holds that
dcr(G) − 1 ≤ tw(G) ≤ cH,r · dcr(G) where cH,r is a constant depending
only on H and r.

Proof. By Proposition 5, it is sufficient to prove this theorem for r > 0. The
first inequality follows immediately from Propositions 1 and 5. The proof of
the second inequality is based on the results established in [8].

Proposition 6 ([8]). For every apex graph H, there is cH > 0 such that
every connected H-minor-free graph of treewidth at least cH · k contains Γk

as a contraction.

By this proposition and Proposition 4, it remains to prove that there is
a constant cr (which depend only on r) such that k ≤ cr · dcr(Γk), but it
follows immediately from Lemma 1.

4 The r-domination cop number for H-minor-free

graphs

The following theorem is the main result of this paper.

Theorem 2. Let r be a positive integer and H be a graph. There is a
polynomial time algorithm that given a connected graph G excluding H as
a minor returns a cH,r-factor approximation of dcr(G), where cH,r is a
constant depending only on H and r.

The remaining part of this section is devoted to the proof of Theorem 2.
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4.1 Graph minor theorem and preliminary results

The proof of Theorem 2 is based the Excluded Minor Theorem from the
Graph Minor theory. Before we state it, we need some definitions.

Definition 1 (Clique-Sums). Let G1 = (V1, E1) and G2 = (V2, E2) be two
disjoint graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊆ Vi, form a
clique of size h and let G′

i be the graph obtained from Gi by removing a set
of edges (possibly empty) from the clique Gi[Wi]. Let F : W1 → W2 be a
bijection between W1 and W2. We define the h-clique-sum of G1 and G2,
denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if there is no confusion, as the
graph obtained by taking the union of G′

1 and G′
2 by identifying w ∈ W1

with F (w) ∈ W2, and by removing all the multiple edges. The image of the
vertices of W1 and W2 in G1 ⊕G2 is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible
that they had edges which were removed by clique-sum operation. Such
edges are called virtual edges of G. We remark that ⊕ is not well defined;
different choices of G′

i and the bijection F could give different clique-sums.
A sequence of h-clique-sums, not necessarily unique, which result in a graph
G, is called a clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface with cycles
C1, . . . , Ch such that each cycle Ci is the border of a open disc ∆i in Σ. A
graph G is h-nearly embeddable in Σ, if G has a subset Z of size at most
h, called apices, such that there are (possibly empty) subgraphs R0, . . . , Rh

of G \ Z such that

i) G′ = G \ Z = R0 ∪R1 ∪ · · · ∪Rh

ii) G0 is embeddable in Σ such that V (R0) ∩
⋃

i=1,...,h∆i = ∅, we fix an
embedding of G0,

iii) graphs R1, . . . , Rh (called vortices) are pairwise disjoint,

iv) for 1 ≤ i ≤ h, let Ui := {ui1 , . . . , uimi
} = V (R0) ∩ V (Ri), Ri has a

path decomposition (Bij), 1 ≤ j ≤ mi, of width at most h such that

a) for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have uj ∈ Bij,

b) for 1 ≤ i ≤ h, we have V (R0) ∩ Ci = {ui1 , . . . , uimi
} and the

points ui1 , . . . , uimi
appear on Ci in this order (either if we walk

clockwise or anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [19]
and is the cornerstone of Robertson and Seymour’s Graph Minors theory.
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Proposition 7 ([19]). For every non-planar graph H, there exists an integer
cH , depending only on H, such that every graph excluding H as a minor can
be obtained by cH-clique-sums from graphs that can be cH-nearly embedded
in a surface Σ in which H cannot be embedded. Moreover, while applying
each of the clique sums, at most three vertices from each summand other
than apices and vertices in vortices are identified.

Let G be a graph and let C = {K1, . . . ,Kr} be a collection of cliques of
G. Then we define K(G, C) as the set containing every of graph that can be
constructed from G by adding, for each i = 1, . . . , r, a new vertex vi, joining
it by edges with all vertices of Ki and removing some edges of Ki.

We already mentioned Proposition 6 which says that for every apex
graph H, there is cH > 0 such that every connected H-minor-free graph
of treewidth at least cH · k contains Γk as a contraction. The proof of this
statement (and other results of [8]), was based on the following proposition
(the proof is implicit in [8]).

Proposition 8 ([8]). For any surface Σ, there is a constant c > with the fol-
lowing property: Let G be a connected graph h-nearly embedded in Σ without
apices, where G = F0 ∪ F1 ∪ · · · ∪ Fh with vortices F1, . . . , Fh. Suppose that
the cycles C1, . . . , Ch are borders of non-intersecting open discs ∆1, . . . ,∆h

in Σ, and

i) F0 is embedded in Σ in such a way that V (F0) ∩
⋃

i=1,...,h∆i = ∅,

ii) for 1 ≤ i ≤ h, V (F0) ∩ V (Gi) ⊆ Ci.

