
The Parameterized Complexity of Graph Cyclability∗

Petr A. Golovach† Marcin Kamiński‡ Spyridon Maniatis§

Dimitrios M. Thilikos§,¶

Abstract

The cyclability of a graph is the maximum integer k for which every k vertices lie
on a cycle. The algorithmic version of the problem, given a graph G and a non-
negative integer k, decide whether the cyclability of G is at least k, is NP-hard. We
study the parametrized complexity of this problem. We prove that this problem,
parameterized by k, is co-W[1]-hard and that its does not admit a polynomial kernel
on planar graphs, unless NP ⊆ co-NP/poly. On the positive side, we give an FPT

algorithm for planar graphs that runs in time 22
O(k2 log k) ·n2. Our algorithm is based

on a series of graph-theoretical results on cyclic linkages in planar graphs.

Keywords: cyclability, linkages, treewidth, parameterized complexity

1 Introduction

In the opening paragraph of his book Extremal Graph Theory Béla Bollobás notes: “Per-

haps the most basic property a graph may posses is that of being connected. At a more

refined level, there are various functions that may be said to measure the connectedness of

a connected graph.” Indeed, connectivity is one of the fundamental properties considered

in graph theory and studying different variants of connectivity provides a better under-

standing of this property. Many such alternative connectivity measures have been studied

in graph theory but very little is known about their algorithmic properties. The main

∗The first author was supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959. The second au-
thor was supported by the Foundation for Polish Science (HOMING PLUS/2011-4/8) and National
Science Center (SONATA 2012/07/D/ST6/02432). The third and the fourth author were co-financed
by the E.U. (European Social Fund - ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)
- Research Funding Program: “Thales. Investing in knowledge society through the European So-
cial Fund”. Emails: Petr.Golovach@ii.uib.no, mjk@mimuw.edu.pl, spyridon.maniatis@gmail.com,
sedthilk@thilikos.info
†Department of Informatics, University of Bergen, Bergen, Norway.
‡Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
§Department of Mathematics, National & Kapodistrian University of Athens, Athens, Greece.
¶AlGCo project-team, CNRS, LIRMM, Montpellier, France.

1

goal of this paper is to focus on one such parameter – cyclability – from an algorithmic

point of view. Cyclability can be thought of as a quantitative measure of Hamiltonicity,

or as a natural “tuning” parameter between connectivity and Hamiltonicity.

Cyclability. For a positive integer k, a graph G is k-cyclable if every k vertices of G lie

on a common cycle; we assume that any graph is 1-cyclable. The cyclability of a graph

G is the maximum integer k for which G is k-cyclable. Cyclability is well studied in

the graph theory literature. Dirac proved that the cyclability of a k-connected graph

is at least k, for k ≥ 2 [?]. Watkins and Mesner [?] characterized the extremal graphs

for the theorem of Dirac. There is a variant of cyclability restricted only to a set of

vertices of a graph. Generalizing the theorem of Dirac, Flandrin et al. [?] proved that if

a set of vertices S in a graph G is k-connected, then there is a cycle in G through any k

vertices of S. (A set of vertices S is k-connected in G if a pair of vertices in S cannot be

separated by removing at most k−1 vertices of G.) Another avenue of research is lower-

bounds on cyclability of graphs in restricted families. For example, every 3-connected

claw-free graph has cyclability at least 6 [?] and every 3-connected cubic planar graph

has cyclability at least 23 [?].

Clearly, a graph G is Hamiltonian if and only if its cyclability equals |V (G)|. There-

fore, we can think of cyclability as a quantitive measure of Hamiltonicity. A graph G is

hypohamiltonian if it is not Hamiltonian but all graphs obtained from G by deleting one

vertex are. Clearly, a graph G is hypohamiltonian if and only if its cyclability equals

|V (G)| − 1. Hypohamiltonian graphs appear in combinatorial optimization and are used

to define facets of the traveling salesman polytope [?]. Curiously, the computational

complexity of deciding whether a graph is hypohamiltonian seems to be open.

To our knowledge no algorithmic study of cyclability has been done so far. In this

paper we initiate this study. For this, we consider the following problem.

Cyclability

Input: A graph G and a non-negative integer k.

Question: Is every k-vertex set S in G cyclable, i.e., is there

a cycle C in G such that S ⊆ V (C)?

Cyclability with k = |V (G)| is Hamiltonicity and Hamiltonicity is NP-

complete even for planar cubic graphs [?]. Hence, we have the following.

Proposition 1.1. Cyclability is NP-hard for cubic planar graphs.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗×N, where Σ is

a finite alphabet. A parameterized problem has as instances pairs (I, k) where I ⊆ Σ∗ is

the main part and k ∈ N is the parameterized part. Parameterized Complexity settles the

question of whether a parameterized problem is solvable by an algorithm (we call it FPT-

algorithm) of time complexity f(k) · |I|O(1) where f(k) is a function that does not depend

on n. If such an algorithm exists, we say that the parameterized problem belongs to the

class FPT. In a series of fundamental papers (see [?, ?, ?, ?]), Downey and Fellows defined

a series of complexity classes, such as W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ XP and

2

proposed special types of reductions such that hardness for some of the above classes

makes it rather impossible that a problem belongs to FPT (we stress that FPT ⊆W[1]).

We mention that XP is the class of parameterized problems such that for every k there

is an algorithm that solves that problem in time O(|I|f(k)), for some function f (that

does not depend on |I|). For more on parameterized complexity, we refer the reader to

[?] (see also [?], [?], and [?]).

Our results. In this paper we deal with the parameterized complexity of Cyclability

when parameterized by k. It is easy to see that Cyclability is in XP. For a graph G,

we can check all possible subsets X of V (G) of size k. For each subset X, we consider k!

orderings of its vertices, and for each sequence of k vertices x1, . . . , xk of X, we use the

main algorithmic result of Robertson and Seymour in [?], to check whether there are k

disjoint paths that join xi−1 and xi for i ∈ {1, . . . , k} assuming that x0 = xk. We return

a yes-answer if and only if we can obtain the required disjoint paths for each set X, for

some ordering.

Is it possible that Cyclability is FPT when parameterized by k? Our results are

the following:

Our first results is that an FPT-algorithm for this problem is rather unlikely as it is

co-W[1]-hard even when restricted to split graphs1:

Theorem 1.1. It is W[1]-hard to decide for a split graph G and a positive integer k,

whether G has k vertices such that there is no cycle in G that contains these k vertices,

when the problem is parameterized by k.

On the positive side we prove that the same parameterized problem admits an FPT-

algorithm when its input is restricted to be a planar graph.

Theorem 1.2. The Cyclability problem, when parameterized by k, is in FPT when

its input graphs are restricted to be planar graphs. Moreover, the corresponding FPT-

algorithm runs in 22
O(k2 log k) · n2 steps.

Actually, our algorithm solves the more general problem where the input comes with

a subset R of annotated vertices and the question is whether every k-vertex subset of R

is cyclable.

Finally, we prove that even for the planar case, the following negative result holds.

Theorem 1.3. Cyclability, parameterized by k, has no polynomial kernel unless NP ⊆
co-NP/poly when restricted to cubic planar graphs.

The above result indicates that the Cyclability does not follow the kernelization

behavior of many other problems (see, e.g., [?]) for which surface embeddability enables

the construction of polynomial kernels.

1A split graph is any graph G whose vertex set can be paritioned into two sets A and B such that
G[A] is a complete graph and G[B] is an edgeless graph.

3

Our techniques. Theorem ?? is proved in Section ?? and the proof is a reduction from

the standard parameterization of the Clique problem.

The two key ingredients in the proof of Theorem ?? are a new, two-step, version of

the irrelevant vertex technique and a new combinatorial concept of cyclic linkages along

with a strong notion of vitality on them (vital linkages played an important role in the

Graph Minors series, in [?] and [?]). The proof of Theorem ?? is presented in Section ??.

Below, we give a rough sketch of our method.

We work with a variant of Cyclability in which some vertices (initially all) are

colored. We only require that every k colored vertices lie on a common cycle. If the

treewidth of the input graph G is “small” (bounded by an appropriate function of k), we

employ a dynamic programming routine to solve the problem. Otherwise, there exists a

cycle in a plane embedding of G such that the graph H in the interior of that cycle is

“bidimensional” (contains a large subdivided wall) but is still of bounded treewidth. This

structure permits to distinguish in H a sequence C of, sufficiently many, concentric cycles

that are all traversed by some, sufficiently many, paths of H. Our first aim is to check

whether the distribution of the colored vertices in these cycles yields some “big uncolored

area” of H. In this case we declare some “central” vertex of this area problem-irrelevant

in the sense that its removal creates an equivalent instance of the problem. If such an

area does not exists, then R is “uniformly” distributed inside the cycle sequence C. Our

next step is to set up a sequence of instances of the problem, each corresponding to the

graph “cropped” by the interior of the cycles of C, where all vertices of a sufficiently

big “annulus” in it are now uncolored. As the graphs of these instances are subgraphs

of H and therefore have bounded treewidth, we can get an answer for all of them by

performing a sequence of dynamic programming calls (each taking a linear number of

steps). At this point, we prove that if one of these instances is a no-instance then initial

instance is a no-instance, so we just report it and stop. Otherwise, we pick a colored

vertex inside the most “central” cycle of C and prove that this vertex is color-irrelevant,

i.e., an equivalent instance is created when this vertex is not any more colored. In any

case, the algorithm produces either a solution or some “simpler” equivalent instance that

either contains a vertex less or a colored vertex less. This permits a linear number of

recursive calls of the same procedure. To prove that these two last critical steps work as

intended, we have to introduce several combinatorial tools. One of them is the notion of

strongly vital linkages, a variant of the notion of vital linkages introduced in [?], which

we apply to terminals traversed by cycles instead of terminals linked by paths, as it has

been done in [?]. This notion of vitality permits a significant restriction of the expansion

of cycles which certify that sets of k vertices are cyclable and is able to justify both

critical steps of our algorithm. The proofs of the combinatorial results that support

our algorithm are presented in Section ?? and we believe that they have independent

combinatorial importance.

The proof of Theorem ?? is given in Section ?? and is based on the cross-composition

technique introduced by Bodlaender, Jansen, and Kratsch in [?]. We show that a variant

of the Hamiltonicity problem AND-cross-composes to Cyclabilty.

Structure of the paper. The paper is organized as follows. In Section ?? we give a

4

set of definitions that are necessary for the presentation of our algorithm. The main

steps of the algorithm are presented in Section ?? and the combinatorial results (along

with the necessary definitions) are presented in Section ??. Section ?? is devoted to

a dynamic programming algorithm for Cyclability and Section ?? contains the co-

W[1]-hardness of Cyclability for general graphs and the proof of the non-existence

of a polynomial kernel on planar graphs. We conclude with some discussion and open

questions in Section ??.

2 Definitions and preliminary results

For any graph G, V (G) (respectively E(G)) denotes the set of vertices (respectively set of

edges) of G. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G),

and we denote this by G′ ⊆ G. If S is a set of vertices or a set of edges of a graph

G, graph G \ S is the graph obtained from G after the removal of the elements of S.

Given a S ⊆ V (G) we define G[S] as the graph obtained from G if we remove from it all

vertices not belonging to S. Also, given that S ⊆ E(G), we denote by G[S] the graph

whose vertex set is the set of the endpoints of the edges in S and whose edge set is S.

Given two graphs G1 and G2, we define G1∩G2 = (V (G1)∩V (G2), E(G1)∩E(G2)) and

G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). Let G be a family of graphs. We denote

by ∪∪∪∪∪∪∪∪∪G the graph that is the union of all graphs in G. For every vertex v ∈ V (G), the

neighborhood of v in G, denoted by NG(v), is the subset of vertices that are adjacent

to v, and its size is called the degree of v in G, denoted by degG(v). The maximum

(respectively minimum) degree ∆(G) (respectively δ(G)) of a graph G is the maximum

(respectively minimum) value taken by degG(v) over v ∈ V (G). For a set of vertices U,

NG(U) =
⋃
v∈U NG(v) \U . A cycle of G is a subgraph of G that is connected and all its

vertices have degree 2. We call a set of vertices S ⊆ V (G) cyclable if for some cycle C

of G, it holds that S ⊆ V (C). A cycle C in a graph G is Hamiltonian if V (C) = V (G).

Respectively, a graph H is Hamiltonian if it has a Hamiltonian cycle.

