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Abstract 

A graph G is k-chordal, if it does not contain chordless cycles of length larger than k. The 

chordality Ic of a graph G is the minimum k for which G is k-chordal. The degeneracy or 

the width of a graph is the maximum min-degree of any of its subgraphs. Our results are the 

following: 

( 1) The problem of treewidth remains NP-complete when restricted to graphs with small maximum 

degree. 
(2) An upper bound is given for the treewidth of a graph as a function of its maximum degree 

and chordal@. A consequence of this result is that when maximum degree and chordal@ are 

fixed constants, then there is a linear algorithm for treewidth and a polynomial algorithm for 

pathwidth. 

(3) For any constant s > 1, it is shown that any (s+2)-chordal graph with bounded width contains 
an i-separator of size O(n(S-‘)‘S), computable in O(n3--(“‘) ) time. Our results extent the many 
applications of the separator theorems in [l, 32,331 to the class of k-chordal graphs. 

Several natural classes of graphs have small chordality. Weakly chordal graphs and cocompara- 

bility graphs are 4-chordal. We investigate the complexity of treewidth and pathwidth on these 

classes when an additional degree restriction is used. We present an application of our separator 

theorem on approximating the maximum independent set on k-chordal graphs with small width. 

Keywords: Algorithms; NP-complete problems; Separators in Graphs; Treewidth; Width 

1. Introduction 

In this paper, we study a relatively new graph parameter: the chordality of a graph. 
(All graphs are assumed to be undirected, finite, and simple.) We call a graph 
k-chordal, if it does not contain a chordless cycle of length larger than k. The chordal- 
ity of a graph G is defined as the minimum k for which G is k-chordal. In this paper 
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we investigate the complexity of treewidth and pathwidth in relation to this parameter, 

the maximum degree, and the width of G. We also present a separator theorem for 

graphs with bounded chordality. 

The class of k-chordal graphs contains as subclasses many known natural classes of 
graphs, even for small values of k. Clearly 3-chordal graphs are exactly the chordal 

graphs. Also, as we mention in Section 6, the classes of the weakly chordal graphs 

and the cocomparability graphs are subclasses of the class of 4-chordal graphs. 
The notions of treewidth and pathwidth appear to play an important role in the 

analysis of the complexity of several problems in graph theory. They were introduced 

by Robertson and Seymour in their series of fundamental papers on graphs minors 

(see [37,39]). Roughly spoken, the freewidth of a graph is the minimum k such that 

G can be decomposed into a “tree structure” of pieces with at most k+ 1 vertices. (For 

the precise definition, see Section 2.) A series of recent results show that many NP- 
complete problems become polynomial or even linear time solvable, or belong to NC, 

when restricted to graphs with small treewidth (see [5,7]). Much research has been 
done on the problem of determining the treewidth and the pathwidth of a graph, and 
finding optimal tree or path decompositions with optimal treewidth or pathwidth. These 

problems are NP-complete even if we restrict the input graph to bipartite graphs [26] or 
the complements of bipartite graphs [6]. Moreover, pathwidth remains NP-complete on 
chordal graphs [22], planar graphs [36] and graphs with bounded maximum degree [36]. 
In Section 3, we prove that treewidth is also NP-complete on graphs with bounded 
maximum degree. 

Treewidth can be computed in polynomial time on chordal graphs, cographs [ 131, 
circular arc graphs [40], chordal bipartite graphs [28], permutation graphs [ 121, circle 

graphs [25] and distance hereditary graphs [3]. Bodlaender presented in [8] a linear time 

algorithm that finds an optimal tree decomposition for a graph with bounded treewidth. 

Also Bodlaender and Hagerup in [lo] provide (near) optimal parallel algorithms for 
constructing minimum-width tree decompositions of graphs with bounded treewidth. 
In Section 4, we prove that if a k-chordal graph has maximum degree bounded by a 
value A, then there is a function f(k, A) that is an upper bound for treewidth. A con- 
sequence of our result is that, for k-chordal graphs with bounded maximum degree, 
there is a linear time algorithm for computing treewidth and a polynomial time algo- 

rithm for computing pathwidth. 
In Section 5, we present a connection between the parameters of treewidth and 

width for k-chordal graphs. The degeneracy of a graph G = (V,E) is defined to be the 
maximum min-degree of any of the subgraphs of G (see also [20,30,34]). In [35], 
it is proved that the degeneracy of a graph is equal to its width, a graph parameter 
that is also known as linkage (see also [20,24]). A layout L of a graph G = (V,E) 
is a bijective function, mapping its vertices to numbers { 1,2,. . . ,I VI}. The width of 
a layout L of G is the maximum back-degree of any vertex in L (the back-degree of 
a vertex 0 EL is defined to be the number of vertices that are adjacent to u and are 
preceeding it in L). The width of G is the minimum width over all possible layouts 
of G. Width has been studied in the context of Constraint Satisfaction, as it is known 
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that for constraint graphs of bounded width, it is possible to apply backtrack free 
search, the classical method to solve the Constraint Satisfaction Problem (see [20]). 
Also, width appears in many combinatorial results. For instance, in [2], improved time 

bounds are presented for algorithms that count and find cycles, when the input graph 

is considered to have small width. Finally, there exist several parameters characterizing 
the spar&y of a graph that are related to width. It is known that graphs with small 

arboricity or genus have small width. Moreover, any graph in a graph class with an 
excluded minor has bounded width. 

