
AN EFFICIENT IMPLEMENTATION OF1

MATERIAL REQUIREMENTS PLANNING
BY USING CACHE MEMORY

D. Blonis
S. Nikoletseas
D. Sofotassios

A. Spiliou
P. Spirakis
D. Thilikos

V. Triantafillou

Coputer Technology Institute
Patras University, Greece

PO BOX 1122, 26110, Patras, Greece
email : spiliou@cti.gr

Abstract

This paper describes an efficient way to implement a Material Re-
quirements Plan (MRP) which results in reducing the time needed
to create this plan. Our approach is based on a) a Directed Acyclic
Graph (DAG) structure for the representation of BOM (Bill Of Ma-
terials) and b) a complex structure of linked lists to keep demand for
parts, while exploding BOM and calculating MRP. During the com-
putation, both structures are stored in a cache memory which allows
a very efficient data retrieval.

Keywords: Production Planning and Control, Bill-Of-Materials, Material
Requirements Planning, Directed Acyclic Graph, cache memory, current re-
quirements structure.

1This work was partially supported by the CEC ESPRIT Special Actions project
DELTA-CIME and by the CEC STRIDE project TEXTILE.

1

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός
Advanced Summer Institute 1994 in Computer Integrated Manufacturing and Industrial Automation ASI 1994.

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός

1 Introduction

The Production Planning and Control (PPC) function has been a major re-
search topic for many years. Any PPC concepts, in particular those based
on the principle of co-ordinated material control such as Material Require-
ments Planning (MRP) and Manufacturing Resources Planning II (MRP II)
[6] rely heavily on the availability of supporting information systems. The
introduction of computerized information systems gave a new impulse to the
development of new concepts because of the ability to store, manipulate and
retrieve large amounts of data.

In most MRP II systems, all computations concerning production plans
are based on standard relational tables of a database stored in a secondary
memory. This is adequate for Master Production schedules or Capacity plans
[6], where the calculations are relatively few. But when we refer to MRP
plans, we deal with a great bulk of information due to the infinite time
horizon of the production plans and the use of bucketless transactions during
the MRP calculation [7]. So, an efficient implementation of the MRP module
is the most significant part in the development of a Production Planning and
Control System (PPCS).

Such an effort has been made in [8], where an efficient way to improve
BOM [1][7] implementation is proposed. More specifically, linked lists are
used to represent BOM, which are stored in RAM, in order to achieve a
more efficient data retrieval.

This paper describes a complete MRP system using the Directed Acyclic
Graph (DAG) structure to represent BOM and a complex structure of dy-
namic lists to store demand during MRP processing. The data structures
are stored in the main memory, which serves as a cache memory, for faster
data access. Manipulation of these data structures can be done efficiently
through a high level programming language (eg. C).

The rest of the paper is organized in five sections. The first justifies
the need to store data in main memory instead of secondary memory, in
order to improve the time complexity of the retrievals. The second describes
the structure that represents BOM, together with its operational interface.
The third section demonstrates the whole MRP processing, including data
structures and algorithms used. The fourth section gives an estimation of
memory needed to keep the two data structures, and the last summarizes
conclusions and presents some open problems.

2

2 The need of cache memory

In general terms, in a PPCS framework MRP explodes BOM to create the ap-
propriate orders for semi-finished and/or purchased parts, in order to satisfy
demand for end products. Assuming that a typical enterprise produces 400
end products which require for their production 5000 semi-finished and/or
purchased parts, it is clear that accessing -with SQL queries- the relational
tables in the secondary memory [5] to get the necessary information, has a
heavy performance cost because:

• A complex BOM query (e.g. explosion of a part) may result in many
sub-queries during the traversal of the BOM structure. Each sub-query
has to pass the process of syntactic and semantic checking again.

• Each query has to access the database. This means that information
should be sent from the application to the database and the results have
to be sent back. This communication cost increases in a distributed
environment.

To deal with this problem we need a) a storage environment which supports
faster access than the secondary memory and b) efficient data structures to
store the BOM, together with the necessary programming tools to handle
them.
Based on this consideration we adopted the following approach :

• BOM data are stored permanently in relational tables in the secondary
memory.

• These tables are transformed in an efficient data structure and are
stored in main memory, which serves as a cache memory, while execut-
ing the application.

• There is also a dynamic structure (in the cache memory), which keeps
the demand for parts of the current BOM level, while exploding BOM
and calculating MRP.

• All operations necessary for BOM maintenance and MRP processing
are implemented as a programming interface, using the C programming
language.