Let also K = {K1, . . . ,Kr} be a collection of cliques in G and let Ĝ ∈
K(G,K). Then if tw(G) ≥ c · k, there is an open disk ∆ in Σ with border a
cycle C of F0 where ∆ ∩

⋃

i=1,...,h∆i = ∅ and such that Ĝ can be contracted
to Γk in a way that

a) each vertex vi is contracted to some vertex of Ki for 1 ≤ i ≤ r,

b) all vertices of G which do not lay on ∆ are contracted to the loaded
corner of Γk,

c) for each face of G∩∆, the vertices on the boundary of it are contracted
to vertices laying on the boundary of one face (triangle) of Γk.

Now we are ready to describe our approximation of the r-domination
cop number for H-minor-free graphs. Let H be a graph. We assume that
H is not planar (otherwise we can apply Theorem 1). Let G be a graph
that does not contain H as a minor. Let G1 ⊕ · · ·⊕Gm be a cH -clique-sum
decomposition of G. Denote by Zi the set of apices of Gi. For i = 1, . . . ,m,

we define F (Gi) as the graph obtained if we consider Gi−N (r)
G [Zi] and then
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we remove each virtual edge {x, y} of Gi such that all (x, y)-paths in G

whose internal vertices are not in V (Gi) are intersected by N (r)
G [Zi].

The proof of Theorem 2 is based on the following theorem.

Theorem 3. Let r be a positive integer, let H be a graph and let G be a
connected graph excluding H. Let also k = max{tw(F (Gi)) | i = 1, . . . , r}.
Then, dcr(G)− cH,r ≤ k ≤ cH,r ·dcr(G) where cH,r is a constant depending
only on H and r.

It is known that by the result of Demaine et al. [5] a clique-sum decom-
position can be obtained in time O(nc) for some constant c which depends
only from H (see also [4]). As far as we constructed summands Gi, the con-
struction of graphs F (Gi) can be done in polynomial time. Moreover, since
the algorithm of Demaine et al. provides CH -nearly embeddings of these
graphs, it is possible to use it to construct a polynomial constant factor
approximation algorithm for the computation of tw(F (Gi).

The remaining part of this section contains the proof of Theorem 3

4.2 Proof of the lower bound

We start with the proof of the first inequality.

Claim 1. dcr(G) ≤ k + 2cH + 1.

Proof. Let p = k + 2cH + 1. We describe a winning strategy for p cops on
H.

The clique-sum decomposition G = G1⊕G2⊕· · ·⊕Gm can be considered
as a tree decomposition (X , T ) of G for some tree T with nodes {1, 2, . . . ,m}
with the bags Xi = V (Gi), i.e. the vertex sets of the summands are the
bags of this decomposition. The idea behind the winning strategy for cops
is to “chase” the robber in the graph along m + 1 decompositions: one is
induced by the clique-sum decomposition and others are tree decompositions
of F (Gi).

Let us note that the definition of F (Gi) yields the following: if x, y ∈

V (F (Gi), and there is a (x, y)-path in G − N (r)
G [Zi] with all inner vertices

not in F (Gi), then {x, y} is an edge of F (Gi). (Indeed, if {x, y} is an edge
of G, then it is also an edge of F (Gi). If {x, y} /∈ E(G) but such a path
exits, then {x, y} is a virtual edge in Gi and by the definition of F (Gi), such
an edge also is an edge of F (Gi).)

For i ∈ {1, 2, . . . ,m}, let (Xi, T (i)) be a tree decomposition of F (Gi)
of width at most k. We assume that trees T and T (1), T (2), . . . , T (m) are
rooted trees with roots r and r1, r2, . . . , rm correspondingly. For a node x

of T (i), we denote by X(i)
x the bag of the tree-decomposition of F (Gi) which

corresponds to x.
For a node i ∈ V (T ) and its parent j (in T ), we define S = V (Gi)∩V (Gj).

(If i = r then we put S = ∅.) By the definition of the clique-sum, |S| ≤
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cH . Assume that at most cH cops are already placed on the all vertices S.
Assume also that the robber occupies some vertex of Gi or Gi′ where i′ is
a descendant of i in T . We put at most cH cops on Zi. Clearly, the robber

now cannot stay on the vertices of N (r)
G [Zi]. Note also he can not go through

the separator S in G since all vertices of S are occupied by the cops. Now

cops start to “chase” the robber in Gi−N (r)
G [Zi] along T (i). We put at most

k+1 cops on the vertices of the bag X(i)
ri in the tree-decomposition of F (Gi).

Assume now that all vertices of some bag X(i)
x for x ∈ V (T (i)) are occupied

by the cops, and that the robber can only occupy (or move to) vertices of

X(i)
y where y is a child of x in T (i) or he can only occupy vertices of X(i)

y′

where y′ is a descendant of y in T (i). Then we remove cops from X(i)
x \X(i)

y

and place cops on all vertices of X(i)
y \X(i)

x . This maneuver can be done by
making use of at most k + 1 cops. We put x = y and repeat this operation

until the robber is “pushed” out of V (Gi) \N
(r)
G [Zi].

Let p be a child of i in T such that the robber now can occupy only
the vertices of Gp or Gp′ where p′ is a descendant of p in T . Let S′ =
V (Gi) ∩ V (Gp). Since |S′| ≤ cH , we have that at most cH cops can be
moved to S′ from S and, after that, all other cops can be removed from G.