In this paper we also use the parameter width,. When s = n - 1 or s = 1, width, 

is equivalent with treewidth and width, respectively. The parameter of width, was 
defined in [ 171. In [ 171, Dendris, Kirousis, and Thilikos examine various versions of 

fugitive search games on graphs and present their connections with the parameters of 

treewidth, pathwidth, and width. They show that the width, of a graph with chordality 

at most s + 2, equals its treewidth. Using their result (Theorem 5 in our paper), we 
prove a connection between width and treewidth that leads to a separator theorem for 
(s + 2)-chordal graphs with small width. 

Given a vertex weighted graph G = (I’,,!?), a set S c V is an i-separator of G iff 

the vertex set of each connected component of G[V - S] (the subgraph of G induced 
by the vertices in l’ - S) has total vertex weight no more than the half of the total 

vertex cost of I’. Separator theorems have appeared to play an important role for al- 

gorithmic graph theory as these (in combination with a divide and conquer strategy) 
lead to a series of important complexity results. In [32], Lipton and Tarjan were the 

first to prove a separator theorem for the class of planar graphs. Several applications 
of this separator theorem are presented in [31], including approximation algorithms for 
NP-complete problems, nonserial dynamic programming, time-space trade offs’ study, 
lower bounds on boolean circuit size, embedding of data structures, and maximum 

matching (see also [31] for an application on sparse Gaussian elimination and [29] for 
results relating small separators with layouts of graphs in a model of VLSI). In [l], 
Alon et al. provide a considerably more general result and extent the previous applica- 
tions. They prove a separator theorem for any graph not containing a specific graph as a 
minor. 

Our separator theorem guarantees the existence of a separator of size O(kn(“-I)/‘) in 

a (s+2)-chordal graph with width at most k. Moreover our results lead to an O(n3-(‘is)) 
time algorithm that computes such a separator. As any graph not containing a specific 

graph as a minor has bounded width, our separator theorem gives an extension of the 
results in [l, 32,331 when the chordality is bounded. Finally we present an application 
of our separator theorem for the problem of approximating the independent set problem 
on (s + 2)-chordal graphs with small width. 

As there are sparse graphs with small width that do not contain small separators (see 
Lemma 3) we feel that the requirements of small width and small chordality help to 
approach a characterization of the concept of “usefully sparse”, a question posed from 
Lipton and Taxjan in [33] about the existence of separator theorems for non planar 
sparse graphs. 
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2. Definitions and preliminary results 

In this section some definitions and results will be presented, which are useful in 

later sections. 

Let G = (V,E) be a finite undirected graph without multiple edges or loops. For a 

set of vertices V’ C V, the subgraph of G, induced by V’ is denoted by G[V’]. The 

vertex and edge set of a graph G are denoted by V(G) and E(G), respectively. 
The notions of treewidth and pathwidth were introduced by Robertson and Seymour 

in [39,37]. 

Definition. A tree decomposition of G = (V,E) is defined to be a pair ((4 : i E I}, T), 

where {Xi : i E I} is a collection of subsets of V (we call these subsets the nodes of 
the decomposition) and T = (I,F) is a tree having the index set Z as set of vertices, 
such that the following conditions are satisfied: 

1. UiE1& = V. 
2. tl{U,W}EE, 3iEZ:U,WEXi. 

3. b’i, j, k E I: if j is on a path in T from i to k then Xi fl Xk 5 Xj. 

The treewidth of a tree decomposition ((4 : i E I}, T) is defined to be equal to 
maXi(zI lXi/ - 1. 

The treewidth of G is defined to be the minimum treewidth over all tree decompo- 
sitions of G. 

Definition. A path decomposition of G = (V, E) is defined to be a sequence {Xi : i = 

1 , . . . , r} of subsets of V (we call these subsets the nodes of the decomposition) such 
that the following conditions are satisfied: 

1. &Xl: = v. 
2. V{U,W} E E, 3: U,W EXi. 

3. Vi, j,k, if 1 < i 6 j Q k < r, then Xi f~Xk SXj. 

The pathwidth of a path decomposition {Xi : i = 1,. . . ,r} is defined to be equal to 

maxl<i<&] - 1. 
The pathwidth of G is defined to be the minimum pathwidth over all path decom- 

positions of G. 