Treewidth. A tree decomposition of a graph G is a pair D = (X , T) in which T is a

tree and X = {Xi | i ∈ V (T)} is a family of subsets of V (G) such that:

• ⋃i∈V (T)Xi = V (G)

• for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (T) such that both u and v

belong to Xi

• for all v ∈ V, the set of nodes {i ∈ V (T) | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition is max{|Xi| | i ∈ V (T)}− 1. The treewidth of a graph

G (denoted by tw(G)) is the minimum width over all possible tree decompositions of G.

Concentric cycles. Let G be a graph embedded in the sphere S0 and let D =

{D1, . . . , Dr}, be a sequence of closed disks in S0. We call D concentric if D1 ⊆ D2 ⊆

5

· · · ⊆ Dr and no point belongs to the boundary of two disks in D. We call a sequence

C = {C1, . . . , Cr}, r ≥ 2, of cycles of G concentric if there exists a concentric sequence of

closed disks D = {D1, . . . , Dr}, such that Ci is the boundary of Di, i ∈ {1, . . . , r}. For

i ∈ {1, . . . , r}, we set C̄i = Di, C̊i = C̄i \Ci, and Ĉi = G∩Di (notice that C̄i and C̊i are

sets while Ĉi is a subgraph of G). Given i, j with i ≤ j − 1, we denote by Âi,j the graph

Ĉj \ C̊i. Finally, given a q ≥ 1, we say that a vertex set R ⊆ V (G) is q-dense in C if, for

every i ∈ {1, . . . , r − q + 1}, V (Âi,i+q−1) ∩R 6= ∅.

Railed annulus. Let r ≥ 2 and q ≥ 1 be two integers and let G be a graph em-

bedded on the sphere S0. A (r, q)-railed annulus in G is a pair (C,W) such that

C = {C1, C2, . . . , Cr} is a sequence of r concentric cycles that are all intersected by

a sequence W of q paths W1,W2, . . . ,Wq (called rails) in such a way that ∪∪∪∪∪∪∪∪∪W ⊆ A1,r

and the intersection of a cycle and a rail is always connected, that is, it is a (possibly

trivial) path (see Figure ?? for an example).

Figure 1: A (10,15)-railed annulus.

Walls and subdivided walls. Let h be a integer and h ≥ 1. A wall of height h is the

graph obtained from a ((h+1)×(2 ·h+2))-grid with vertices (x, y), x ∈ {1, . . . , 2 ·h+4},
y ∈ {1, . . . , h + 1}, after the removal of the “vertical” edges {(x, y), (x, y + 1)} for odd

x+ y, and then the removal of all vertices of degree 1. We denote such a wall by Wh. A

subdivided wall of height h is a wall obtained from Wh after replacing some of its edges

by paths without common internal vertices (see Fig. ?? for an example). The perimeter

PW of a subdivided wall W is the cycle defined by its boundary. Let C2 = PW and let

6

C1 be any cycle of W that has no common vertices with PW . Notice that C = {C1, C2}
is a sequence of concentric cycles in G. We define the compass KW of W in G as the

graph Ĉ2.

Layers of a wall. Let W be a subdivided wall of height h ≥ 2. The layers of W

are recursively defined as follows. The first layer, J1, of W is its perimeter. For i ∈
{2, . . . , bh2 c}, the i-th layer, Ji, of W is the perimeter of the subwall W ′ obtained from

W by removing its perimeter and repetitively removing occurring vertices of degree 1.

We denote the layer set of W by JW = {J1, . . . , Jbh
2
c}

Figure 2: A subdivided wall of height 9. The white squares represent the subdivision

vertices. The bold curves are its layers and the bold-dashed curve is its perimeter.

Given a graph G we denote by gw(G) the maximum integer h for which G contains a

subdivided wall of height h as a subgraph. The next lemma follows easily by combining

results in [?], [?], and [?].

Lemma 2.1. If G is a planar graph, then tw(G) ≤ 9 · gw(G) + 1.

3 Vital cyclic linkages

Tight concentric cycles. Let G be a graph embedded in the sphere S0. A sequence

C = {C1, . . . , Cr} of concentric cycles of G is tight in G, if

• C1 is surface minimal, i.e., there is no closed disk D of S0 that is properly contained

in C̄1 and whose boundary is a cycle of G;

• for every i ∈ {1, . . . , r− 1}, there is no closed disk D such that C̄i ⊂ D ⊂ C̄i+1 and

such that the boundary of D is a cycle of G.

See Figure ?? for a an example of the tightness definition.

7

Figure 3: A sequence of three tight concentric cycles. The addition of any of the dashed

edges makes the sequence non-tight.

Graph Linkages. Let G be a graph. A graph linkage in G is a pair L = (H,T) such

that H is a subgraph of G without isolated vertices and T is a subset of the vertices

of H, called terminals of L, such that every vertex of H with degree different than 2 is

contained in T . The set P(L), which we call path set of the graph linkage L, contains

all paths of H whose endpoints are in T and do not have any other vertex in T . The

pattern of L is the graph

(T,
{
{s, t} | P(L) contains a path from s to t in H

}
).

Two graph linkages of G are equivalent if they have the same pattern and are isomorphic

if their patterns are isomorphic. A graph linkage L = (H,T) is called weakly vital (reps.

strongly vital) in G if V (H) = V (G) and there is no other equivalent (resp. isomorphic)

graph linkage that is different from L. Clearly, if a graph linkage L is strongly vital then

it is also weakly vital. We call a graph linkage L linkage if its pattern has maximum

degree 1 (i.e., it consists of a collection of paths), in which case we omit H and refer to

the linkage just by using L. We also call a graph linkage L cyclic linkage if its pattern is

a cycle. For an example of distinct types of cyclic linkages, see Figure ??.

Notice that there is a critical difference between equivalence and isomorphism of

linkages. To see this, suppose that L = (C, T) is a cyclic linkage of a graph G and let

AG be the set of all cyclic linkages that are isomorphic to L, while BG is the set of all

cyclic linkages that are equivalent to L. Notice that the cycles in the cyclic linkages

of AG should meet the terminals in the same cyclic order. On the contrary the cycles

of the cyclic linkages of BG may meet the terminals in any possible cyclic ordering.

8

Consequently AG ⊆ BG. For example, if L = (C, T) is the cyclic linkage of the graphs

in Figure ??, then |AG1 | = 1, |BG1 | = 1, |AG2 | = 1, |BG2 | = 12, |AG2 | = 4, |BG3 | = 28.

Figure 4: Three graphs G1, G2, and G3. In each graph the bold edges define the cycle

C = ({v1, . . . , v5}, {{v1, v2}, . . . , {v4, v5}, {v5, v6}}) where T = V (C). Consider the cyclic

linkage L = {C, T} where T = V (C). L is a weakly vital linkage in G1 and G2 while it

is not a weakly vital linkage in G3. Moreover, L is a strongly vital linkage in G1 while it

is not a strongly vital linkage neither in G2 nor in G3.

CGL-configurations. Let G be a graph embedded on the sphere S0. Then we say

that a pair Q = (C,L) is a CGL-configuration of depth r if C = {C1, . . . , Cr} is a sequence

of concentric cycles in G, L = (H,T) is a graph linkage in G, and T ∩ V (Ĉr) = ∅, i.e.,

all vertices in the terminals of L are outside C̄r. The penetration of L in C, pC(L), is the

number of cycles of C that are intersected by the paths of L (when L = (C, S) is cyclic

we will sometimes refer to the penetration of L as the penetration of cycle C). We say

that Q is touch-free if for every path P ∈ L, the number of connected components of

P ∩ Cr is not 1. See figure ?? for an example of a CGL-configuration.

Cheap graph linkages. Let G be a graph embedded on the sphere S0, let C =

{C1, . . . , Cr} be a sequence of cycles in G, and let L = (H,T) be a graph linkage where

T ⊆ V (G \ Ĉr) (notice that (C,L) is a CGL-configuration). We define function c which

maps graph linkages of G to non-negative integers such that

c(L) = |E(L) \
⋃

i∈{1,...,r}

E(Ci)|.

A graph linkage L of G is C-strongly cheap (resp. C-weakly cheap), if T (L) ∩ Ĉr = ∅
and there is no other isomorphic (resp. equivalent) graph linkage L′ such that c(L) >

c(L′). Obviously, if L is C-strongly cheap then it is also C-weakly cheap.

Tilted grids. Let G be a graph. A tilted grid of G is a pair U = (X ,Z) where

X = {X1, . . . , Xr} and Z = {Z1, . . . , Zr} are both sequences of r ≥ 2 vertex-disjoint

paths of G such that

• for each i, j ∈ {1, . . . , r} Ii,j = Xi ∩ Zj is a (possibly edgeless) path of G,

9

Figure 5: A CLG-configuration Q = (C,L) with L = (H,T). Here, C is a sequence of

six concentric cycles, H (the bold curve) is a cycle (thus L is a cyclic linkage) and T is

represented by the set of squares. The penetration of L in C is 4 and Q is touch-free.

• for i ∈ {1, . . . , r} the subpaths Ii,1, Ii,2, . . . , Ii,r appear in this order in Xi,

• for j ∈ {1, . . . , r} the subpaths I1,j , I2,j , . . . , Ir,j appear in this order in Zj ,

• E(I1,1) = E(I1,r) = E(Ir,1) = E(Ir,r) = ∅,

• the graph G∗U taken from the graph GU = (
⋃
i∈{1,...,r}Xi) ∪ (

⋃
i∈{1,...,r} Zi) after

contracting all edges in
⋃

(i,j)∈{1,...,r}2 Ii,j is isomorphic to the (r × r)-grid.

We refer to the cardinality r of X (or Z) as the capacity of U .

Tidy tilted grids. Given a plane graph G and a graph linkage L = (H,T) of G we

say that a tilted grid U = (X ,Z) of G is an L-tidy tilted grid of G if T ∩ DU = ∅ and

DU ∩L =∪∪∪∪∪∪∪∪∪Z where DU is the closed interior of the perimeter of GU (for an example see

Figure 6).

From graph linkages to linkages. Let G be a graph and let L = (H,T) be a graph

linkage of G. We denote by GL the graph obtained by subdividing all edges of G incident

to terminals and then removing the terminals. Similarly, we define L∗ = (H∗, T ∗) so that

H∗ is the graph obtained by subdividing all edges incident to terminals, removing the

terminals, and considering as terminals the subdivision vertices. Notice that L∗ is a

linkage of GL. Notice that if L is strongly vital then L∗ is not necessarily strongly vital.

However, if L is weakly vital, then so is L∗ (see Figure ?? for an example).

10

Figure 6: The linkage that corresponds to the cyclic linkage depicted in Figure ??.

Vertex dissolving. Let G be a graph and v ∈ V (G) with NG(v) = {u,w}. The

operation of dissolving v in G is the following: Delete v from G and add edge {u,w} to

E(G), allowing the existence of multiple edges.

The following proposition follows from the combination of Lemma 5, Lemma 6, and

Observation 3 of [?].

Proposition 3.1. Let G be a graph embedded on the sphere S0 and let Q = (C,L) be

a touch-free CGL-configuration of G, where C is tight in G and L is a C-weakly cheap

linkage whose penetration in C is at least r. Then G contains some L-tidy tilted grid in

G of capacity at least r/(4 · |P(L)|).

Lemma 3.1. Let G be a graph embedded on the sphere S0. If G contains a strongly vital

cyclic linkage L = (C, T), then G does not contain an L-tidy tilted grid of capacity 4.

Proof. Assume that L = (C, T) is a strongly vital cyclic linkage in G and that Γ is an

L-tidy tilted grid of capacity 4 in G. Let also Γ4 be the (4 × 4)-grid. Observe that Γ4

is the graph that we get after contracting all edges of Γ with at least one endpoint of

degree 2. We contract Γ to Γ4 in G and let G′ be the resulting graph.

Let V (Γ4) = {vij | i, j ∈ {1, . . . 4}} and E(Γ4) = {{vij , vi′j′} | |i − i′| + |j − j′| = 1}.
Observe that Γ4 is also an L-tidy tilted grid of capacity 4 in G′ and that L is also strongly

vital in G′ (if not, then it was not strongly vital in G). Let H = Γ ∪ C and H ′ be the

contraction of H that we get after contracting all edges of H whose ends have both

degree 2.

Let also H∗ = Γ4 ∪ P1 ∪ P2 ∪ P3 ∪ P4, where for every i ∈ {1, 2, 3, 4}, each Pi is a path

11

of length 2 such that P1 connects v11 with v12, P2 connects v13 with v14, P3 connects

v41 with v44 and P4 connects v42 with v43 (i.e. for every cyclic linkage L = (C, T) if we

contract all edges of H = Γ∪C whose ends have degree 2, we get a graph isomorphic to

H∗ which is a (4× 4)-grid in addition to some paths that are subgraphs of C).