We apply the described strategy of the cops starting from i = r until the
robber is captured in some leaf-node of T . For every node of T we have used
at most CH cops to occupy apices, at most cH cops to occupy the vertices of
the clique-sum, and at most k + 1 cops to push the robber out of Gi. Thus
in total at most 2cH + k + 1 cops have a winning strategy on G.

4.3 Proof of the upper bound

Now our aim is to prove the second inequality.

Claim 2. There is a constant cH,r such that k ≤ cH,r · dcr(G).

Proof. Assume that k = tw(F (Gi)) for some 1 ≤ i ≤ m, and denote F =
F (Gi). Assume that F is connected (otherwise let F be a component of

F (Gi) with treewidth k). Consider a component of G − N (r)
G [Zi] which

contains vertices of V (F ), denote by B(G) the set of its vertices and let
W (G) = V (G) \B(G). Clearly, dcr(G) ≥ dcr(G,B(G)). By Proposition 2,
dcr(G,B(G)) ≥ dcr(G − Zi, B(G)). Also using this proposition we can
assume that G′ = G− Zi is connected (otherwise vertices of components of
G − Zi which do not contain B(G) can be removed, since they are at least
(r+1)-distant from vertices of B(G)). Now we contract all edges {x, y} of G′

such that either x, y ∈ W (G′) or x, y ∈ B(G′) \ V (F ). Denote the obtained
graph by Ĝ, and let F̂ be the subgraph of Ĝ induced by B(Ĝ). Note that
W (Ĝ) is an independent set of Ĝ. By Proposition 4, dcr(G′, B(G)) ≥
dcr(Ĝ,B(Ĝ)). Hence dcr(G) ≥ dcr(Ĝ,B(Ĝ)).
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Recall that all summands in the clique-sum decomposition of G can be
cH -nearly embedded in some surface Σ in which H cannot be embedded in a
such way that while applying each of the clique sums, at most three vertices
from each summand other than apices and vertices in vortices are identified.
Hence Gi can be embedded in Σ in this way, and we fix the embedding
assuming that Gi = R0∪R1∪ · · ·∪RCH

with vortices R1, . . . , RcH . Suppose
that cycles C1, . . . , Ch are borders of non-intersecting open discs∆1, . . . ,∆cH

in Σ such that

• R0 is embedded in Σ in such a way that V (R0) ∩
⋃

j=1,...,h∆j = ∅,

• for 1 ≤ j ≤ cH , V (R0) ∩ V (Rj) ⊆ Cj .

The graph F is a subgraph of Gi. Therefore, the cH -nearly embedding of
Gi induces cH -nearly embedding of F such that

i) F = F0 ∪ F1 ∪ · · · ∪ FCH
and Fj = Rj ∩ F for 0 ≤ j ≤ cH (some

intersections may be empty),

ii) F1, . . . , FcH are vortices,

iii) F0 is embedded in Σ in such a way that V (F0) ∩
⋃

j=1,...,h∆j = ∅,

iv) for 1 ≤ j ≤ cH , V (F0) ∩ V (Fj) ⊆ Cj.

Recall that other summands in the clique-sum decomposition of G are joined
to Gi by means of clique-sum operations. It follows that there is a collection
of cliques C = {K1, . . . ,Kr} in F such that F̂ is a graph in K(G, C). By
Proposition 8, there exists a constant c > 0, depending only on Σ, such that
if tw(F ) ≥ c · p, then there is a open disk ∆ in Σ with border a cycle C of
F0, where ∆ ∩

⋃

j=1,...,CH
∆j = ∅ and such that F̂ can be contracted to Γp

in a way that

a) each vertex vj is contracted to some vertex of Kj for 1 ≤ j ≤ r,

b) all vertices of F which do not lay on ∆ and all vertices laying on C
are contracted to the loaded corner of Γp,

c) for each face of F ∩ ∆, vertices which lay on the boundary of it are
contracted to vertices laying on the boundary of one face (triangle) of
Γp.

Let p =
⌊

tw(F )
c

⌋

=
⌊

k
c

⌋

. We consider Ĝ and contact in it the edges that are

contracted in F̂ in order to construct Γp. Denote the obtained black and
white graph by Q. Now the set B(Q) induces Γp and W (Q) is independent.
By Proposition 4, dcr(Ĝ,B(Ĝ)) ≥ dcr(Q,B(Q)).

Recall that embedding of F is induced by the embedding of Gi. Partic-
ularly, ∆ ∩ Gi is a plane graph embedded in the disk ∆ and the boundary
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of the disk is a cycle in F . It follows that after all contractions each vertex
of W (Q) is adjacent to a clique in B(Q). Therefore it is possible to apply
Lemma 1 and conclude that dcr(Q,B(Q)) ≥ p−1

2r+1 and dcr(G) ≥ p−1
2r+1 .

It remains to note that (2r + 1)dcr(G) − 1 ≥ p ≥ k
c − 1 and let cH,r =

c(2r + 1).

5 Conclusion

Anything to conclude?
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