The problem of computing the treewidth of a given graph has been proved to be 
NP-complete by Arnborg et al. in [6]. More precisely, they proved that treewidth is NP- 
complete even when restricted to the class of cobipartite graphs (i.e. the complements 
of bipartite graphs). 

Bodlaender proved the following result about the fixed parameter complexity of 
treewidth (see [8]). 

Theorem 1. For any jixed integer k, there is a linear time algorithm, that tests 
whether a given graph G = (V, E) has treewidth at most k, and if so, outputs a tree 
decomposition of G with treewidth at most k. 
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A graph H is a minor of a graph G if H can be obtained from a subgraph of G by 

a number of edge contractions. (A contraction of an edge {u, u} replaces the vertices 
u and v by a new vertex that is adjacent to all vertices that were adjacent to u or u.) 

We use the following well known result mentioned by Robertson and Seymour 

in [38]. 

Lemma 2. Let H be a minor of G. Then treewidth 6 treewidth( 

The parameter width,(G) introduced below characterizes treewidth in terms of lay- 

outs when s = II - 1 (see [17]). 

Let L=(vi,..., a,) be a layout of the vertices in G. 

Definition. The width, of a vertex v EL is the number of vertices preceeding v in L 
that are connected with v via a path of vertices not preceeding v which has length at 

most s. 

The width, of a layout of G is the maximum width, over all vertices in L. 

The width, of a graph G is the minimum width, over all possible layouts of G. 

For s = 1, Definition 2 gives the width of a graph. We mention that, for chordal 

graphs, width is equal to treewidth (i.e., one less than the maximum clique size), 
which is polynomially computable and has an NC approximation algorithm for constant 
approximation factors < k (see [4]). It is known that there is an algorithm that, given 

a graph G = (V,E) checks whether there is a layout of G with width at most k and, 
if so, constructs it in O(lEl) time. It can be easily proved that width is bounded for 

classes of graphs with an excluded minor, i.e. graphs with no minor isomorphic to a 
given graph H (see [14]). However the class of graphs with bounded width is larger: 
there are graphs with small width containing arbitrary large minors, as is shown in the 
following lemma. 

Lemma 3. For any k > 2 and any graph H, there is a graph G such that width(G) < k 

and H is a minor of G. 

Proof. Suppose H has h vertices. Take a clique with h vertices and subdivide all its 
edges (replace each edge e with a path of length 2 having the same endpoints as e). 
It is easy to see that the graph G obtained has width(G) = 2 < k and contains H as a 
minor. q 

Lick and White in [30] proved the following extremal result about width (see 
also [24]). 

Theorem 4. Let G be a graph with n vertices, e edges and width(G) d k. Then 

e < (,“) + k(n - k). 
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Clearly width,,(G) 6 width,,(G) when si 6 ~2. Using this fact, we can see that the 
above extremal result holds also for width, for any s greater than 1. It follows that if 

width,(G) < k, then [E(G)] =O(kn) for any s, 1 d s < n - 1. 

A cycle C = (VI,. . . , q, 01) in a graph G = (V,:E) is chordless if it does not contain 
any chords (i.e. Vri,rj, I - 1 > Ii -jl > 1 {ai,t+} @E). We denote as lc(G) the length 

of the longest chordless cycle in G and call this parameter the chordality of a graph 

(in the case that G is a tree we take lc(G) =2). A graph G is k-chordal if lc(G) < k. 
The decision version of the chordality problem is the following: 

CHORDALITY 

instance: Graph G = ( V, E), integer k d / VI. 

Question: Is the chordality of G at least k? 

By an easy reduction (subdivide every edge) to LONGEST CYCLE or HAMILTONIAN 

CIRCUIT, one proves that CHORDALEY is NP-complete. 

Using the notation above we mention the following result proved in [ 171. 

Theorem 5. Let G be a graph such that lc(G) d s + 2. The treewidth of G equals 
its width,. 

Theorem 6. The problem of computing the width, of a graph is N&complete when 
s> 1. 

Proof. We mentioned in the introduction that treewidth is NP-complete also when 
restricted to the class of cobipartite graphs. As for any graph G in this class lc(G) = 4, 

the result follows from Theorem 5 and the NP-completeness of treewidth. 0 

Definition. Let G = (V,E) be a graph and w : V + Q+ a function assigning a positive 
rational weight to each vertex in V. We call the sum of the weights over all the vertices 
of a set V’ g V the total weight of V’ and denote it as w( V’). 