It is not hard to confirm that for every possible H, its corresponding contraction, H ′, is

isomorphic to H∗. It remains to show that there exists a cyclic linkage L′ = (C ′, T) in

G′, where C ′ is different from C. As H∗ is a unique graph (up to isomorphism), a way

of rerouting C (in order to obtain a different cyclic linkage) is given in Figure ??.

Lemma 3.2. Let G be a graph embedded on the sphere S0 that is the union of r ≥ 2

concentric cycles C = {C1, . . . , Cr} and one more cycle C of G. Assume that C is tight in

G, T ∩V (Ĉr) = ∅, the cyclic linkage L = (C, T) is strongly vital in G, and its penetration

in C is r. Then r ≤ 16 · |T | − 1.

Proof. Let σ : P(L) → T be such that σ is a bijection that maps each path of P(L)

to one of its endpoints. For every i ∈ {1, . . . , r}, we define Q(i) = (C(i),L(i)) where

C(i) = {C1, . . . , Ci} and L(i) = (C, T (i)) where

T (i) = T \ {σ(P) | P ∈ P (L) and P ∩ Ĉi = ∅}.

Notice that if some Q(i+1) is not touch-free, then T (i) ≤ T (i+1) − 1 (as, by the

definition of touch-free configurations, there exists at least one path P in P(L) such that

P ∩ Ĉi+1 6= ∅ but P ∩ Ĉi = ∅). In the trivial case where every Q(i) is not touch-free we

derive easily that r ≤ |T | and we are done. Otherwise, let Q′ = (C′,L′) be the touch-free

CGL-configuration in {Q(1), . . . ,Q(r)} of the highest index, say i (as we excluded the

trivial case we have that i ≥ 1). Certainly, C′ = C(i) and Q′ is tight in G. Moreover,

L′ is strongly vital in G. From Lemma ??, G does not contain an L′-tidy tilted grid of

capacity 4. Thus, GL as well does not contain an L′∗-tidy (remember how a linkage L∗
is created from a graph linkage L after the “duplication” of the terminals of L) tilted

grid of capacity 4. Recall now that, as L′ is strongly vital in G it is also weakly vital in

G and therefore L′∗ is weakly vital in GL′ . Notice also that Q′∗ = (C′,L′∗) is a CGL-

configuration of GL′ where C′ is tight in GL′ . As L′∗ is weakly vital in GL′ , then, by its

uniqueness, L′∗ is C′-weakly cheap. Recall that the penetration of L′ in C′ is r − (i− 1)

and so is the penetration of L′∗ in C′. As Q′, and therefore Q′∗ as well, is touch-free

we can apply Proposition ?? and obtain that GL′ contains some L′∗-tidy tilted grid of

capacity at least (r− (i−1))/(4 · |P(L′∗)|) ≤ (r− (i−1))/(4(|P(L)|− (i−1)). We derive

that (r − (i − 1))/(4(|P(L)| − (i − 1)) < 4, therefore r ≤ 16 · |P(L)| − 15(i − 1) which

implies that r ≤ 16 · |T | − 1.

A corollary of Lemma ??, with independent combinatorial interest, is the following.

Corollary 3.1. If a plane graph G contains a strongly vital cyclic linkage L = (C, T),

then tw(G) = O(|T |3/2).

12

Figure 7: On the left, a simplified L-tidy (4× 4)-grid (corresponding to graph H∗) and

on the right, a rerouting of the cycle of L in the grid.

Notice that, according to what is claimed in [?], we cannot restate the above corollary

for weakly vital linkages, unless we change the bound to be an exponential one. That

way, the fact that treewidth is (unavoidably, due to [?]) exponential to the number

of terminals for (weakly) vital linkages is caused by the fact that the ordering of the

terminals is predetermined.

Lemma 3.3. Let G be a graph embedded on the sphere S0 that is the union of r concentric

cycles C = {C1, . . . , Cr} and a Hamiltonian cycle C of G. Let also T ∩ V (Ĉr) = ∅. If

L = (C, T) is C-strongly cheap then L is a strongly vital cyclic linkage in G.

Proof. Assume that L is not strongly vital in G, i.e., there is a different, isomorphic to

L = (C, T), cyclic linkage L′ = (C ′, T) in G. As L 6= L′ we have that C ′ 6= C, therefore

there exists an edge e ∈ E(C ′) \E(C) (this is because V (C) = V (C ′) which follows from

the strong vitality of L in G).

But, as E(G) = E(C) ∪ ⋃r
i=1E(Ci), we derive that e ∈ ⋃r

i=1E(Ci) (observe that the

only way C ′ can be different from C is by using extra edges from the cycles of C).
Thus, |E(C ′)∩⋃r

i=1E(Ci)| > |E(C)∩⋃r
i=1E(Ci)| and, by the definition of cheap graph

linkages, c(L) > c(L′), which contradicts the assumption that L is C-strongly cheap.

Therefore, L = (C, T) is a strongly vital cyclic linkage in G, as claimed.

We are now able to prove the main combinatorial result of this paper.

Lemma 3.4. Let G be a plane graph containing some sequence of concentric cycles

C = {C1, . . . , Cr}. Let also L = (C, T) be a cyclic linkage of G where T ∩ V (Ĉr) = ∅. If

L is C-strongly cheap then the penetration of L in C is at most r ≤ 16 · |T | − 1.

Proof. Suppose that some path P ∈ P(L) intersects at least 16 · |T | cycles of C. Then,

P intersects all cycles in C∗ = {Cr−16·|T |+1, . . . , Cr}.
Let G′ be the graph obtained by C ∪∪∪∪∪∪∪∪∪∪C∗ after dissolving all vertices of degree 2 that

do not belong to T and let L′ = (C ′, T) be the linkage of G′ obtained from L if we

13

dissolve the same vertices in the paths of L. Similarly, by dissolving vertices of degree 2

in the cycles of C∗ we obtain a new sequence of concentric cycles which, for notational

convenience, we denote by C′ = {C1, . . . , Cr′}, where r′ = 16 · |T |.
The cyclic linkage L′ is C′-strongly cheap because L is C-strongy cheap (it is easy to

observe that no edge of
⋃r
i=1E(Cr) \ E(C) belongs to E(C ′)). Notice that C ′ is a

Hamiltonian cycle of G′ and, from Lemma ??, L′ is a strongly vital cyclic linkage of G′.

We also assume that C′ is tight (otherwise we can replace it by a tight one and observe

that, by its uniqueness, L′ will be cheap to this new one as well). As L′ is C′-strongly

cheap and C′ is tight, from Lemma ??, r′ ≤ 16 · |T | − 1; a contradiction.

4 The algorithm

This section is devoted to the proof of Theorem ??. We consider the following, slightly

more general, problem.

Planar Annotated Cyclability

Input: A plane graph G, a set R ⊆ V (G), and a non-negative

integer k.

Question: Does there exist, for every set S of k vertices in R, a

cycle C of G such that S ⊆ V (C)?

In this section, for simplicity, we refer to Planar Annotated Cyclability as problem

PAC. Theorem ?? follows directly from the following lemma.

Lemma 4.1. There is an algorithm that solves PAC in 22
O(k2 log k) · n2 steps.

The rest of this section is devoted to the proof of Lemma ??.

Problem/color-irrelevant vertices. Let (G, k,R) be an instance of PAC. We call

a vertex v ∈ V (G) \ R problem-irrelevant if (G, k,R) is a yes-instance if and only if

(G \ v, k,R) is a yes-instance. We call a vertex v ∈ R color-irrelevant when (G, k,R) is

a yes-instance if and only if (G, k,R \ {v}) is a yes-instance.

Before we present the algorithm of Lemma ??, we need to introduce three algorithms

that are used in it as subroutines.

Algorithm DP(G,R, k, q,D)

Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q, where

k ≤ q, and a tree decomposition D of G of width q.

Output: An answer whether (G,R, k) is a yes-instance of PAC or not.

Running time: 22
O(q·log q) · n.

Algorithm DP is based on dynamic programming on tree decompositions of graphs.

The technical details are presented in Section ??.

Algorithm Compass(G, q)

Input: A planar graph G and a non-negative integer q.

14

Output: Either a tree decomposition of G of width at most 18q or a subdivided wall W

of G of height q and a tree decomposition D of the compass KW of W of width at most

18q.

Running time: 2q
O(1) · n.

We describe algorithm Compass in Subsection ??.

Algorithm concentric cycles(G,R, k, q,W)

Input: A planar graph G, a set R ⊆ V (G), a non-negative integer k, and a subdivided

wall W of G of height at least 392k2 + 40k.

Output: Either a problem-irrelevant vertex v or a sequence C = {C1, C2, . . . , C98k+2} of

concentric cycles of G, with the following properties:

(1) C̄1 ∩R 6= ∅.

(2) The set R is 32k-dense in C.

(3) There exists a sequence W of 2k + 1 paths in KW such that (C,W) is a (98k +

2, 2k + 1)-railed annulus.

Running time: O(n).

We describe Algorithm concentric cycles in Subsection ??. We now use the above

three algorithms to describe the main algorithm of this paper which is the following.

Algorithm Planar Annotated Cyclability(G,R, k)

Input: A planar graph G, a set R ⊆ V (G), and a non-negative integer k.

Output: An answer whether (G,R, k) is a yes-instance of PAC or not.

Running time: 22
O(k2 log k) · n2.

[Step 1.] Let r = 98k2 + 2k, y = 16k, and q = 2y + 4r. If Compass(G, q) returns a

tree decomposition of G of width w = 18q, then return DP(G,R, k, w) and stop.

Otherwise, the algorithm Compass(G, q) returns a subdivided wall W of G of

height q and a tree decomposition D of the compass KW of W of width at most

w.

[Step 2.] If the algorithm concentric cycles(G,R, k, q,W) returns a problem-irrelevant

vertex v, then return Planar Annotated Cyclability(G \ v,R \ v, k) and stop.

Otherwise, it returns a sequence C = {C1, C2, . . . , Cr} of concentric cycles of G

with the properties (1)–(3).

[Step 3.] For every i ∈ {1, . . . , r − 98k − 2} let wi be a vertex in Âi+k,i+33·k ∩ R (this

vertex exists as, from property (2), R is 32k-dense in C), let Ri = (R ∩ V (Ĉi)) ∪
{wi}, and let Di be a tree decomposition of Ĉi of width at most w – this tree

decomposition can be constructed in linear time from D as each Ĉi is a subgraph

of KW .

15

[Step 4.] If, for some i ∈ {1, . . . , r − 98k − 2}, the algorithm DP(Ĉi, Ri, k, q,Di)
returns a negative answer, then return a negative answer and stop. Otherwise

return Planar Annotated Cyclability(G,R \ v, k) where v ∈ V (Ĉ1) ∩ R (the

choice of v is possible due to property (1)).

Proof of Lemma ??. The only non-trivial step in the above algorithm is Step 4. Its

correctness follows from Lemma ??, presented in Subsection ??.

We now proceed to the analysis of the running time of the algorithm. Observe first

that the call of Compass(G, q) in Step 1 takes 2k
O(1) ·n steps and, in the case that a tree

decomposition is returned, the DP requires 22
O(k2 log k) ·n steps. For Step 2, the algorithm

concentric cycles takes O(n) steps and if it returns a problem-irrelevant vertex, then

the whole algorithm is applied again for a graph with one vertex less. Suppose now that

Step 2 returns a sequence C of concentric cycles of G with the properties (1)–(3). Then

the algorithm DP is called O(k2) times and this takes in total 22
O(k2 log k) ·n steps. After

that, the algorithm either concludes to a negative answer or is called again with one

vertex less in the set R. In both cases where the algorithm is called again we have that

the quantity |V (G)| + |R| is becoming smaller. This means that the recursive calls of

the algorithm cannot be more than 2n. Therefore the total running time is bounded by

22
O(k2 log k) · n2 as required.

4.1 The algorithm Compass

Before we start the description of algorithm Compass we present a result that follows

from Proposition ??, the algorithms in [?] and [?], and the fact that finding a subdivision

of a planar k-vertex graph H that has maximum degree 3 in a graph G can be done,

using dynamic programming, in 2O(k·log k) · n steps (see also [?]).

Lemma 4.2. There exists an algorithm A1 that, given a graph G and an integer h,

outputs either a tree decomposition of G of width at most 9h or a subdivided wall of G

of height h. This algorithm runs in 2h
O(1) · n steps.