3

Figure 1 : Product structure of black desk-lamp

3 Bill of Materials

In the manufacturing business, many different products have to be controlled.
Not only final and purchased products are important, but also many semi-
finished products such as sub-assemblies must be managed. Many products
are related to each other, in a way that one product is required to manufac-
ture another. The way in which a product is built up from purchased parts
and/or semi-finished products (which in turn consist of other purchased parts
and/or semi-finished products) is called the product structure of that prod-
uct. Figure 1, depitcts the product structure of a final product, the black
desk-lamp.

The relationships between the products represent the fact that a product
is consumed in the process of manufacturing or assembling another product.
A part C which is consumed in the production of product A, is called a
component part of A and the product A which consumes C for its production,
is called the parent part of C. Moreover, the set of all “A - component part”
relationships, are called the Bill-Of-Material (BOM) of A [7].

Data retrieval can be obtained from a product structure by two basic
functions named BOM-explosion and BOM-implosion (figure 2). The explo-
sion function lists the component parts of a specific part and the implosion
function lists the parents of a specific part. The above functions could be
single-level or multiple-level [12].

In the following, an efficient way of implementing BOM, using complex
data structures, is described. At this point, it should be emphasized that this
paper does not deals with BOM generation which concerns manufacturing
process improvements. On the contrary, it considers the product structures
given and proposes solutions to faster data access, which concern reduction

4

Figure 2 : BOM retrievals

in MRP calculation time.

3.1 The BOM structure

The BOM should keep data fully describing which component parts partic-
ipate in the production of each product. This process begins with the end
products and finishes with purchased parts (they may be raw materials or
manufactured parts that are being purchased of a particular enterprise). The
above consideration suggests a tree structure for the representation of BOM
data, more specifically a forest of trees, where a single tree is used to describe
the structure of each end product.
Moreover the BOM structure should :

• be organized in an efficient way, in terms of fast data retrieval, as it is
exploded many times during MRP calculation

• have the least possible storage requirements, because it is kept in RAM.

The use of tree structure for BOM representation does not fully meet these
requirements since :

• a part may participate in the production of more than one end products
(figure 3)

• A part may participate more than one times in the production of the
same end product (figure 4a).

5

Figure 3

In both of the above cases, we have information redundancy resulting in
wasting RAM space. Additionaly, the tree structure does not provide much
efficiency in accessing the stored data.

In order to deal with these problems, we propose the Directed Acyclic
Graph (DAG) structure [4] for BOM representation, described below.

Assuming that the structure of a part is uniquely defined we can represent
a part structure by assigning nodes to parts and arrows to “parent part -
component part” relationships. Thus, we can represent the BOM structure
with a directed graph where each part corresponds to a unique node.

For each part, except for the part id field which identifies it, we must
store additional information necessary for MRP calculations. This informa-
tion concerns a) the time needed for a part to be produced from its compo-
nent parts (lead time) and b) the quantity with which each component part
participates in the production of the parent part. Lead time is unique for
every part, so it is stored in the corresponding node. On the contrary, the
quantity that each part contributes in the production of the parent is stored
in the arrow indicating their relationship, since a part may participate in the
production of many other parts (figure 4b).

It is clear that such a graph can not have circles, because the existence
of a circle would mean that a part could participate in its own production.
We also observe that the nodes with in-degree equal to zero, represent end
products and nodes with out-degree equal to zero, represent purchased parts.

The DAG structure can be implemented efficiently using linked lists [4].
Particularly, we use a linked list, called MAIN LIST, which keeps the parts
in increasing order of part id. Moreover, for each element of the MAIN
LIST, there exist two additional lists. The first, called USE WHAT LIST,
keeps all the component parts of the corresponding part. The second, called
WHERE USE LIST, includes all the parents of the particular part (fig. 5).

6

(a) Tree sructure (b) DAG structure

Figure 4

Figure 5 : The BOM structure

7

Every node of the DAG structure contains the following information,
necessary for MRP calculations :

• PART ID: for the identification of the particular part.

• LT (lead time): the time needed for a part to be produced from its
component parts.

• LOWLEVC (low level code): the length (number of edges) of the
longest path, starting from an end product and finishing at the specific
part, in the directed acyclic graph.

• USE WHAT: a pointer to the list containg the component parts of the
particular part. Each element of this list constists of:

– NEXT EL: a pointer to the next element of the list,

– WU MRPREC: a pointer to the corresponding part of MAIN
LIST and

– QTY: the quantity with which this part (USE WHAT LIST el-
ement) contibutes in the production of its parent (MAIN LIST
element).