A set S & V is an &separator of the function w in G with size k iff the sum 
of weights of the vertices in each of its connected components of G[V - S] is no 
more than $w( V). Also, a set S C V is a $-separator of the function w in G with 
size k iff there exist a partition A, B,S of V such that: (i) no edge connects a vertex 

in A with a vertex in B, (ii) neither A nor B has total vertex cost exceeding $w(V), 
(iii) S contains no more than k vertices. 

It seems to be useful to have results that tell how to find separators of small size 
in graphs, as these have several applications in combination with a divide-and-conquer 
strategy. For such theorems and applications see e.g. [1,32,33]. A well known separator 
result is the following (see [ 1,9,39] 

Theorem 7. Let G = (V, E) be a graph and w : V + Q+ a function assigning a positive 
rational weight to each vertex in V. Then any tree decomposition ({Xi : i E I}, T) of 
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G with treewidth no more than k contains a node that is an &separator of w in G. 
Moreover, there exist an algorithm that finds in 0(k2n) time a set S with ISI < k 
that is an &separator (a $-separator) of w in G. 

3. Treewidth is NP-complete for graphs with bounded maxdegree 

In this section we prove that treewidth is also NP-complete when restricted to graphs 

with maximum degree at most 9. 
The decision version of the treewidth problem is the following: 

TREEWIDTH 

Instance: Graph G = (V, E), integer k < 1 VI - 1. 

Question: Is the treewidth of G at most k? 

Definition. We call a graph (nl,ml,n2,m2)-bigrid if it can be constructed in the fol- 

lowing way: 

Take two grids G and Gz with sizes nl, ml and n2, m2 respectively. Extend each 
grid Gi, i = 1,2 in the following way: 

Let $={v:,..., vii} & V(Gi) be the vertices of a side of Gi containing ni vertices. 
Add a vertex set S; = {ui, . . , , ~1, } and connect $ with z$ for j = 1,. . . , ni. We call the 

two graphs obtained, the pruned gria5 of the construction and we denote them as G[ 
and Gi. 

The construction is completed by adding an arbitrary collection of edges, each be- 
tween a vertex in Si and a vertex in Sl. 

We call the transformation below a q-clique-grid transformation from a cobipartite 

graph G to a bigrid graph G’. 
Let G = ( V, E) be a cobipartite graph where 6, V, induce disjoint cliques and 1 J$j + 

IV2I=IVI.Letnl=ICiIandn2=IV21.Nowwetakea(nl,q,n2,q)-bigridG’=(V’,E’)in 
the following way: each vertex in S; represents a vertex in I$ and each edge e = {vi, vf }, 
vi E Si, v,? E Si represents the edge in E which has as endpoints the corresponding to 
u: and uf vertices of V. 

We now need the following, rather technical lemmas. 

Lemma 8. Consider a tree decomposition ((4, j E J}, T) of a graph G = (V, E). Then 
for any clique K of G, 3j E J: V(K) Cq. 

For a proof of this lemma see e.g., [13]. 

Lemma 9. Let G be a grid with sizes n, q and ((4 : j E J}, T) be a tree decomposition 
of G with width at most k. Then, if q 2 2k+3, there is a node 4 in the decomposition 
that contains at least one vertex of each of the q rows of G. 



52 H.L. Bodlaender, D.M. Thilikosl Discrete Applied Mathematics 79 (1997) 45-61 

Proof. Let w : V + Qf be a function such that Vu E V, w(u) = 1. As treewidth( G) d k, 

from Theorem 7 it follows that there must exist a node 4 in the decomposition tree 
that is an &separator of G. Clearly 4 has common vertices with at most k + 1 

columns in G. So there are at least q - (k + 1) columns in G not meeting Xj. Suppose 

that all of the vertices of these columns belong in the same component of G[ V - 41. 
As J$ is an $-separator of w in G, this component must contain at most i(nq) vertices. 

Therefore n(q - (k+ 1)) < i(nq) which gives q 2 2k+2, a contradiction. Hence, there 

are two columns in different components of G [ V -_$I. Now any row contains a vertex 

of each of the two components, and hence Xj must contain a vertex of each row, by 

definition of tree decomposition. 0 

The following lemma asserts that treewidth is an invariant of the q-clique-grid trans- 

formation when q is sufhciently large. 

Lemma 10. Let G be a cobipartite graph. Let G’ be the graph we obtain from G 

if we apply a q-clique-grid transformation on G with q > 2k + 3. Then treewidth 

(G) < k, if and only if treewidth (G’) 6 k. 