Description of algorithm Compass We use a routine, call it A2, that receives as

input a subdivided wall W of G with height equal to some even number h and outputs

a subdivided wall W ′ of G such that W ′ has height h/2 and |V (KW ′)| ≤ |V (G)|/4. A2

uses the fact that, in W, there are 4 vertex-disjoint subdivided subwalls of W of height

h/2. Among them, A2 outputs the one with the minimum number of vertices and this

can be done in O(n) steps. The algorithm Compass uses as subroutines the routine A2

and the algorithm A1 of Lemma ??.

Algorithm Compass(G, q)

[Step 1.] if A1(G, 2q) outputs a tree decomposition D of G with

width at most 18q then return D,
otherwise it outputs a subdivided wall W of G of height 2q

16

[Step 2.] Let W ′ = A2(W)

if A1(KW ′ , 2q) outputs a tree decomposition D of

KW ′ of width at most 18q then return W ′ and D,
otherwise W ←W ′ and go to Step 2.

Notice that, if A terminates after the first execution of Step 1, then it outputs a tree

decomposition of G of width at most 18q. Otherwise, the output is a subdivided wall

W ′ of height q in G and a tree decomposition of KW ′ of width at most 18q (notice that

as long as this is not the case, the algorithm keeps returning to step 2). The application

of routine A2 ensures that the number of vertices of every new KW is at least four times

smaller than the one of the previous one. Therefore, the i-th call of the algorithm A1

requires O(2h
O(1) · n

22(i−1)) steps. As
∑∞

i=0
1
22i

= O(1), algorithm Compass has the same

running time as algorithm A1.

4.2 The Algorithm concentric cycles

We need to introduce two lemmata. The first one is strongly based on the combinatorial

Lemma ?? that is the main result of Section ??.

Lemma 4.3. Let (G,R, k) be an instance of PAC and let C = {C1, . . . , Cr} be a sequence

of concentric cycles in G such that V (Ĉr) ∩ R = ∅. If r ≥ 16 · k, then all vertices in

V (Ĉ1) are problem-irrelevant.

Proof. We observe that for every vertex v ∈ V (G), if (G\v,R, k) ∈ Π then (G,R, k) ∈ Π

because G \ v is a subgraph of G and thus every cycle that exists in G \ v also exists in

G.

Assume now that (G,R, k) ∈ Π, let v ∈ V (Ĉ1), and let S ⊆ R, |S| ≤ k. We will prove

that there exists a cycle in G \ v containing all vertices of S.

As (G,R, k) ∈ Π, there is a cyclic linkage L = (C, S) in G. If v /∈ V (C), then C is a

subgraph of G\v and we are done. Else, if v ∈ V (C), let L′ = (C ′, S) be a C-weakly cheap

cyclic linkage in the graph H = G[V (C) ∪
(⋃r

i=1 V (Ci)
)
], and assume that v ∈ V (C ′)

too. Then C ′ meets all cycles of C and its penetration in C is more than 16 · |S|, which

contradicts Lemma ??.

Thus, v /∈ V (C ′) implying that there exists a cyclic linkage with S as its set of terminals

that does not contain v. As S was arbitrarily chosen, vertex v is problem-irrelevant.

Lemma 4.4. Let y, r, q, z be positive integers such that y + 1 ≤ z ≤ r, G be a graph

embedded on S0 and let R ⊆ V (G) be the set of annotated vertices of G. Given a

subdivided wall W of height h = 2 · max{y, d q8e} + 4r in G then either G contains a

sequence C′ = {C ′1, C ′2, . . . , C ′y} of concentric cycles such that V (Ĉ ′y)∩R = ∅ or a sequence

C = {C1, C2, . . . , Cr} of concentric cycles such that:

1. C̄1 ∩R 6= ∅.

2. R is z-dense in C.

17

3. There exists a collection W of q paths in KW , such that (C,W) is a (r, q)-railed

annulus in G.

Moreover, a sequence C′ or C of concentric cycles as above can be constructed in O(n)

steps.

Proof. Let p = max{y, d q8e}. We are given a subdivided wall W of height h = 2p + 4r

and we define C = {C1, . . . , Cr} such that Ci = Jh
2
−p−2i+2, i ∈ {1, . . . , r}. Notice that

there is a collectionW of 8p vertex disjoint paths in W such that (C,W) is a (r, q)-railed

annulus. If C̄1 ∩ R = ∅, then C′ = {Jh
2
, . . . , Jh

2
+y−1} is a sequence of concentric cycles

where J̄h
2
+y−1 ⊆ C̊1 and we are done. Otherwise, we have that C satisfies property 1.

Suppose now that Property 2 does not hold for C. Then, there exists some i ∈ {1, . . . , r}
such that Ai,i+z−1 ∩R = ∅. Notice that Ai,i+z−1 contains 2z− 1 > 2y layers of W which

are crossed by at least 2y of the paths inW (these paths certainly exist as 2y < 8p). This

implies the existence of a wall of height 2y in Ai,i+z−1 which, in turn contains a sequence

C′ = {C ′1, . . . , C ′y} of concentric cycles. As C̄ ′y ⊆ Ai,i+z−1 we have that V (Ĉ ′y) ∩ R = ∅
and we are done. It remains to verify property 3 for C. This follows directly by including

in W ′ any q ≤ 8p of the disjoint paths of W. Then (C,W ′) is the required (r, q)-railed

annulus. It is easy to verify that all steps of this proof can be turned to an algorithm

that runs in linear, on n, number of steps.

Description of algorithm concentric cycles This algorithm first applies the algo-

rithm of Lemma ?? for y = 16k, r = 98k2 + 2k, q = 2k + 1, and z = 32k. If the output

is a sequence C′ = {C ′1, C ′2, . . . , C ′y} of concentric cycles such that V (Ĉ ′y) ∩ R = ∅, then

it returns a vertex w of Ĉ ′1. As V (Ĉr) ∩ R = ∅, Lemma ?? implies that w is problem-

irrelevant. If the output is a sequence C the it remains to observe that conditions 1–3

match the specifications of algorithm concentric cycles.

4.3 Correctness of algorithm Planar Annotated Cyclability

As mentioned in the proof of Lemma ??, the main step – [step 4] – of algorithm Pla-

nar Annotated Cyclability is based on Lemma ?? below.

Lemma 4.5. Let (G,R, k) be an instance of problem PAC and let b = 98k + 2 and

r = 98k2+2k. Let also (C,W) be a (r, 2k+1)-railed annulus in G, where C = {C1, . . . Cr}
is a sequence of concentric cycles such that Ĉ1 contains some vertex v ∈ R and that R

is 32k-dense in C. For every i ∈ {1, . . . , r − b} let Ri = (R ∩ V (Ĉi)) ∪ {wi}, where wi ∈
V (Âi+k+1,33k+i+1)∩R. If (Ĉi+b, Ri, k) is a no-instance of Π, for some i ∈ {1, . . . , r−b},
then (G,R, k) is a no-instance of PAC. Otherwise vertex v is color-irrelevant.

We first prove the following lemma, which reflects the use of the rails of a railed

annulus and is crucial for the proof of Lemma ??.

18

u

v

Wi

Wj

x′

y′
x

y

Cr

C1

Cr−1

Figure 8: Visualization of proof of Lemma ??, case 1. The different lining on the parts

of the cycle at the left indicates the different colors of these paths.

Lemma 4.6. Let G be a graph embedded on the sphere S0, r, k be two positive integers

such that r ≥ 16k, and (C,W) be an (r, 2k+1)-railed annulus of G with C = {C1, . . . , Cr}
being its sequence of concentric cycles, W = {W1, . . . ,W2k+1} its rails. Let also S ⊆
V (G) such that S ∩ Ĉr = ∅ and |S| = k. Then for every two vertices u, v ∈ V (C1), if

there exists a cyclic linkage L = (C, S), with penetration k + 1 ≤ pC(L) ≤ r − 1, in G,

then there exists a path Pu,v with ends u and v that meets all vertices of S.

Proof. Let {s1, . . . , sk} be an ordering of the set S and let fL : L(P) → {1, . . . , k} be a

function such that for every i ∈ {1, . . . k− 1}, fL(P) = i if the endpoints of P are si and

si+1 and fL(P ∗) = k for the unique path P ∗ ∈ P(L) whose endpoints are sk and s1.

Moreover, as Wi is a path with endpoints w′i ∈ V (C1) and w′′i ∈ V (Cr), we define the

ordering {w′i, . . . , w′′i } of V (Wi) and call it the natural ordering of Wi. Furthermore, for

every Wi ∈ W, let mL(Wi) = fL(P) if P is the first path (with respect to the natural

ordering of Wi) of P(L) that Wi meets and mL(Wi) = 0 if Wi does not meet C.

Let Cj ∈ C. We pick an arbitrary vertex vj1 ∈ V (Cj) and order V (Cj) starting from

vj1 and continuing in clockwise order. Let {vj1, . . . , vj|V (Cj)|} be such an ordering of the

vertices of Cj . We assign to each vertex of vji ∈ Cj a “color” from the set {0, . . . k} as

follows: cL(vji) = 0 if vji /∈ V (Cj) ∩ V (C) and cL(vji) = fL(P) if vji ∈ V (Cj) ∩ V (P),

where P ∈ P(L).

For the rest of the proof, if P0 is a path, P0(v, w) is the subpath of P0 with endpoints v

and w. We examine two cases:

1. At least k + 1 paths of W (i.e. rails of the railed annulus) meet C. Then, as

|P(L)| = k, there exist two rails Wi,Wj ∈ W and a path P ∈ P(L) such that

19

mL(Wi) = mL(Wj) = fL(P). Let V (C1) ∩ V (Wi) be the vertices of path Q1,i and

V (C1)∩V (Wj) the vertices of path Q1,j . Then, we let x ∈ V (C1) be the endpoint of

Q1,i that is not w′i and y ∈ V (C1) be the endpoint of Q1,j that is not w′j (notice that

x and y can coincide with u and v). Let also x′ be the vertex of V (P)∩V (Wi) with

the least index in the natural ordering of Wi and y′ be the vertex of V (P)∩V (Wj)

with the least index in the natural ordering of Wj . We observe that there exist two

vertex disjoint paths P1 and P2 with endpoints either v, x and u, y or v, y and u, x,

respectively. We define path Pu,v = (C \P (x′, y′))∪Wi(x, x
′)∪Wj(y, y

′)∪P1 ∪P2.

Path Pu,v has the desired properties. See also Figure ??.

2. There exist k′ = k + 1 paths, say W ′ = {W1, . . . ,Wk′}, of W that do not meet C.

As the penetration of C is at least k+1, for every j ∈ {r−k, . . . , r}, V (Cj∩C) 6= ∅.
For every i ∈ {1, . . . , k′} and every j ∈ {r − k, . . . , r} we assign to the vertex wji
of V (Wi ∩ Cj) with the least index in the natural ordering of Wi, a “color” from

the set {1, . . . , k} as follows: cL(wji) = cL(v) if there exists a v ∈ V (C) and a

subpath Cj(w
j
i , v) (starting from wji and following Cj in counter-clockwise order)

such that it does not contain any other vertices of V (C) as internal vertices. For

every Wi ∈ W ′, we assign to Wi a set of colors, χi =
⋃k+1
j=1 cL(wji). Let P be the set

of all maximal paths of Cr without internal vertices in C. Certainly, any Wi ∈ W ′
intersects exactly one path of P. We define the equivalence relation ∼ on the set

of rails W ′ as follows: Wi ∼ Wl if and only if Wi and Wl intersect the same path

of P. We distinguish two subcases:

• The number of equivalence classes of ∼ is k′. Then, there exist two rails

Wi,Wl ∈ W ′ and ji, jl ∈ {r − k, . . . , r} such that cL(wjii) = cL(wjil) = cL(P)

for some path P ∈ P(L).

• The number of equivalence classes of ∼ is strictly less than k′. Then, there

exist two rails Wi,Wl ∈ W ′ such that cL(wji) = cL(wjl) for every j ∈ {r −
k, . . . , r}. Therefore, there exist ji, jl ∈ {r − k, . . . , r} with ji 6= jl such that

cL(wjii) = cL(wjll) = cL(P) for some path P ∈ P(L) (this holds because

|{r − k, . . . , r}| = k + 1 – see also Figure ??).