• WHERE USE: a pointer to the list containing the parents of the par-
ticular part. Each element of this list constists of:

– NEXT EL: a pointer to the next element of the list,

– WU MRPREC: a pointer to the corresponding part of MAIN
LIST and

– QTY: the quantity with which the current element of MAIN LIST
contibutes in the production of its parent (WHERE USE LIST
element).

• NEXT EL: a pointer to the next (in increasing order) element of the
list.

The use of DAG structure for BOM representation, has the following advan-
tages:

8

• Reduction in memory space, since each part is stored once and the
necessary relationships are achieved with the use of pointers (when a
part participates in the production of many other parts or many times
in the production of the same part).

• Direct O(1) time access to all the component parts of a particular part
(explosion).

• Direct O(1) time access to all parents of a particular part (pegging).

The programming environment of e.g. the C language has powerful capabil-
ities in creating and managing linked lists, using pointer operations [11].

3.2 BOM operations

The operations performed on the proposed BOM structure are the folowing:

• bom init list : creates the structure and loads the necessary informa-
tion from the relational tables of the database.

• bom ins list : inserts a new part in the structure in a way that MAIN
LIST remains in increasing order of low level code.

• bom upd list : updates information related to a part structure.

• bom del list : deletes a part structure.

• search bom list : searches, using the binary search technique, the
MAIN LIST of BOM structure to find a specific part.

• bomsex : performs the single explosion function that gives the com-
ponent parts of the next lower BOM level, for a specific part.

• bommex : performs the multiple explosion function that gives the
complete structure of a specific part (up to raw materials).

• bomsim : performs the single implosion function that gives the parent
parts of the next higher BOM level, for a specific part.

• bommim : performs the multiple implosion function that gives the
paths from a specific part to all its parents (up to end products).

9

The first operation is performed every time a user enters the application. The
operations of insert, update and delete a part structure, are rarely performed
(when the process plans are modified) and they affect both the database and
the cache memory structure. The remaining operations do not affect or
change BOM. On the contrary, they refer to data retrievals that are very
useful in MRP processing and performed in the cache memory. They are
generaly time consuming operations, especially the multiple-level functions,
but the the BOM structure and the fact that it is stored in RAM, considerably
reduce the running time.

4 Material Requirements Plan (MRP)

MRP logic is based on the observation that in order to have a product avail-
able in a particular date, the quantities of the parts needed for its production
(component parts) should be available in a time that is at least equal to the
lead time of the product [7]. Consequently, demand for end products gener-
ates demand for a number of other products and this, in turn, demand for
new products, and so forth raw materials. Due to the fact that the depen-
dent demand for a part may come from more than one parent, the situation
gets complex enough and leads to the conclusion that an order between parts
must be defined. This order is achieved with the use of low level code [1].
Low level code is the length of the longest path, from a node with in-degree
equal to zero (end product) to the node corresponding to the particular part
and is kept in the BOM structure.

The use of low level code comes from the fact that in order to calculate
demand for a part, the demand for all the parts that have this particular
part as their component part must have been calculated. Hence, low level
code defines an order between parts and organizes them in levels. According
to this, MRP processing is executed in levels starting from end products
(top) and ending to raw materials (bottom). Each level, generates “material
requirements”, an information which is dynamic and is stored in a structure,
called current requirements structure which is described below.

10

Figure 6 : Current requirements structure

4.1 Current requirements structure

As described above, MRP processing needs to keep the current requirements
that the products generate for their component parts on each level of BOM
structure. These requirements are stored in the current requirements struc-
ture (figure 6) which consists of two types of linked lists.

Each element of the first list, called MAIN LIST, corresponds to a part
with low level code greater than or equal to the current BOM level. The
elements of this list are ordered according to the part id. Each of these
elements consists of the following fields :

• PART ID

• NEXT EL : a pointer to the next element of MAIN LIST

• DEM LIST : a pointer to the second list called DEMAND LIST.

DEMAND LIST holds all the requirements (expressed by date and quantity)
of the current MAIN LIST element, which have been produced as a result
of its parents demand. DEMAND LIST elements are order according to
increasing demand date and consist of the following attributes :

• DEM QTY : the quantity of a single requirement,

• DEM DATE : the date that the specific requirement should be satisfied
and

• NEXT EL : a pointer to the next requirement of the current part.

11

Current requirements structure is a dynamic structure since in every level the
requirements of each product are deleted at the moment they complete the
generation of the requirements for its component parts. Current requirements
structure is created, updated and deleted (finaly) during the MRP processing.