Proof. Suppose that treewidth < k. We will prove that treewidth < k. Notice 

first that G contains two cliques Ci of ni vertices each (i = 1,2). By Lemma 8, G must 
have a tree decomposition that has a node qi containing Ci. An easy construction 
shows that any (ni,mi)-grid has a tree decomposition of treewidth at most ni, that 

contains all the vertices of some side of ni vertices in one of its nodes. Using this 
fact, we can build a tree decomposition of each pruned grid GI, i = 1,2 in G’ that 
has width at most n’ and has a node containing S;. Now, if we identify the vertices 
of each clique Ci in G with the corresponding set S,! in each pruned grid, we can 

see that, composing the tree decompositions of G, G{ and Ga, the graph Gmerge thus 
obtained has a tree decomposition of width < max{nl, n2, treewidth( < k. As G’ is 

a subgraph of Gmerse we have the required result. 
Suppose now that treewidth < k. Fix a tree-decomposition ({xi 1 i E I}, T) of G’ 

of treewidth at most k. Let G” be obtained from G’ by adding edges between all 
pairs of vertices u, w for which there is at least one node i E I with u, w EXI:. Clearly, 
({Xi 1 i E I}, T) is also a tree-decomposition of G”. Let G”’ be the graph, obtained by 
contracting all rows in both grids with the corresponding vertex Ui. Note that G is 
a subgraph of G”‘: edges between vertices in the different cliques clearly are present. 
We must verify all edges in the cliques are present in G”‘: when v,w belong to the 
same clique in G, then two rows in one of the grids in G” have been contracted to v 
and w, respectively. As there is a node that contains a vertex of each row of this grid 
(Lemma 9), it follows that there is an edge between a vertex of u’s row and a vertex 
of w’s row in G”, hence u and w are adjacent in G”‘. So, G is a minor of G”‘. The 
result now follows by Lemma 2. 0 
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Theorem 11. Treewidth remains NP-complete when restricted to graphs with maxi- 
mum degree 9. 

Proof. In the NP-completeness proof of Arnborg et al. [6], a transformation from the 
cutwidth problem on general graphs to the treewidth problem on cobipartite graphs is 

given. Cutwidth is NP-complete when restricted to graphs with maximum degree at 

most three [36]. Applying the transformation from [6] to graphs of maximum degree 

three yields cobipartite graphs where any vertex is adjacent to at most eight vertices 

in the clique to which it does not belong. Hence, treewidth is NP-complete for the 
latter type of cobipartite graphs. When we apply a q-clique-grid transformation on 

such a cobipartite graph, we obtain a graph of degree at most 9. Applying such a 

transformation with a properly chosen value of q (e.g., take q = 2k + 3, where k is the 

desired treewidth), yields the result. q 

4. Graphs with bounded d(G) and k(G) 

In the previous section we proved that treewidth is NP-complete for graphs with 

maximum degree at least 9. Similarly, pathwidth is NP-complete for graphs of maxi- 

mum degree 3, (more specifically, this holds due to the results in [36] and the fact 

that pathwidth is equivalent to the vertex separation number). In this section we show 
that if both max-degree and the length of the chordless cycles are bounded, then the 
treewidth is bounded by a constant, and hence computable in linear time. It also follows 
that there is a polynomial time algorithm for pathwidth in this case. 

For graphs G, let D(G) denote the quantity CUEV(o)(d - deg(u)), and let A(G) 
denote the maximum degree over all the vertices of G. 

Lemma 12. Let k, A, s be jixed constants. Let 9 be the class of connected graphs 
such that for any GEM holds that 
1. 2 <A(G) < A 
2. there exists a vertex v E V(G) such that deg(v) < k 6 A andfor any vertex UE V(G) 

there is a path between u and v of length at most s. 
ThenD(G)dk(A-l)“+A-k. 

Proof. First observe that if 1 V(G)] = n and [E(G)1 =e, D(G)=nA-2e. Consider fixed 
values of k, A and s. If A = 2, then any graph GE S? is a line and D(G) = 2. Also, 
if s = 0 then G contains only vertex v and D(G) = A. We now examine the case that 

A>2 and s>O. 
Note that 9 is a finite set. Consider a graph G in 5@ such that D(G) is maximal. 

We will prove first that G is a tree. Assume that G contains a cycle. Let T be a 
breadth first spanning tree of G with root v, and let e be the edge of the cycle not 
in E(T). Now let G’ be the graph obtained by deleting e from G. Clearly G’E~ and 
D(G’) = D(G) + 2, a contradiction. 
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We claim now that each vertex in V(G) - {v} that is not a leaf has degree A and 

that deg( v) = k. Suppose w is not a leaf, and either v = w and deg(u) <k, or v # w and 

deg(u) <A. We construct a graph G’ by adding a new vertex and connecting it with 

w. Now G’ E 9 and D(G’) = D(G) + A - 2, a contradiction. Finally, for each leaf U, 

the unique path between u and u in G must have length s because otherwise we can 

add a vertex w to G connected with u and the thus obtained graph G’ also belongs to 

.9 and D(G’) =D(G) + A - 2, a contradiction. 
Now observe that there is only one possibility left for G. It is easy to see that 

e=k+k(A- l)+... + k(A - l)‘-i = &((A - l)# - 1) and, as G is a tree, we have 

thatD(G)=(e+l)A-2e=e(A-2)+A=k(A-1)S+A-k. 0 

Definition. Let G = (V,E) be a graph and let A,B c V, A nB = 0. We define the degree 

of A in B, denoted by deg(A, B), as the number of vertices in B that are connected 
with vertices in A. 