For both subcases, as cL(wjii) = cL(P), there exist a vj ∈ V (P) and a subpath

Cj(w
ji
i , vj) of Cj and, similarly, as cL(wjll) = cL(P), there exist a vjl ∈ V (P) and a

subpath Cj(w
jl
l , vjl) of Cj . These two subpaths do not contain any other vertices of

C apart from vji and vjl , respectively. Moreover, let x be the vertex of V (Wi∩C1)

of the least index in the natural ordering of Wi and y the vertex of V (Wl ∩ C1)

of the least index in the natural ordering of Wl. As in case 1, observe that there

exist two vertex disjoint paths P1 and P2 with endpoints either v, x and u, y or

v, y and u, x, respectively. We define path Pu,v = (C \ P (vji , vjl)) ∪ Cj(wjii , vji) ∪
Cj(w

jl
l , vjl)∪Wi(w

ji
i , x)∪Wl(w

jl
l , y)∪P1∪P2. Path Pu,v has the desired properties

20

Wi

Wl

y

u

v

vjl

wjl
l

wji
i

vji

Cr

C1

x

Figure 9: Visualization of proof of Lemma ??, case 2, subcase 2.

Proof of Lemma ??. We first prove that if (Ĉi+b, Ri, k) is a yes-instance of PAC for

every i ∈ {1, . . . , r − b}, then (G,R, k) is a yes-instance of PAC iff (G,R \ v, k) is a

yes-instance of PAC.

For the non-trivial direction, we assume that (G,R \ v, k) is a yes-instance of PAC and

we have to prove that (G,R, k) is also a yes-instance of PAC. Let S ⊆ R with |S| ≤ k.

We have to prove that S is cyclable in G. We examine two cases:

1. v /∈ S. As (G,R \ v, k) is a yes-instance of Π, clearly there exists a cyclic linkage

L = (C, S) in G, i.e., S is cyclable in G.

2. v ∈ S. As r ≥ k(98k + 1) and S ≤ k, there exists i such that Ai,i+98k ∩ S = ∅. We

distinguish two sub-cases:

Subcase 1. S ⊆ C̄i+98k+1. Then, as (Ĉi+98k+1, Ri+98k+1, k) is a yes-instance of Π,

then S is cyclable in Ĉi+98k+1 and therefore also in G.

Subcase 2. There is a partition {S1, S2} of S into two non-empty sets, such that

S1 ⊂ C̊i and S1 ∩ C̄i+98k+1 = ∅. As R is 32k-dense in C, there exists a vertex

v1 ∈ S ∩ Ai+k+1,i+33k+1 and a vertex v2 ∈ S ∩ A50+k+1,i+82k+1. For i ∈ {1, 2},
let S′i = Si ∪ {vi} and observe that |Si| ≤ k. Let C1 = {Ci+49k, . . . , Ci} and

C2 = {Ci+49k, . . . , C98k}. As (Ĉi+98k+1, R98k+1, k) is a yes-instance of Π, S′1 is

cyclable in Ĉi+98k+1. Also, (G,R \ v, k) is a yes-instance, S′2 is cyclable in G. For

each i ∈ {1, 2}, there exists a cyclic linkage Li = (Ci, S
′
i) that has penetration

at least k + 1 in Ci. We may assume that Li is Ci-cheap. Then, By Lemma ??,

the penetration of Li in Ci is at most 49k. Let L′i = (Ci, Si), i ∈ {1, 2}. For

notational convenience we rename C1 and C2 where C1 = {C1
1 , . . . , C

1
49k+1} and

C2 = {C2
1 , . . . , C

2
49k+1} (notice that C1

49k+1 = C2
1). Let x, y be two distinct vertices

21

in Ci+49k. For i ∈ {1, 2}, we apply Lemma ??, for r = 49k+1, k, Ci,W, and x and

y and obtain two paths Pi, i ∈ {1, 2}, such that Si ⊆ V (Pi) and whose endpoints

are x and y. Clearly, P1 ∪ P2 is a cycle whose vertex set contains S as a subset.

Therefore S is cyclable in G, as required (see Figure ??).

x

y

Figure 10: The squares of the right (resp. left) part represent the vertices of S1 (resp.

S2). The connection between two cycles via rails and through x and y is derived from a

double application of Lemma ??.

5 Dynamic Programming for Planar Cyclability

In this section we present a dynamic programming algorithm for solving Cyclability

on graphs of bounded treewidth. We obtain the following algorithm.

Algorithm DP(G,R, k, q,D)

Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q, where

k ≤ q, and a tree decomposition D of G of width q.

Output: An answer whether (G,R, k) is a yes-instance of Planar Annotated Cy-

clability problem, or not.

Running time: 22
O(q·log q) · n.

We observe that the question of Planar Annotated Cyclability can be expressed in

monadic second-order logic (MSOL). It is sufficient to notice that an instance (G,R, k)

is a yes-instance of Planar Annotated Cyclability if and only if for any (not

necessarily distinct) v1, . . . , vk ∈ R, there are sets X ⊆ V (G) and S ⊆ E(G) such that

v1, . . . , vk ∈ X and C = (X,S) is a cycle. The property of C = (X,S) being a cycle is

equivalent to asking whether

i) for any x ∈ X, there are two distinct e1, e2 ∈ S such that x is incident to e1 and

e2,

22

ii) for any x ∈ X and any three pairwise distinct e1, e2, e3 ∈ S, e1 is not incident to x

or e2 is not incident to x or e3 is not incident to x, and

iii) for any Z1, Z2 ⊆ X such that Z1 ∩Z2 = ∅, Z1 6= ∅, Z2 6= ∅ and Z1 ∪Z2 = X, there

is {x, y} ∈ S such that x ∈ Z1 and y ∈ Z2.

By the celebrated Courcelle’s theorem (see, e.g., [?, ?]), any problem that can be ex-

pressed in MSOL can be solved in linear time for graphs of bounded treewidth.

As we saw, Planar Annotated Cyclability can be solved in f(q, k) · n steps if the

treewidth of an input graph is at most q, for some computable function f .

As the general estimation of f provided by Courcelle’s theorem is immense, we give below

a dynamic programming algorithm in order to achieve a more reasonably running time.

First we introduce some notation.

For every two integers a and b, with a < b, we denote by Ja, bK the set of integers

{a, a+ 1, . . . , b}. Let S be a set and i ∈ N. We define S[i] = {A ⊆ S | |A| = i}.

Sub-cyclic pairs. Let G be a graph, C a cycle in G, and {A,X,B} a partition of

V (G) such that no edge of G has one endpoint in A and the other in B. The restriction

of C in G[A ∪ X] is called a sub-cyclic pair of G (with respect to A, X and C). We

denote such a sub-cyclic pair by (Q, Z), where Q contains the connected components of

the restriction of C in G[A ∪X] (observe that Q can contain isolated vertices, a unique

cycle, and disjoint paths) and Z = V (C) ∩X.

Nice tree decompositions. Let G be a graph. A tree decomposition D = (T,X) of

G is called a nice tree decomposition of G if T is rooted to some leaf r and:

1. for any leaf l ∈ V (T) where l 6= r, Xl = ∅ (we call Xl leaf node of D, except from

Xr which we call root node)

2. the root and any non-leaf t ∈ V (T) have one or two children

3. if t has two children t1 and t2, then Xt = Xt1 = Xt2 and Xt is called join node

4. if t has one child t′, then

• either Xt = Xt′ ∪ {v} (we call Xt insert node and v insert vertex)

• or Xt = Xt′ \ {v} (we call Xt forget node and v forget vertex).

Pairings. Let W be a set. A pairing of W is an undirected graph H with vertex set

V (H) ⊆ W and where each vertex has degree at most 2 (a loop contributes 2 to the

degree of its vertex) and if H contains a cycle then this cycle is unique and all vertices

not in this cycle have degree 0. Moreover, H may also contain the vertex-less loop.

We denote by P(W) the set of all pairings of W . It is known that if |W | = w then

|P(W)| = 2O(w·logw).

23

Edge lifts. Let G be a graph and v ∈ V (G) such that degG(v) = 2. Let also NG(v) =

{u,w}. We say that the operation of deleting edges {v, u} and {v, w} and adding edge

{u,w} (if it does not exist, i.e. we do not allow double edges) is the edge lift from vertex

v. We denote by lift(G, v) the graph resulting from G after the edge lift from v.

For a vertex set L ⊆ V (G) and a vertex v ∈ V (G) we say that graph H=lift(G, v) is the

result of an L-edge-lift if v ∈ L.

Let (G,R, k) be an instance of p-Annotated Cyclability. Let also D = (T,X , r) be

a nice tree decomposition of G of width w, where r is the root of T . For every x ∈ V (T)

let Tt be the subtree of T rooted at t (the vertices of Tt are t and its descendants in T).

Then for every t ∈ V (T), we define

Gt = G
[⋃

t′∈V (Tt)

Xt′

]
and Vt = V (Gt).

For every i ∈ Z>0, we set Rit = (V (Gt) ∩R)[i]. We also denote Rt =
⋃k
i=1Rit.

If (Q, Z) is a sub-cyclic pair of Gt where Xt is thought of as the separator and Z ⊆ Xt,

we simply say that (Q, Z) is a sub-cyclic pair on t. Notice that each sub-cyclic pair (Q, Z)

on t corresponds to a pairing in P(Xt), which we denote by PQ,Z (just dissolve all vertices

of Q that do not belong to Xt).

Let P be a pairing of Xt and S be a subset of V (Gt). We say that vertex set S

realizes P in Gt if there exists a sub-cyclic pair (Q, Z) on t such that PQ,Z = P and

S ⊆ V (∪∪∪∪∪∪∪∪∪Q).

We also define the signature of S in Gt to be the set of all pairings of Xt that S

realizes and we denote it by sigt(S). Notice that sigt(S) ⊆ P(Xt), therefore |sigt(S)| =
2O(w·logw).

Tables. We describe the tables of the dynamic programming algorithm. For each

t ∈ V (T), we define Ct = J0, kK×X [i]
t × P(Xt) and

Ft = {(i,K,P) ∈ Ct | ∃S ∈ Rit such that K = Xt ∩ S and sigt(S) = P}

We call Ft the table at node t ∈ V (T). As |P(Xt)| = 2O(w·logw), it follows that |F(t)| =
22

O(w·logw)
.

Observe that (G,R, k) is a yes-instance of p-Annotated Cyclability if and only if

Fr = {(0, ∅, Pr), (1, ∅, Pr), . . . , (k, ∅, Pr)}, where Pr is the unique pairing of P(Xr), i.e.,

the pairing that is the vertex-less loop (i.e., contains no vertices and a single edge with

no endpoints).

New pairings from old. Before we describe the dynamic programming algorithm we

need some definitions. Suppose that t is an insert node of D and Xt = Xs ∪ {v}, where

s is the only child of t in T and v ∈ V (G). Let Etv = {{v, u} ∈ E | u ∈ Xt}. We denote

24

by Paux
v the set of all graphs (V,E) where V ⊆ NGt(v) ∪ {v} and E ⊆ Etv. For any

P ∈ P(Xs), P̃ ∈ Paux
v , and L ⊆ Xt, we define:

P ⊕L P̃ = {P ′ ∈ P(Xt) | P results from P ∪ P̃ after a sequence of L-edge-lifts}.

See Figure ?? for a visualization of the above definitions. For every P ′ ∈ P(Xt) and

v v

Xs Xs

v

=⋃

v

v

P̃

P
P̃

Q

P ′

Figure 11: At the top we depict the neighborhood of node v in Xs (at the left) and an

element, P̃ of P auxv at the right. In the middle we depict the result, Q, of the union

P ∪ P̃ , where P ∈ P(Xs). At the bottom we have the result, P ′ ∈ P(Xs∪{v}) = P(Xt),

of lifting v in Q.

L ⊆ Xt, we define

ζL(P ′) = {P ∈ P(Xs) | ∃P̃ ∈ Paux
v such that P ′ ∈ P ⊕L P̃}

We are now ready to describe the dynamic programming algorithm. We distinguish the

following cases for the computation of table(t), t ∈ V (G):

25

Node t is a leaf node: as Xt = ∅, we have that F(t) = {(0, ∅, G∅)} where G∅ is the

void graph.

Node t is an insert node: Let Xt = Xs ∪ {v}, where s is the unique child of t in T .

We construct table(t) by using the following procedure:

Procedure make join

Input: a subset A of Cs
Output: a subset B of Ct
let B = ∅
for (i,K,P) ∈ A

if v ∈ R and i < k then

let B = B ∪ {(i+ 1,K ∪ {v},P ′)}
where P ′ = {P ∈ P(Xt) | ζXs\K(P) ∩ P 6= ∅}

let B = B ∪ {(i,K,P ′′)}
where P ′′ = {P ∈ P(Xt) | ζXt\K(P) ∩ P 6= ∅}

Lemma 5.1. Ft = make join(Fs).
Proof. We first prove that make join(Fs) ⊆ Ft. Let (i+1,K∪{v},P) ∈make join(Fs)
with v ∈ R and i < k (the other case is similar). We prove that (i+ 1,K ∪ {v},P) ∈ Ft.
By the operation of the procedure make join we have that there exists a triple (i,K,P) ∈
Fs such that P ′ = {P ∈ P(Xt) | ζXs\K(P)∩P 6= ∅}. Let S ⊆ Ris be the annotated vertex

set which justifies the existence of (i,K,P) in Fs, i.e. Xs ∩ S = K and sigs(S) = P.

