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1 Search games, connected search and planar graphs

Search games are a powerfull tool for studying various connectivity parameters of
graphs. In the classical search game, we consider an undirected graph G = (V, E)
whose edges are initially contaminated. A set of searchers try to clean the graph. At
the beginning the graph contains no searchers. At each step of the game, a searcher
can be placed on an arbitrary vertex of the graph or, if the searcher is already on a
vertex v it can slide through an edge e incident to v. In the former case the edge
e is cleaned by the searcher. If, for some clean edge e, there is a path from e to a
contaminated edge such that no searcher separates the two edges on the path, then
e becomes recontaminated. The search number s(G) of G is the minimum number
of searchers required to clean all the edges of G.

The search number differs by at most one from another well-known graph pa-
rameter, namely the pathwidth. The treewidth, the branchwidth and several param-
eters of the same flavour can be defined by versions of the search game.

In this paper we consider a variant of the search game introduced by Barrière
et al. [1], called connected search. It requires that, at each step of the search game,
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the set of clean edges induces a connected subgraph of G. The minimum number
of searchers that can clean G by a connected search is denoted by cs(G).

A plane graph is a particular drawing of a planar graph in the plane without
crossings. An outerplane graph is a planar embedding of an outerplanar graph
with every vertex on the exterior face. If G is a plane graph then G∗ denotes its
geometric dual. The weak dual T ∗ of an outerplane graph G is the graph obtained
from the dual G∗ by deleting the vertex corresponding to the exterior face of G. It
is not hard to show that if G is connected, T ∗ is a tree.

The search parameters of a plane graph G are often close to the ones of its
dual. If G is 2-connected, the branchwidth of the two graphs is equal [6] and their
treewidth differs by at most one unit [4,5].

Bodlaender and Fomin [3] proved that the pathwidth of a 2-connected outer-
plane graph and the pathwidth of its weak dual differ by at most a factor of 2
and deduce an efficient 2-approximation algorithm for the pathwidth of outerpla-
nar graphs. In this paper we prove that, for any outerplane graph G, cs(T ∗)/2 ≤
cs(G) ≤ 2 cs(T ∗) + 1 and provide a 4-approximation algorithm for cs on outerpla-
nar graphs.

2 Medial graphs, expansion and connected search

For X ⊆ E(G) let δG(X) be the set of all vertices incident to edges in X and
E(G) \ X . For Y ⊆ V (G) let ∂G(Y ) be the set of all edges with an end in Y and
an end in V (G) \ Y .

Take a drawing of a graph G in a sphere. Let MG be a graph with vertex set
E(G) and let Cv (v ∈ V (G)) be circuits ofMG, with the following properties:
• The circuits Cv (v ∈ V (G)) are mutually edge-disjoint and have unionMG;
• For each v ∈ V (G) let the adjacent to v edges {v, x1}, {v, x2}, . . . , {v, xt} be
enumerated according to the cyclic order in the drawing ofG; then Cv has vertex
set {v, x1}, {v, x2}, . . . , {v, xt} and in Cv vertex {v, xi} is adjacent to {v, xi+1}
(1 ≤ i ≤ t), where x0 = xt.

MG is called a medial graph of G. Notice that if G is 2-connected then MG is
isomorphic toMG∗ .

Lemma 2.1 Let MG be the medial graph of a plane graph G. Then for every
X ⊆ E(G), |δG(X)| ≤ |∂MG

(X)|/2.

We can now state our main result.

Theorem 2.2 Let G be a 2-connected outerplane graph and T ∗ be its weak dual.
Then cs(G) ≤ 2 cs(T ∗) + 1.



Let k be the connected search of T ∗. Barrière et al. [2] characterized the trees
of connected search number k as being exactly the k-caterpillars. For two distinct
vertices u, v of T , let Tv[u] denote the subtree of T rooted in u and containing v.
In a k-caterpillar we distinguish a path called the spine of the caterpillar. A 1-
caterpillar is formed only by its spine. For any k > 1, a k-caterpillar T is such that
for any vertex u on the spine P and for any neighbour v of u not on the spine, Tv[u]
is a k′-caterpillar, with k′ ≤ k − 1, and u is an endpoint of the spine of Tv[u].