Theorem 13. Let G be a graph with A(G) = A Z 2 and width(G) 6 k. Let s > 1. 

Then width,(G) 6 k(A - l)‘-* + A - k. 

Proof. We examine the nontrivial case where s > 1. As width(G) 6 k, there is a layout 
L such that width(l) < k. Consider L’ as the layout of V obtained by reversing L. Let 
u be any vertex in L’. It is sufficient to prove that the width, of v cannot be more 

than k(A - I)s-1. Let A be the set of vertices not preceding v in L’ that are connected 

with v via paths of vertices not preceding v and of length at most s - 1. Also let B 

be the set of vertices preceding u. Clearly width,(v) = deg(A, B). We can now see that 

deg(M) d W&4) = CuEVcGLAIj( A - deg(u)) (the degree of u is taken with respect 

to G[A]). Also notice that G[A] is a connected graph with A(G) < A, vertex VEG[A] 
has degree at most k and is connected with any vertex in V(G[A]) with a path of 

length at most s - 1. Now by Lemma 12 we have the required result. 0 

The following result can easily be derived from Theorems 5 and 13. 

Theorem 14. Let G be a graph such that it(G) d s+2, width(G) < k and A(G) < A. 

Let s > 1. Then treewidth < k(A - 1),-l + A -k. 

As width(G) < A(G), we have the following corollaries. 

Corollary 15. Let G be a graph such that k(G) < s + 2 and A(G) < A. Let s 2 1. 
Then treewidth < A(A - 1),-l. 

Corollary 16. Let s 2 1, and A be fixed constants. Let 9 be the class of graphs with 
k(G) Q s + 2, and A(G) < A. Then there exist: 
1. A linear time algorithm that computes the treewidth of graphs in 9. 
2. A polynomial time algorithm that computes the pathwidth of graphs in 9. 
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3. A 0(log2 n) time parallel algorithm that computes the treewidth of graphs in 55 

and that uses O(n/ log2 n) processors on an EREW PRAM. 

Each of the above algorithms outputs the corresponding tree or path decomposition 

of minimum treewidth or pathwidth. 

Proof. Theorems 1 and 14 imply the first result. The second result follows from the 

result in [l l] stating that for graphs with bounded treewidth, there is a polynomial 

time algorithm for pathwidth. The third result is obtained by combining the parallel 

algorithm given in [lo] with Theorem 14. q 

We have to point out that the upper bound of Theorem 14 can be improved in the fol- 

lowing way: first, we notice that if CI is a positive integer, then treewidth d treewidth 

(G”) (where G” = (V(G), {{v, U} 1 there exist a path of no more than a vertices in G 
connecting v and u})). It is easy to see that if G is (s + 2)-chordal, then Gl(s+2)/21 

is chordal. As for chordal graphs treewidth is equivalent to width, we have that 

treewidth 6 width(GL( s+2)/2J ) Also, using a variant of Lemma 12 we can see that . 

if A d A(G), then A(Ga) < [A((A - 1)” - l)]/(A - 2). Now, if we take into account 

that width(G) d A(G) and set a = [(s + 2)/2J, we can conclude that the upper bound 

of Theorem 14 can be replaced by [ A(( A - 1) l( S+2)/2J - 1 )] /(A - 2) which is an im- 

provement for any graph with chordality no less than 5. We need to mention that a 

(more complicated) proof of the same improvement has been proposed by Ton Kloks. 

5. A separator theorem for k-chordal graphs with small width 

In this chapter we prove a separator theorem for s-chordal graphs with small width. 
We first give the following lemma about the high degree vertices of a graph with small 

width. 

Lemma 17. Let G be a graph where width(G) < k and let I$ be the set of vertices 

that have degree > d 3 k. Then 161 Q 2kn/d. 

Proof. Each vertex in 6 has degree at least d. Therefore, we have that dl& 1 6 CvEYd 

deg(v) < CDEV deg(v)=2]El. By Theorem 4 we have that d/V,1 6 k2 - k + 2kn 
- 2k2 < 2kn which completes the proof of the lemma. 0 

When the width of a graph is given, the following theorem provides an upper bound 
to width,. 

Theorem 18. Let G be a graph G with width(G) < k. Then width,(G) < (k + 1) 
(2n)(S- 1 l/s. 