Now, let S′ = S ∪ {v}. Clearly, S′ ⊆ Ri+1
t (where i+ 1 ≤ k) and Xt ∩ S′ = K ∪ {v}.

It remains to show that sigt(S
′) = P ′ or, equivalently, ∀P ∈ P(Xt) it holds that

P ∈ sigt(S
′)⇔ ζXs\K(P) ∩ P 6= ∅. Let P ∈ sigt(S

′). We distinguish three cases:

• Case 1: degP (v) = 0. Then, P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, ∅) (notice

that ({v}, ∅) ∈ Pauxv), which means that P ∗ ∈ ζXs\K(P). It is not hard to confirm

that P ∗ ∈ P because S realizes P ∗ in Gs. It follows that P ∈ P ′.

• Case 2: degP (v) = 1. Let u be the only neighbor of v in P . Then, P ∗ = P \{v} ∈
Xs and P = P ∗ ∪ ({v}, {v, u}), which means that P ∗ ∈ ζXs\K(P). Again, P ∗ ∈ P
because S realizes P ∗ in Gs, thus P ∈ P ′.

• Case 3: degP (v) = 2. Let NP (v) = {u,w}. Then, P ∗ = P \ {v} ∈ Xs and

P = P ∗ ∪ ({v}, {{v, w}{v, u}}), which means that P ∗ ∈ ζXs\K(P). As before, S

realizes P ∗ in Gs, thus P ∈ P ′.
We have showed that sigt(S

′) ⊆ P ′. The converse, P ′ ⊆ sigt(S
′), is clear from the

definition of P ′.
To conclude the proof, we have to show that Ft ⊆ make join(Fs). Let (i,K,P) ∈ Ft.
From the definition of Ft, there exists a vertex set S ⊆ Rit that realizes every pairing of

P and Xt ∩S = K. Let P ∈ P and assume that v /∈ R. We consider three cases and the

arguments are similar to the previous ones:

26

• Case 1: degP (v) = 0. Then, P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, ∅), which

means that P ∗ ∈ ζXs\K(P).

• Case 2: degP (v) = 1. Let u be the only neighbor of v in P . Then, P ∗ = P \{v} ∈
Xs and P = P ∗ ∪ ({v}, {v, u}), which means that P ∗ ∈ ζXs\K(P).

• Case 3: degP (v) = 2. Let NP (v) = {u,w}. Then, P ∗ = P \ {v} ∈ Xs and

P = P ∗ ∪ ({v}, {{v, w}{v, u}}), which means that P ∗ ∈ ζXs\K(P).

Let P∗ = {P ∗ ∈ P(Xs) | P ∈ P}. Clearly, for S∗ = S \ {v} ⊆ Rit and K∗ = Xs ∩ S∗, we

have that sig(S∗) = P∗ and thus (i− 1,K∗,P∗) ∈ Fs.
The case where v ∈ R is similar. We conclude that Ft ⊆ make join(Fs), which com-

pletes the proof.

Node t is a forget node: Let Xt = Xs \ {v}, where s is the unique child of t in T .

Then

Ft = {(i,K \ {v},P) | ∃(i,K,P ′) ∈ Fs : ∀P ∈ P(Xt), P ∈ P ⇔ lift(P, v) ∈ P ′}

The proof that the right part of the above equality is Ft, is similar to the one of

Lemma ??.

Node t is a join node: Let s1 and s2 be the children of t in T . Thus, Xt = Xs1 = Xs2

and clearly P(Xt) = P(Xs1) = P(Xs2). Given a pairing P ∈ P(Xt), we define

ξ(P) = {(P1, P2) ∈ P(Xt)× P(Xt) | P1 ∪ P2 = P}

Then, Ft can be derived from Fs1 and Fs2 as follows:

Ft = {(i,K,P) | ∃(i1,K1,P1) ∈ Fs1 ∃(i2,K2,P2) ∈ Fs2 :

i = i1 + i2 − |K1 ∩K2|,
K1 ∪K2 = K

∀P ∈ P ∃(P1, P2) ∈ ξ(P) : P1 ∈ P1, P2 ∈ P2}.

Lemma 5.2. In the case where t is a join node with children s1 and s2, Ft is computed

as described above, given Fs1 and Fs2.

Proof. Let Ut = {(i,K,P) | ∃(i1,K1,P1) ∈ Fs1 ∃(i2,K2,P2) ∈ Fs2 : i = i1 + i2 − |K1 ∩
K2|, K1 ∪K2 = K and ∀P ∈ P ∃(P1, P2) ∈ ξ(P) : P1 ∈ P1, P2 ∈ P2}.
We will only prove the nontrivial direction: Ft ⊆ Ut. Let (i,K,P) ∈ Ft. From the

definition of Ft, there exists a vertex set S ⊆ Rit that realizes every pairing of P and

Xt ∩ S = K. Let P be any pairing of P. Then, there exists a sub-cyclic pair (Q, Z) on t

that corresponds to pairing P . The restriction of (Q, Z) in Gs1 (resp. Gs2) is a sub-cyclic

pair (Q1, Z1) on s1 (resp. (Q2, Z2) on s2) and clearly Z1 ⊆ Xs1 (resp. Z2 ⊆ Xs2 . These

sub-cyclic pairs meet some subsets S1 and S2 of S respectively and correspond to parings

27

P1 ∈ P1 and P2 ∈ P2.
Let |S1| = i1 and |S2| = i2. It is now easy to confirm that i = i1 + i2 − |K1 ∩ K2|,
K1 ∪K2 = Z1 ∪ Z2 = K and that (P1, P2) ∈ ξ(P).

As P ∈ P was chosen arbitrarily we conclude that (i,K,P) ∈ Ut and we are done.

The dynamic programming algorithm that we described runs in 22
O(w·logw) · n steps

(where w is the width of the tree decomposition) and solves Cyclability.

6 Hardness of the Cyclability Problem

In this section, we examine the hardness of Cyclability.

6.1 Hardness for general graphs

First, we show that it is unlikely that Cyclability is FPT by proving Theorem ??

(mentioned in the introduction). For this, we first introduce some further notation.

A matching is a set of pairwise non-adjacent edges. A vertex v is saturated in a

matching M if v is incident to an edge of M . By x1 . . . xp we denote the path with the

vertices x1, . . . , xp and the edges {x1, x2}, . . . , {xp−1, xp}, and we use x1 . . . xpx1 to denote

the cycle with the vertices x1, . . . , xp and the edges {x1, x2}, . . . , {xp−1, xp}, {xp, x1}. For

a path P = x1 . . . xp and a vertex y, yP (Py resp.) is the path yx1 . . . xp (x1 . . . xpy resp.).

If P1 = x1 . . . xp and P2 = y1 . . . yq are paths such that V (P1) ∩ V (P2) = {xp} = {y1},
then P1 + P2 is the concatenation of P1 an P2, i.e., the path x1 . . . xp−1y1 . . . yq.

We need some auxiliary results. The following lemma is due to Erdős [?]. Define the

function f(n, δ) by

f(n, δ) =

(
n−δ
2

)
+ δ2 if n ≥ 6δ − 2,(

(n+1)/2
2

)
+ (n−12)2 if n ≤ 6δ − 3 and n is odd,(

(n+2)/2
2

)
+ (n−22)2 if n ≤ 6δ − 4 and n is even.

Lemma 6.1 ([?]). Let G be a graph with n ≥ 3 vertices. If δ(G) ≥ n/2 or |E(G)| >
f(n, δ(G)), then G is Hamiltonian.

Lemma 6.2. Let k ≥ 75 be an odd integer and let H be a graph such that

i) (k − 2)(k − 3)/2 < |E(H)| ≤ k(k − 1)/2 + 1,

ii) δ(H) ≥ (k − 1)/2,

iii) there is a set S ⊆ E(H) such that |S| > (k − 2)(k − 3)/2 and G[S] has at most

k + 2 vertices.

Then H is Hamiltonian.

28

Proof. Let H be an n-vertex graph that satisfies the above three conditions. Let S ⊆
E(H) be a set such that |S| > (k − 2)(k − 3)/2 and G[S] has at most k + 2 vertices.

Let also U = V (H) \ V (G[S]). Denote by R the set of edges of G incident to vertices of

U . Since |S| > (k − 2)(k − 3)/2 and |E(H)| ≤ k(k − 1)/2 + 1, |R| ≤ 2k − 3. Because

δ(H) ≥ (k− 1)/2, |R| ≥ |U |δ(H)/2 ≥ |U |(k− 1)/4. We have that |U | ≤ 7, i.e., H has at

most k + 9 vertices. Then because k ≥ 75, we obtain that n ≥ 6δ(G)− 3,

(
(n+ 1)/2

2

)
+
(n− 1

2

)2
≤ (k − 2)(k − 3)

2
< |E(H)|

and (
(n+ 2)/2

2

)
+
(n− 2

2

)2
≤ (k − 2)(k − 3)

2
< |E(H)|.

We have that |E(H)| > f(n, δ(H)), and by Lemma ??, H is Hamiltonian.

We are now in the position to prove Theorem ??:

Proof of Theorem ??. We reduce the Clique problem. Recall that Clique asks for a

graph G and a positive integer k, whether G has a clique of size k. This problem is well

known to be W[1]-complete [?] when parameterized by k. Notice that Clique remains

W[1]-complete when restricted to the instances where k is odd. To see it, it is sufficient

to observe that if the graph G′ is obtained from a graph G by adding a vertex adjacent

to all the vertices of G, then G has a clique of size k if and only if G′ has a clique of size

k+ 1. Hence, any instance of Clique can be reduced to the instance with an odd value

of the parameter. Clearly, the problem is still W[1]-hard if the parameter k ≥ c for any

constant c.

Let (G, k) be an instance of Clique where k ≥ 75 is odd. We construct the graph

G′k as follows.

• For each vertex x ∈ V (G), construct s = (k−1)/2 vertices vix for i ∈ {1, . . . , s} and

form a clique of size ns from all these vertices by joining them by edges pairwise.

• Construct a vertex w and edges {w, vix} for x ∈ V (G), i ∈ {1, . . . , s}.

• For each edge {x, y} ∈ E(G), construct the vertex uxy and the edges {uxy, vix},
{uxy, viy} for i ∈ {1, . . . , s}; we assume that uxy = uyx.

Let k′ = k(k − 1)/2 + 1. It is straightforward to see that G′ is a split graph. We show

that G has a clique of size k if and only if there are k′ vertices in G′k such that there is

no cycle in G′k that contains these k′ vertices.

Suppose that G has a clique X of size k. Let Y = {uxy ∈ V (G′)|x, y ∈ X,x 6= y}
and Z = Y ∪ {w}. Because |X| = k, |Z| = k(k − 1)/2 + 1 = k′. Observe that Y is

an independent set in G′k and |Y | = |NG′(Y)|. Hence, for any cycle C in G′k such that

Y ⊆ V (C), V (C) ⊆ Y ∪NG′k
(Y). Because w /∈ Y ∪NG′k

(Y), w does not belong to any

cycle that contains the vertices of Y . We have that no cycle in G′k contains Z of size k′.

29

Now we show that if G has no cliques of size k, then for any Z ⊆ V (G′k) of size k′,

there is a cycle C in G′k such that Z ⊆ V (C). We use the following claim.

Claim. Suppose that G has no cliques of size k. Then for any non-empty Z ⊆ {uxy|x, y ∈
V (G)} of size at most k(k − 1)/2 + 1, there is a cycle C in G′k such that Z ⊆ V (C) ⊆
Z ∪NG(Z) and C has an edge {vix, vjy} for some x, y ∈ V (G) and i, j ∈ {1, . . . , s}.

of Claim. For a set Z ⊆ {uxy|x, y ∈ V (G)}, we denote by S(Z) the set of edges {{x, y} ∈
E(G)|uxy ∈ Z}, and H(Z) = G[S(Z)].

If Z = {uxy}, then the triangle uxyv
1
xv

2
xuxy is a required cycle, and the claim holds.

Let r = |Z| ≥ 2 and assume inductively that the claim is fulfilled for smaller sets.