4.2 Current requirements structure operations

The operations performed on current requirements structure are the follow-
ing:

• mrp init list : generates requirements for end products. This means
creation of both MAIN LIST and DEMAND LISTs.

• create new requirements : insertion of a MAIN LIST element (new
part) or a DEMAND LIST element (new requirement) for some part
that already exists in MAIN LIST.

• mrp del list : each requirement of a MAIN LIST element generates
requirements for its component parts. As soon as this process is com-
pleted for all the components, the part and its own requirements are
deleted from the current requirements structure.

4.3 The MRP algorithm

Let n be the current level. The MRP algorithm has the following steps :

• Step 1 : Determine the gross requirements [7] for all products of the
current BOM level per time period. This information exists in current
requirements structure.

• Step 2 : Determine net requirements N(t) for the parts of level n at
time period t. This comes from the relationship

N(t) = G(t) − S(t) − H(t − 1)

where G(t) are the gross requirements at the current time period t,
S(t) are the scheduled receipts of the current time period and H(t-1)
is the existing inventory of the previous time period. If N(t) ≤ 0, set
N(t) = 0.

12

• Step 3 : According to the lot policy [7] generate the production re-
quirements (orders) P(t) (quantity and date) for all the products of
the current BOM level for the specific time period t. If N(t) = 0
then P (t) = 0. Otherwise the quantity and the date of the order are
determined from the lot policy.

• Step 4 : Calculate the current inventories H(t) for the products of
level n at time period t, using the formula

H(t) = S(t) + P (t) + H(t− 1) − G(t)

• Step 5 : If all the time periods are completed go to step 6. Otherwise
continue to the next time period (set t = t + 1) and go to step 1.

• Step 6 : Determine scheduled releases R(t) of all production orders
of step 3 for all products of the current level. If the lead time of the
product is L, then R(t − L) = P (t).

• Step 7 : If the requirements of the products of all levels have been
determined, then stop. Otherwise, continue to step 8.

• Step 8 : Determine requirements of all products of the next BOM
level. This is the outcome of the single level explosion of BOM structure
and inserts new products in the current requirements structure or new
requirements for already existing products.

• Step 9 : Continue to next BOM level, setting n = n + 1, and go to
step 1 again.

5 Memory considerations

This chapter gives an examble of the estimation of the required memory for
MRP processing of a typical enterprise, to demonstrate that the memory
overhead is not very large and thus is trade off by the reduction of processing
time.
Consider an enterprise with :

• 200 end products which need for their production 10000 component
parts

13

• every part having (an average of) 8 component parts

• every part having (an average of) 4 parents

• the last BOM level corresponding to (an average of) 800 purchased
parts

Each MAIN LIST element (of BOM structure) has the following space re-
quirements:

part id 16 Bytes
lt 4 Bytes
lowlevc 4 Bytes
next el 4 Bytes
use what 4 Bytes
where use 4 Bytes

Total 36 Bytes

Each USE WHAT LIST element has the following memory requirements :

qty 8 Bytes
uw mrprec 4 Bytes
next el 4 Bytes

Total 16 Bytes

Each WHERE USE LIST element has the following memory requirements :

qty 8 Bytes
wu mrprec 4 Bytes
next el 4 Bytes

Total 16 Bytes

According to this, every part of the BOM structure occupies an average of

36 + 8 ∗ 16 + 4 ∗ 16 = 228Bytes. (1)

For a number of 10000 + 200 parts we need 228 ∗ 10200 = 2325600 Bytes for
the BOM structure.

14

Besides the BOM structure, an amount of memory is needed for the
current requirements structure. This structure is dynamic; it changes during
MRP processing and every time it keeps the requirements of a single BOM
level. In the worst case, current requirements structure keeps requirements
for the last BOM level (purchased parts). This is the case when we have a
pyramid BOM. It could be the first BOM level (end items) for an inverted-
pyramid BOM, etc. (see [7]). In any case the maximum length of current
requirements structure is known and is determined by the BOM structure.
Each MAIN LIST element of the current requirements structure occupies :

part id 16 Bytes
dem list 4 Bytes
next el 4 Bytes

Total 24 Bytes

Each MAIN LIST element (part) corresponds to a DEMAND LIST which
occupies memory propotional to the number of orders for the specific part,
within planning period.
Each DEMAND LIST element occupies :

dem qty 4 Bytes
dem date 4 Bytes
next el 4 Bytes

Total 12 Bytes

According to the above we need 12 + 24 = 36 Bytes (2)
for each part of the current requirements structure. Assuming that the av-
erage number of planned orders for a part in a six month period is 20, we
need