Based on this observation, we have to construct a connected search strategy on
G using 2k + 1 searchers. An expansion in an arbitrary graph H is a sequence
(X0, X2, . . . , Xp) of subsets of E(H) such that X0 = ∅,Xp = E(H) and, for each
1 ≤ i ≤ p, |Xi \Xi−1| = 1. The expansion corresponds to the sequence of cleaned
edges of G.

Lemma 2.3 Let vout denote the vertex ofG∗ corresponding to the outerface. There
exists an expansion (X∗

0 , X
∗

2 , . . . , X
∗

p ) of G∗ such that

(i) For each 1 ≤ i ≤ p, |δG∗(X∗

i )| ≤ k.
(ii) For each 1 ≤ i ≤ p and u ∈ V (G∗) \ {vout}, V (Cu) ∩Xi (as vertex subset of

MG∗) induces a connected subgraph in MG∗ .
(iii) For each 1 ≤ i ≤ p, the subgraph ofMG∗ induced by the vertex set V (Cvout

)∩
Xi has at most k connected components.

(iv) For every edges {u, vout} ∈ Xj \ Xj−1 and {u, w} ∈ Xi \ Xi−1, w '= vout

implies i < j, i.e. all edges {u, w} adjacent to an edge {u, vout} with endpoint
vout appear before {u, vout} in the sequence.

Proof. (Hints). We construct a monoton expansion, by adding a new edge at each
step. Let P = (u1, u2, . . . , uq) be the spine of T ∗. The spine can be chosen such
that u1 (resp. uq) has no other neighbours in T ∗ but u2 (resp. uq−1).

For each i, 2 ≤ i ≤ q − 1, we order the neighbours of ui according to the
clockwise cyclic order of the drawing of T ∗. Let v1, v2, . . . vr be this order with
ui−1 = v1 and ui+1 = vj .

The edges of the spine will be added to the expansion respecting their order in
P . Let X∗

1 = {{u1, u2}}, X∗

2 = {{u1, u2}, {u1, vout}} (if {u1, vout} is a multiple
edge we add it and its copies consecutively; we also do the same for all the multiple
edges incident to vout that may appear). After adding to the expansion the edge
{ui−1ui}, we clean recursively the subtrees T ∗

vs
[ui] in the order s = 2, 3, . . . , j −

1, r, r − 1, . . . , j + 1. Eventually, we clean the edge {uiui+1} and, if it exists, the
edge {uivout}. The subttree T ∗

vs
[ui] is cleaned according to the same rules as T ∗,

starting with its spine rooted in ui (recall that T ∗

vs
[ui] is a k′-caterpillar for some

k′ ≤ k − 1).



Property i is due to the fact that T ∗ is a k-caterpillar. The expansion clearly
satisfies property iv of the lemma. Property ii is due to our ordering in the cleaning
of the subtrees T ∗

vs
[ui]. Property iii also comes from this ordering and the fact that

T ∗ is a k-caterpillar. !

The proof of Theorem 2.2 is based on the fact that, for anyX∗

i of the expansion
described in Lemma 2.3, we have |∂MG∗

(X∗

i )| ≤ 4k. Then we use Lemma 2.1.
For any 2-connected outerplanar graph G, we have s(T ∗) ≤ s(G) (see [3]).

Also, for any tree its connected search number is at most twice its search num-
ber [2]. Therefore we can state the converse of Theorem 2.2:

Theorem 2.4 For any 2-connected outerplanar graphG, cs(T ∗) ≤ 2cs(G).

3 Conclusion

We proved that for any 2-connected outerplanar graph G, cs(T ∗)/2 ≤ cs(G) ≤
2 cs(T ∗) + 1. Notice that the construction of the expansion described in the proof
Lemma 2.3 can be done in O(|V (G)|) steps and this provides a 4-approximation
algorithm for the connected search number of 2-connected outerplanar graphs. We
leave as an open question whether the factors of Theorems 2.2 and 2.4 are tight.
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