Suppose that H(Z) has a vertex x with degH(Z)(x) ≤ (k − 3)/2. Let NH(Z)(x) =

{y1, . . . , yt}. Notice that t ≤ (k − 3)/2 = s − 1. Denote by Z ′ the set obtained from

Z by the deletion of uxy1 , . . . , uxyt , and let H ′ = H(Z ′). If Z ′ = ∅, then the cycle

C = v1xuxy1v
2
x . . . v

t
xuxytv

t+1
x v1x satisfies the conditions and the claim holds. Suppose that

Z ′ 6= ∅. Then, by induction, there is a cycle C ′ in G′k such that Z ⊆ V (C ′) ⊆ Z ∪NG(Z)

and C ′ has an edge {via, vjb} for some a, b ∈ V (G) and i, j ∈ {1, . . . , s}. We consider the

path P = v1xuxy1v
2
x . . . v

t
xuxytv

t+1
x . Then we delete {via, vjb} and replace it by the path

viaPv
j
b . Denote the obtained cycle by C. It is straightforward to verify that Z ⊆ V (C) ⊆

Z ∪NG(Z) and {via, v1x} ∈ E(C), i.e., the claim is fulfilled.

From now we assume that δ(H(Z)) ≥ (k − 1)/2. We consider three cases.

Case 1. r ≤ (k − 2)(k − 3)/2.

Consider the graph G′k−2. We show that this graph has a matching M of size r such

that every vertex of Z is saturated in M . By the Hall’s theorem (see, e.g., [?]), it is

sufficient to show that for any Z ′ ⊆ Z, |Z ′| ≤ |NG′k−2
(Z ′)|. Let p be the smallest positive

integer such that |Z ′| ≤ p(p− 1)/2. By the definition of G′k−2, |NG′k−2
(Z ′)| ≥ p(k− 3)/2.

Because p ≤ k − 2, |Z ′| ≤ p(p− 1)/2 ≤ p(k − 3)/2 ≤ |NG′k−2
(Z ′)|.

Let M be a matching in G′k−2 of size r such that every vertex of Z is saturated

in M . Clearly, M is a matching in G′k that saturates Z as well. Let x1, . . . , xq be

the vertices of G such that for i ∈ {1, . . . , q}, {v1xi , . . . , vsxi} contains saturated in M

vertices. Because v1xi , . . . , v
s
xi have the same neighborhoods, we assume without loss of

generality that for i ∈ {1, . . . , q}, v1xi , . . . , vtixi are saturated. Observe that since M is

a matching in G′k−2, ti ≤ s − 1. For i ∈ {1, . . . , q} and j ∈ {1, . . . , ti}, denote by uji
the vertex of Z such that {vjxi , uji} ∈ M . We define the path Pi = v1xiu

1
i v

2
xi . . . u

ti
i v

ti+1
xi

for i ∈ {1, . . . , q}. As all the vertices vjxi are pairwise adjacent, by adding the edges

{vt1+1
x1 , v1x2}, . . . , {v

tq−1+1
xq−1 , v1xq}, {v

sq+1
xq , v1x1}, we obtain from the the paths P1, . . . , Pq a

cycle. Denote it by C. We have that Z ⊆ V (C) ⊆ Z ∪NG(Z) and {vt1+1
x1 , v1x2} ∈ E(C),

and we conclude that the claim holds.

Case 2. (k−2)(k−3)/2 < r and for any S ⊆ E(H(Z)) such that |S| > (k−2)(k−3)/2,

H(Z)[S] has at least k + 3 vertices.

We use the same approach as in Case 1 and show that G′k−2 has a matching M of size

r such that every vertex of Z is saturated in M . We have to show that for any Z ′ ⊆ Z,

30

|Z ′| ≤ |NG′k−2
(Z ′)|. If |Z ′| ≤ (k − 2)(k − 3)/2, we use exactly the same arguments as in

Case 1. Suppose that |Z ′| > (k − 2)(k − 3)/2. Then |S(Z ′)| = |Z ′| > (k − 2)(k − 3)/2.

Hence, H(Z)[S(Z ′)] has at least k+ 3 vertices. It implies that |NG′k−2
(Z ′)| ≥ (k+ 3)(k−

3)/2. Because k ≥ 75 and |Z ′| ≤ r ≤ k(k − 1)/2 + 1, |NG′k−2
(Z ′)| ≥ (k + 3)(k − 3)/2 ≥

k(k − 1)/2 + 1 ≥ |Z ′|. Given a matching M that saturates Z, we construct a cycle that

contains Z in exactly the same way as in Case 1 and prove that the claim holds.

Case 3. (k−2)(k−3)/2 < r and there is S ⊆ E(H(Z)) such that |S| > (k−2)(k−3)/2

and H(Z)[S] has at most k + 2 vertices.

By Lemma ??, H(Z) is Hamiltonian. Let p = |V (H(Z))| and denote by R =

x1 . . . xpx1 a Hamiltonian cycle in H(Z). Let U = {ux1x2 , . . . , uxp−1x1} and let Z ′ = Z\U .

We again consider G′k−2. We show that this graph has a matching M of size |Z ′|
such that every vertex of Z ′ is saturated in M . We have to prove that for any Z ′′ ⊆ Z ′,
|Z ′′| ≤ |NG′k−2

(Z ′′)|. If |Z ′′| ≤ (k − 2)(k − 3)/2, we use exactly the same arguments as

in Case 1. Suppose that |Z ′′| > (k − 2)(k − 3)/2. Let q be the smallest positive integer

such that |Z ′′| ≤ q(q − 1)/2. Clearly, q > k − 2. We consider the following three cases

depending on the value of q.

Case a. q = k−1. Then H(Z ′′) has at least k−1 vertices and at least (k−2)(k−3)/2+1

edges. Because |Z| ≤ k(k − 1)/2 + 1, H(Z) has at most 2k − 3 edges that are not edges

of H(Z ′′). Because δ(H(Z)) ≥ (k − 1)/2 and k ≥ 75, H(Z) has at most 4 vertices that

are not adjacent to the edges of H(Z ′′). Then at most 8 edges of the Hamiltonian cycle

R in H(Z) do not join vertices of H(Z ′′) with each other. We obtain that at least k− 9

edges of R join vertices of H(Z ′′) with each other.

Suppose that H(Z ′′) has k − 1 vertices. Then |Z ′′| ≤ (k − 1)(k − 2)/2 − (k − 9) ≤
(k2 − 5k + 20)/2. Because H(Z ′′) has k − 1 vertices, |NG′k−2

(Z ′′)| = (k − 1)(k − 3)/2.

Since k ≥ 75, |Z ′′| ≤ |NG′k−2
(Z ′′)|.

Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not adjacent to the

edges of H(Z ′′), then at least (k−1)/2 vertices of Z that correspond to the edges incident

to x are not in Z ′′. Then |Z ′′| ≤ |Z| − (k − 1)/2− (k − 9) ≤ (k2 − 4k + 21)/2. Because

|NG′k−2
(Z ′′)| = k(k − 3)/2 and k ≥ 75, |Z ′′| ≤ |NG′k−2

(Z ′′)|. If H(Z) has no vertex that

is not adjacent to the edges of H(Z ′′), then the edges of R join vertices of H(Z ′′) with

each other. We have that |Z ′′| ≤ k(k − 1)/2− k = k(k − 3)/2 and |Z ′′| ≤ |NG′k−2
(Z ′′)|.

Finally, if H(Z ′′) has at least k + 1 vertices, then |NG′k−2
(Z ′′)| ≥ (k + 1)(k − 3)/2 ≥

(k − 1)(k − 2)/2 ≥ |Z ′′|.
Case b. q = k. Then H(Z ′′) has at least k vertices and at least (k − 1)(k − 2)/2 + 1

edges. Because |Z| ≤ k(k − 1)/2 + 1, H(Z) has at most k − 1 edges that are not edges

of H(Z ′′). Because δ(H(Z)) ≥ (k − 1)/2 and k ≥ 75, H(Z) has at most 2 vertices that

are not adjacent to the edges of H(Z ′′). Then at most 4 edges of the Hamiltonian cycle

R in H(Z) do not join vertices of H(Z ′′) with each other. We obtain that at least k− 4

edges of R join vertices of H(Z ′′) with each other.

Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not adjacent to the

edges of H(Z ′′), then at least (k−1)/2 vertices of Z that correspond to the edges incident

31

to x are not in Z ′′. Then |Z ′′| ≤ |Z| − (k − 1)/2− (k − 4) ≤ (k2 − 4k + 11)/2. Because

|NG′k−2
(Z ′′)| = k(k − 3)/2 and k ≥ 75, |Z ′′| ≤ |NG′k−2

(Z ′′)|. If H(Z) has no vertex that

is not adjacent to the edges of H(Z ′′), then the edges of R join vertices of H(Z ′′) with

each other. We have that |Z ′′| ≤ k(k − 1)/2− k = k(k − 3)/2 and |Z ′′| ≤ |NG′k−2
(Z ′′)|.

Suppose that H(Z ′′) has at least k+ 1 vertices. Then R has at least k+ 1 edges and

|Z ′| ≤ |Z|−(k+1) ≤ k(k−3)/2. As |NG′k−2
(Z ′′)| ≥ (k+1)(k−3)/2, |Z ′′| ≤ |NG′k−2

(Z ′′)|.

Case c). q ≥ k+1. Then H(Z ′′) has at least k+1 vertices. We have that R has at least

k+1 edges and |Z ′| ≤ |Z|−(k+1) ≤ k(k−3)/2. Because |NG′k−2
(Z ′′)| ≥ (k+1)(k−3)/2,

|Z ′′| ≤ |NG′k−2
(Z ′′)|.

We conclude that for any Z ′′ ⊆ Z ′, |Z ′′| ≤ |NG′k−2
(Z ′′)|. Hence, G′k−2 has a matching

M of size r such that every vertex of Z ′ is saturated in M .

Clearly, M is a matching in G′k as well. Recall that R = x1 . . . xpx1 is a Hamiltonian

cycle in H(Z) and U = {ux1x2 , . . . , uxp−1x1}. For i ∈ {1, . . . , p}, let ti be the number of

vertices in {v1xi , . . . , vsxi} that are saturated in M . Because M is a matching in G′k−1,

ti ≤ s− 1.

We prove that there is j ∈ {1, . . . , p} such that tj < s − 1. Let q be the smallest

positive integer such that |Z| ≤ q(q − 1)/2. The graph H(Z) has at least q vertices.

Suppose first that it has exactly q vertices. Then p = q and Z ′ = Z \ U has at most

p(p − 1)/2 − p = p(p − 3)/2 vertices. Also |NG′k−2
(Z)| = p(k − 3)/2. If p < k, at least

one vertex in NG′k−2
(Z) is not saturated and the statement holds. Let p = k. Then

because G has no cliques of size k, |Z| < k(k− 1)/2 and |Z ′| < k(k− 3)/2. We have that

|Z ′| < |NG′k−2
(Z)| and at least one vertex in NG′k−2

(Z) is not saturated. If p ≥ k+1, then

|Z| = k(k− 1)/2 + 1. We have that |Z ′| ≤ k(k− 3)/2 and |NG′k−2
(Z)| ≥ (k+ 1)(k− 3)/2.

Hence, the there is a non-saturated vertex in NG′k−2
(Z). Suppose now that H(Z) has at

least q + 1 vertices. Then p ≥ q + 1 and |Z ′| ≤ q(q − 1)/2 − (q + 1) = q(q − 3)/2 − 1.

As |NG′k−2
(Z)| ≥ (q + 1)(k − 3)/2, |Z ′| < |NG′k−2

(Z)| if q ≤ k. If q ≥ k + 1, then

|Z ′| ≤ |Z| − (k+ 2) ≤ (k(k− 1)/2 + 1)− (k+ 2) ≤ k(k− 3)/2− 1. Because |NG′k−2
(Z)| ≥

(k + 2)(k − 3)/2, we again have a non-saturated vertex in NG′k−2
(Z). We considered all

cases and conclude that at least one vertex of NG′k−2
(Z) is not saturated in M . Hence,

there is j ∈ {1, . . . , p} such that tj < s − 1. Without loss of generality we assume that

j = p.

Because v1xi , . . . , v
s
xi have the same neighborhoods, we assume without loss of gen-

erality that for i ∈ {1, . . . , p}, v1xi , . . . , vtixi are saturated. For i ∈ {1, . . . , q} and j ∈
{1, . . . , ti}, denote by uji the vertex of Z ′ such that {vjxi , uji} ∈ M . Notice that it

can happen that ti = 0 and we have no such saturated vertices. We define the path

Pi = v1xiu
1
i v

2
xi . . . u

si
i v

ti+1
xi if ti ≥ 1 and let Pi = v1xi if ti = 0 for i ∈ {1, . . . , p}. Let

P = P1 + vt1+1
x1 ux1x2v

1
x2 + . . . + v

tp−1+1
xp−1 uxp−1xpv

1
xp + Pp and then form the cycle C from

P by joining the end-vertices of P by v
tp+1
xp v

tp+2
xp uxpx1v

1
x1 using the fact that tp ≤ s− 2.