36 ∗ 20 ∗ 800 = 576000Bytes

to store current requirements structure. Consequently, we need less than 3
MBytes of memory for MRP processing. We consider this amount of memory
reasonable, compared to the significant reduction of processing time.
In any case, the size of memory required is predictable and equal to :

228 ∗ E ∗ C Bytes for the BOM structure and
36 ∗ P ∗ M Bytes for the current requirements sructure

15

where

228 : size of each element of the BOM structure (see eq. 1)
E : number of end products
C : number of component parts
36 : space occupied by each part of the

current requirements structure (see eq. 2)
P : average number of planned orders in a

six month planning horizon
M : number of parts corresponding to the

last BOM level

6 Conclusions - Open problems

The MRP system described above is implemented with the following restric-
tions:

The use of DAG is based on the assumption that the structure of all
products is uniquely defined. If this is not true, we can assume the parts to
be separate with each corresponding to a different structure.

We also assume that the memory space is enough to accomodate both
structures (BOM and the current requirements structure). Otherwise, some
swapping mechanism has to be implemented at a lower level (e.g. through
appropriate system calls to the operating system).

In the case that concurrent updates on the BOM structure occur, a locking
mechanism is needed. Such a mechanism can be implemented using the
RDBMS concurrency control facilities.

The described MRP system has been implemented on the INGRES RDBMS
as a part of an integrated PPCS in the context of the TEXTILE/STRIDE
project (see [10]). The following open questions could lead to further im-
provements: How good is the linked list data structure for the representation
of BOM objects ? Or, how can someone model product data so that the
resulting BOM structure should be more efficient from both the designer
(production manager) and the developer point of view ? In our test case,
the MRP system takes the BOM objects as given and fixed (several trees
with different levels and fan-outs) and does not attempt to optimize their
structural properties. An interesting extention concerns application of the

16

cache memory architecture to cover other PPC applications too, e.g. bill of
operations applications.

17

References

[1] J. BROWNE, J. HARHEN, J. SHIRMAN, “PRODUCTION MAN-
AGEMENT SYSTEMS”, 1988, ADDISON-WESLEY.

[2] Y. CHUNG, G. W. FISCHER, “ILLUSTRATION OF OBJECT-
ORIENTED DATABASES FOR THE STRUCTURE OF A BILL OF
MATERIALS”, COMPUTERS IN INDUSTRY 19, 1992, 257-270, EL-
SEVIER.

[3] R. COMPANYS, P. FALSTER, J. BURBIDGE, “DATABASES FOR
PRODUCTION MANAGMENT”, 1990, NORTH-HOLLAND.

[4] K. MEHLHORN, “GRAPH ALGORITHMS AND NP-COMPLE-
TENESS”, 1984, SPRINGER-VERLAG.

[5] E. KORTH and A.SILBERSCHATZ, “DATABASE SYSTEM CON-
CEPTS”, 1986, MCGRAW HILL.

[6] J. A. ORLIKY, “MATERIAL REQUIREMENTS PLANNING”,1975,
MCGRAW HILL.

[7] S. SMITH, “COMPUTER BASED PRODUCTION AND INVEN-
TORY CONTROL”, 1988, PRENTICE HALL.

[8] F. STEYER, “SYSTEM ARCHITECTURE AND SPECIFICATION
OF A FAST BOM OBJECT PROCESSOR USING A STANDARD
RELATIONAL DATABASE MANAGMENT SYSTEM AND A MAIN
MEMORY CACHE”, DEXA PROCEEDINGS, 1991, PP 487-490.

[9] D. THILIKOS, D. BLONIS, S. NIKOLETSEAS, D. SOFOTASSIOS,
A. SPILIOU, P. SPIRAKIS, V. TRIANTAFILLOU, “IMPLEMEN-
TATION OF A FAST MATERIAL REQUIREMENTS PLANNING
PROCESSOR USING CACHE MEMORY”, TR 93.07.29, CTI PA-
TRAS.

[10] D. THILIKOS, D. BLONIS, S. NIKOLETSEAS, D. SOFOTASSIOS,
A. SPILIOU, P. SPIRAKIS, V. TRIANTAFILLOU, “FINAL REPORT
FOR THE PRODUCTION PLANNING AND CONTROL SYSTEM”,
CTI PATRAS, INTERNAL REPORT.

18

[11] C. VAN WYK, “DATA STRUCTURES AND C PROGRAMMS”,
1988, ADDISON-WESLEY.

[12] E. A. VAN VEEN, “MODELING PRODUCT STRUCTURES BY
GENERIC BILLS-OF-MATERIALS”, 1992, ELSEVIER.

19