Proof. By Lemma 17 we have that if d = an, then there are at most 2k/a vertices with 
degree 3 an in G (a is a value to be chosen later). Let L be a layout of width at 
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most k and V,.rch be the set of vertices with degree at least an. Notice that any vertex 

in L that is not in I’,rich is adjacent to at most an vertices in V&. 

We take a layout L’ of G such that the vertices in Vfich are the 1 V+h( first vertices. 

We arrange the rest of the vertices (we call them poor vertices) following the reversed 

order of their arrangement in L. Clearly the width, of each of the first 2k/a vertices 

in L is at most 2k/a. 
Notice that any poor vertex u can be adjacent to at most k vertices not preceding 

it in L’. Following the notation of Theorem 13, we define A as the set of vertices not 

preceding u in L’ that are connected with v via paths of vertices not preceding v of 
length at most s - 1. Also, let B be the set of vertices preceding v. Clearly width,(u) = 

deg MB) < WWI) = CuEVcGrAIj( A - deg(u)) (the degree of u is taken with respect 
to G[A]). If we observe that deg(u) 6 k in G[A] and all the vertices in V(G[A]) have 

degree less than an, then from Lemma 12, it follows that width,(v) < k(an - 2)‘-l 

+ an - 1 - k < (k + l)(an)s-l. So width,(L’) Q ma,{%, (k + l)(an)“-‘}. Now, if we 

choose a =2(“S)n-(S-1)‘S, we have that width,(G) < (k + 1)(2n)(“-‘)‘“. 0 

Theorem 19. If/c(G) 6 s+2 and width(G) < k, then treewidth( G) < (k+l)(2n)(S-1)‘S. 
Moreover, the corresponding tree decomposition can be found in 0(kn3-(“‘)) 

time. 

Proof. Recall that, as width(G) < k, a layout L of G with width at most k can be 

constructed in O(kn) time. Thus, if lc(G) < s+2, we can find (in O(kn) time) a layout 

L as in Theorem 18 that has width,(L) Q (k+ 1)(2n)(S-1)‘S. Now, from Theorem 5, we 
have that there is a tree decomposition of G that has treewidth 6 (k + 1)(2n)@-‘)IS. 

According to the proof of Theorem 5 in [17], there is an algorithm that, given a layout 
of the vertices in G with width, at most k, outputs a tree decomposition of G with 

treewidth at most k in 0(kn2) time. Thus, we can obtain in 0(kn3-(@)) time a tree 
decomposition of G that has treewidth 6 (k + 1)(2n)(S-L)‘S. 0 

. From Theorems 7 and 19, we have the following corollary. 

Corollary 20. Let G = (V, E) be a graph and w : V + Q+ a function assigning a posi- 
tive rational weight to each vertex in V. Then, zf width(G) d k and lc(G) 6 s+2, then 
there exist an i-separator of the function w in G with size at most (k+ 1)(2n)(S-1)b. 
Furthermore, such a separator is also a $-separator and can be found in 0(kn3-(““)) 
time. 

6. Conclusions 

In this section, we give small upper bounds for the chordality of some well known 
classes of graphs. We also give an application of our separator theorem to the problem 
of approximating the maximum independent set problem. 
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Definition. A graph G is a weakly chordal graph iff neither G nor G” contain a 

chordless cycle of length at least 5. 

The class of weakly chordal graphs was introduced by Hayward in [23]. Clearly, all 

the weakly chordal graphs are 4-chordal (the same holds also for their complements). 
We mention that the class of weakly chordal graphs is quite a large one, as it contains 

the classes of co-chordal graphs, chordal bipartite graphs, permutation graphs, trapezoid 
graphs, tolerance graphs, 2-threshold graphs and others (see also [15]). It is also known 

that for chordal bipartite graphs, treewidth is polynomially computable in time 0(e3) 

(see [28]) and pathwidth is NP-complete [27]. 

Definition. A graph G = (V,E) is a comparability graph if there exist a partial order 

<*onVsuchthatVu,u~V,{u,u}~Eiffu<*uoru<*oinP.AgraphG=(V,E) 

is a cocomparability graph if it is the complement of a comparability graph. 

Gallai proved in [21] that if G is a cocomparability graph then G is 4-chordal. We 
mention that the class of cocomparability graphs properly contains the class of the 
cobipartite graphs where the problem of computing treewidth and pathwidth remains 

an NP-complete problem. 
When additionally a degree restriction is put on the graphs, we have the following 

result, which can be derived directly from Theorem 14. 

Corollary 21. For any constant A, there exist: 
1. A linear time algorithm that computes the treewidth of cocomparability graphs or 

weakly chordal graphs with maximum degree A. 
2. A polynomial time algorithm that computes the pathwidth of graphs in cocompa- 

rability graphs or weakly chordal graphs with maximum degree A. 
3. A O(log2 n) time parallel algorithm that computes the treewidth of cocompara- 

bility graphs or weakly chordal graphs with maximum degree A, and that uses 
O(n/ log2 n) processors on an EREW PRAM. 