We have that Z ⊆ V (C) ⊆ Z ∪NG(Z) and v
tp+1
xp v

tp+2
xp ∈ E(C). It concludes Case 3 and

the proof of the claim.

32

Let Z ⊆ V (G′k) be a set of size k′. Let Z ′ = Z ∩{uxy|{x, y} ∈ E(G)}. If Z ′ = ∅, then

Z is a clique and there is a cycle C in G′k such that Z ⊆ V (C). Suppose that Z ′ 6= ∅.
By Claim, there is a cycle C ′ in G′k such that Z ′ ⊆ V (C ′) ⊆ Z ′ ∪NG(Z ′) and C ′ has an

edge {vix, vjy} for some x, y ∈ V (G′) and i, j ∈ {1, . . . , s}. Let {u1, . . . , up} = Z \ V (C ′).

Notice that these vertices are pairwise adjacent and adjacent to vix, v
j
y. We construct the

cycle C from C ′ by replacing {vix, vjy} by the path vixu1 . . . upv
j
y. It remains to observe

that Z ⊆ V (C) ⊆ Z ∪NG(Z).

6.2 Kernelization lower bounds for planar graphs

Now we show that it is unlikely that Cyclability, parameterized by k, has a polynomial

kernel when restricted to planar graphs. The proof uses the cross-composition technique

introduced by Bodlaender, Jansen, and Kratsch in [?].

Let L ⊆ Σ∗ × N be a parametrized problem. Recall that a kernelization for a pa-

rameterized problem L is an algorithm that takes an instance (x, k) and maps it in time

polynomial in |x| and k to an instance (x′, k′) such that

i) (x, k) ∈ L if and only if (x′, k′) ∈ L,

ii) |x′| is bounded by a computable function f in k, and

iii) k′ is bounded by a computable function g in k.

The output (x′, k′) of kernelization is a kernel and the function f is the size of the kernel.

A kernel is polynomial if f is polynomial.

We also need the following additional definitions (see [?]). Let Σ be a finite alphabet.

An equivalence relation R on the set of strings Σ∗ is called a polynomial equivalence

relation if the following two conditions hold:

i) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y

belong to the same equivalence class in time polynomial in |x|+ |y|,

ii) for any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S

into a number of classes that is polynomially bounded in the size of the largest

element of S.

Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation on Σ∗, and let

Q ⊆ Σ∗×N be a parameterized problem. An AND-cross-composition of L into Q (with

respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging

to the same equivalence class of R, takes time polynomial in
∑t

i=1 |xi| and outputs an

instance (y, k) ∈ Σ∗ × N such that:

i) the parameter value k is polynomially bounded in max{|x1|, . . . , |xt|}+ log t,

ii) the instance (y, k) is a yes-instance for Q if and only each instance xi is a yes-

instance for L for i ∈ {1, . . . , t}.

33

It is said that L AND-cross-composes into Q if a cross-composition algorithm exists for

a suitable relation R.

In particular, Bodlaender, Jansen and Kratsch [?] proved the following theorem.

Theorem 6.1 ([?]). If an NP-hard language L AND-cross-composes into the param-

eterized problem Q, then Q does not admit a polynomial kernelization unless NP ⊆
co-NP/poly.

We consider the auxiliary Hamiltonicity with a Given Edge problem that for a

graph G with a given edge e, asks whether G has a Hamiltonian cycle that contains e.

We use the following lemma.

Lemma 6.3. Hamiltonicity with a Given Edge is NP-complete for cubic planar

graphs.

Proof. It was proved by Garey, Johnson and Tarjan in [?] that Hamiltonicity is NP-

complete for planar cubic graphs. Let G be a planar cubic graph, and let v be an

arbitrary vertex of G. Denote by x, y, z the neighbors of v in G. We replace v by a

gadget F shown in Fig. ??. More precisely, we delete v, construct a copy of F and add

edges {x, x′}, {y, y′} and {z, z′}. Denote by G′ the obtained graph. Clearly, G′ is a cubic

planar graph. We claim that G is Hamiltonian if and only if G′ has a Hamiltonian cycle

that contains the edge e shown in Fig. ??.

Figure 12: The gadget F ; the edges of Hamiltonian cycles are shown by the bold lines.

Suppose that G has a Hamiltonian cycle C. Then C contains two edges incident to v.

We construct the Hamiltonian cycle in G′ by replacing these two edges by paths shown

in Fig. ??. If C contains {x, v} and {v, y}, then they are replaced by the path shown in

Fig. ?? a), if C contains {x, v} and {v, z}, then they are replaced by the path shown in

Fig. ?? b) and if C contains {y, v} and {v, z}, then we use the path shown in Fig. ??

c). It is easy to see that we obtain a Hamiltonian cycle that contains e. If G′ has a

Hamiltonian cycle, then it is straightforward to see that G is Hamiltonian as well.

Now we are ready to prove Theorem ??.

34

of Theorem ??. We construct an AND-cross-composition of Hamiltonicity with a

Given Edge. By Lemma ??, the problem is NP-complete. We assume that two instances

(G, e) and (G′, e′) of Hamiltonicity with a Given Edge are equivalent if |V (G)| =
|V (G′)|. Let (Gi, ei) for i ∈ {1, . . . , t} be equivalent instances of Hamiltonicity with

a Given Edge, |V (Gi)| = n. We construct the graph G as follows (see Fig. ??).

i) Construct disjoint copies of G1, . . . , Gt.

ii) For each i ∈ {1, . . . , t}, subdivide ei twice and denote the obtained vertices by

ui, vi.

iii) For i ∈ {1, . . . , t}, construct an edge {vi, ui+1} assuming that un+1 = u1.

It is straightforward to see that G is a cubic planar graph.

Figure 13: The construction of G for t = 3; the edges of a Hamiltonian cycle in G are

shown by the bold lines.

We claim that G is n+ 2-cyclable if and only if (Gi, ei) is a yes-instance of Hamil-

tonicity with a Given Edge for every i ∈ {1, . . . , t}. If every Gi has a Hamiltonian

cycle Ci that contains ei, then G is Hamiltonian as well; the Hamiltonian cycle in G

is constructed from C1, . . . , Ct as it is shown in Fig. ??. Since G is Hamiltonian, G is

n + 2-cyclable. Suppose now that G is n + 2-cyclable. Let i ∈ {1, . . . , t}. Consider

X = V (Gi) ∪ {ui, vi}. Because |X| = n + 2, G has a cycle C that goes trough all the

vertices of X. It remains to observe that by the removal of the vertices of V (G) \ V (Gi)

and by the addition of the edge ei, we obtain from C a Hamiltonian cycle in Gi that

contains ei.

7 Discussion

Notice that we have no proof (or evidence) that Cyclability is in NP. The definition

of the problem classifies it directly in ΠP
2 . This prompts us to conjecture the following:

Conjecture 7.1. Cyclability is ΠP
2 -complete.

Moreover, while we have proved that Cyclability is co-W[1]-hard, we have no

evidence which level of the parameterized complexity hierarchy it belongs to (lower than

35

the XP class). We find it an intriguing question whether there is some i ≥ 1 for which

Cyclability is W[i]-complete (or co-W[i]-complete).

Clearly, a challenging question is whether the, double exponential, parametric depen-

dance of our FPT-algorithm can be improved. We believe that this is not possible and

we suspect that this issue might be related to Conjecture ??.

Another direction of research is whether Cyclability is in FPT on more general

graph classes. Actually, all results that were used for our algorithm can be extended

on graphs embeddable on surfaces of bounded genus – see [?, ?, ?, ?, ?] – and yield an

FPT-algorithm on such graphs (with worst time bounds). We believe that this is still the

case for graph classes excluding some fixed graph as a minor. However, in our opinion,

such an extension even though possible would be too technically involved.

References

[1] Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast minor testing in

planar graphs. In: Algorithms - ESA 2010, 18th Annual European Symposium (1).

Lecture Notes in Computer Science, vol. 6346, pp. 97–109. Springer (2010)

[2] Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S., Thilikos,

D.M.: Tight bounds for linkages in planar graphs. In: Automata, Languages and

Programming - 38th International Colloquium, ICALP 2011. Lecture Notes in Com-

puter Science, vol. 6755, pp. 110–121. Springer (2011)

[3] Aldred, R.E., Bau, S., Holton, D.A., McKay, B.D.: Cycles through 23 vertices in

3-connected cubic planar graphs. Graphs and Combinatorics 15(4), 373–376 (1999)

[4] Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

[5] Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-

likos, D.M.: (meta) kernelization. In: Proceedings of the 2009 50th Annual IEEE

Symposium on Foundations of Computer Science. pp. 629–638. FOCS ’09, IEEE

Computer Society, Washington, DC, USA (2009)

[6] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-

composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

[7] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Information and Computation 85(1), 12–75 (1990)

[8] Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, Encyclopedia of mathematics and its applications,

vol. 138. Cambridge University Press (2012)

[9] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,

Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015).

36

[10] Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of

bounded-genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)

[11] Diestel, R.: Graph theory, Graduate Texts in Mathematics, vol. 173. Springer,

Heidelberg, fourth edn. (2010)

[12] Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre

Unterteilungen. Math. Nachr. 22, 61–85 (1960)

[13] Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer-Verlag, New York

(1999)

[14] Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. III. Some

structural aspects of the W hierarchy. In: Complexity theory, pp. 191–225. Cam-

bridge Univ. Press, Cambridge (1993)

[15] Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. In:

21st Manitoba Conference on Numerical Mathematics and Computing (Winnipeg,

MB, 1991), vol. 87, pp. 161–178 (1992)

[16] Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. I.

Basic results. SIAM J. Comput. 24(4), 873–921 (1995)

[17] Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On

completeness for W [1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

[18] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts

in Computer Science, Springer (2013)

[19] Erdős, P.: Remarks on a paper of Pósa. Magyar Tud. Akad. Mat. Kutató Int. Közl.

7, 227–229 (1962)

[20] Flandrin, E., Li, H., Marczyk, A., Woźniak, M.: A generalization of dirac’s theorem

on cycles through k vertices in k-connected graphs. Discrete mathematics 307(7),

878–884 (2007)

[21] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

[22] Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction obstructions for

treewidth. J. Comb. Theory, Ser. B 101(5), 302–314 (2011)

[23] Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem

is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

[24] Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. European J.

Combin. 25(6), 785–792 (2004)

[25] Grötschel, M.: Hypohamiltonian facets of the symmetric travelling salesman poly-

tope. Zeitschrift für Angewandte Mathematik und Mechanik 58, 469–471 (1977)

37

[26] Gu, Q.P., Tamaki, H.: Improved bounds on the planar branchwidth with respect

to the largest grid minor size. In: Algorithms and Computation - 21st International

Symposium, (ISAAC 2010). pp. 85–96 (2010)

[27] Kawarabayashi, K.i., Wollan, P.: A shorter proof of the graph minor algorithm: The

unique linkage theorem. In: Proceedings of the Forty-second ACM Symposium on

Theory of Computing. pp. 687–694. STOC ’10, ACM, New York, NY, USA (2010)

[28] Niedermeier, R.: Invitation to fixed-parameter algorithms. Habilitation thesis, (Sep

2002)

[29] Perkovic, L., Reed, B.A.: An improved algorithm for finding tree decompositions of

small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000)

[30] Plummer, M., Győri, E.: A nine vertex theorem for 3-connected claw-free graphs.

Studia Scientiarum Mathematicarum Hungarica 38(1), 233–244 (2001)

[31] Robertson, N., Seymour, P.: Graph minors. xxii. irrelevant vertices in linkage prob-

lems. Journal of Combinatorial Theory, Series B 102(2), 530 – 563 (2012)

[32] Robertson, N., Seymour, P.D.: Graph Minors. X. Obstructions to Tree-

decomposition. J. Combin. Theory Series B 52(2), 153–190 (1991)

[33] Robertson, N., Seymour, P.D.: Graph minors .xiii. the disjoint paths problem. J.

Comb. Theory, Ser. B 63(1), 65–110 (1995)

[34] Robertson, N., Seymour, P.D.: Graph Minors. XIII. The disjoint paths problem. J.

Combin. Theory Ser. B 63(1), 65–110 (1995)

[35] Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages.

J. Combin. Theory Ser. B 99(3), 583–616 (2009)

[36] Watkins, M., Mesner, D.: Cycles and connectivity in graphs. Canad. J. Math 19,

1319–1328 (1967)

38