Each of the above algorithms outputs the corresponding tree or path decomposition 
of minimum treewidth or pathwidth. 

Also, the next result follows from Corollary 20. 

Corollary 22. Let G = (V, E) be a graph and let w : V --+ Q+ be a function assign- 
ing a positive rational weight to each vertex in V. If G is a 4-chordal graph and 
width(G) < k, then treewidth < (k + 1 )a and there is a O(n2.5) time algorithm 
computing an i-separator (or a &separator) of w in G of size at most (k + l)&. 

As an additional example of classes of graphs with a constant upper bound on the 
chordality, we mention the graphs that are complements of r-partite graphs (graphs with 
chromatic number at most r): these do not have a chordless cycle of length more than 
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2r. Also, the classes of diametral path graphs and dominating pair graphs introduced 

by Deogun and Kratsch in [19] (see also [18]) are 6-chordal. We also mention that the 
class of diametral path graphs properly contains the class of the asteroidal triple-free 

(AT-free) graphs which are S-chordal (see [16]). 

It is easy to prove that any graph that does not contain a specific graph as a mi- 

nor has constant bounded width (see also [14]). Therefore, the separator result of 

Corollary 7 straightforwardly extents the results of Lipton and Tarjan in [32,33] and 

Alon, Seymour, and Thomas in [l] in the setting of 4-chordal graphs with small width. 

Moreover, Theorem 20 can give applications for any class of graphs where chordality 

is bounded by a constant s + 2 and width is small enough (width(G) = O(nfl’s)-E), 
&>l). 

We present below the application of our separator theorem to the problem of ap- 

proximating the independent set problem on (s+2)-chordal graphs with constant width. 
We examine the non trivial case where s + 2 > 3. Let G be a given (s + 2)-chordal 

graph where width< k where k is a fixed constant. 

By repeatedly finding a $-separator as in Corollary 20 we can obtain the following 
immediate generalization of Theorem 3 in [33]. 

Proposition. Let s > 1, k be constants. Let $9 be the set of (s + 2)-chordal graphs 

G with width(G) < k, given with a function w: V + Q+ assigning positive rational 

weights to the vertices of G such that EVE,, w(v) = 1. Then there is an 0(n3-(“s) log n) 

algorithm, that when given an E with 0 <E < 1, and a graph G E 59,jnds a set C of at 

most O(n(s-‘)~s&-“s) vertices, whose removal leaves G with no connected component 

of total weight exceeding E. 

We omit the proof of the above proposition as it is the same with the one given by 

Lipton and Tarjan in [33] for the case of the planar graphs (the only difference is that 
now, the size of the separators is O(n (s-1)‘s) and the time to split each component is 
0(n3-(lis))) 

Applying now the previous proposition with E = log njn and giving each vertex 

weight l/n, we can find a set of vertices C of size O(n/ log”’ n), whose removal leaves 
no connected component with more than logn vertices. If now we apply exhaustive 
search to each connected component, we can find a collection of independent sets whose 
union is denoted as I. Let Z* be a maximum independent set in G. The restriction of 
Z* to one of the connected components formed when C is removed from G can be no 
larger than the restriction of Z to the same component. Thus, ]Z* I- 111 = O(n/ logl’S n). 

As the width of a graph minus one is greater that its chromatic number, it is easy 
to prove that, ]Z*] > n/(k + 1). Thus (]Z*l - ]Z1)/]Z*] = 0(1/10g”~ n) and the relative 
error in the size of Z tends to zero with increasing n. From the proposition above, C 
can be found in O(n - 3 (‘IS) logn) time. Exaustive search in each of the, say r, 
connected components of G[V - C] costs O(ni2”) time (where ni the size of the 

component). Thus, the total time required to find the independent sets of all the 
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components is: 

0 max 
( { c nj2nl : c &=0(n), O<nj<logn 

i=l,...,r i= I,..., r 1) 

=o ( &logn)2’0p” 
> 

= O(n2). 

Thus, we can conclude to the following: 

Theorem 23. Given an (s + 2)-chordal graph G that has constant width, there is an 

O(n - 3 (lb) logn) algorithm that finds an independent set Z in G with relative error 

(IZ*l - IZl)llZl=O(l/~), h o n w ere I* is a maximum independent set. 

7. Discussion 

From Theorem 7 it follows that, in a graph whose treewidth is small comparatively 

to the number of its vertices (e.g., treewidth = O(&)), there exist also a (nearly) 
equal size separating set of vertices. Using this fact, it would be useful to determine 

classes of graphs where treewidth is small enough to provide a separator theorem. 
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