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Abstract

We prove that, for any fixed k, one can construct a linear time algorithm

that checks if a graph has branchwidth≤ k and, if so, outputs a branch

decomposition of minimum width.

1 Introduction

This paper considers the problem of finding branch decompositions of graphs with

small branchwidth. The notion of branchwidth has a close relationship to the more

well-known notion of treewidth, a notion that has come to play a large role in many

recent investigations in algorithmic graph theory. (See Section 2 for definitions of

treewidth and branchwidth.) One reason for the interest in this notion is that

many graph problems can be solved by linear time algorithms, when the inputs

are restricted to graphs with some uniform upper bound on their treewidth. Most

of these algorithms first try to find a tree decomposition of small width, and then

utilize the advantages of the tree structure of the decomposition (see [1], [4]).

The branchwidth of a graph differs from its treewidth by at most a multiplica-

tive constant factor (see [18]). As branchwidth is also reflecting some optimal

tree structure arrangement, it is possible to have algorithmic applications analo-

gous to those of treewidth. Hence, instead of using tree decompositions, one also
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can use branch decompositions as starting point for the linear time algorithms for

problems restricted to graphs with bounded treewidth (and hence also bounded

branchwidth). In fact, in some cases, it appears that branchwidth is more conve-

nient to use, and seems to give better constant factors in the implementation of

the algorithms; for instance, Cook used branch decompositions as an important

ingredient in a practical approximation algorithm for the Traveling Salesman Prob-

lem [10], and remarked that branchwidth was the more natural notion (instead of

treewidth) to use for that problem [9]: where tree decompositions primarily are

concerned with vertices, branch decompositions deal more with edges (in a loose

sense). We also mention that the branchwidth of planar graphs can be computed in

polynomial time (see [20]). As both treewidth and branchwidth are NP-complete

parameters (see [2, 20]), it appears an interesting task to find algorithms solving

the following problems (k is assumed to be a fixed constant).

• Πd
k(B) (Πd

k(T )): Check if an input graph has branchwidth (treewidth) at

most k.

• Πc
k(B) (Πc

k(T )): Given a graph with branchwidth (treewidth) at most k,

output a minimum width branch (tree) decomposition.

According to the results of Robertson and Seymour, for any minor closed class

of graphs there exist a finite set of graphs, its obstruction set, such that a graph

G belongs in the class iff no element of the obstruction set is a minor of G (see

e.g. [17]). It is also known that for, any k, the class of graphs where treewidth (or

branchwidth) is bounded by a fixed k is minor closed. An immediate consequence

of this fact (using results from Robertson and Seymour and the algorithm from [5])

is the existence of a linear time algorithm solving Πd
k(B) or Πd

k(T ). Unfortunately,

in this way, we only get a non-constructive proof (see [11, 12] ) of the existence

of such an algorithm, but in order to construct the algorithm, we must know the

corresponding obstruction set. Additionally, we would like to have an algorithm

that non only decides on branchwidth, but also constructs corresponding branch

decompositions.

Much research has been done towards the construction of linear time algorithms

solving Πd
k(T ) and Πc

k(T ). In [5], a linear (on the size of the input) time algorithm

for treewidth was constructed. For further results concerning on related graph

theoretic parameters see [3, 7, 8, 13, 16, 14, 15, 19, 21, 19, 22, 23, 24].

In this paper, we find analogous results to those of [5] for the parameter of

branchwidth. Namely, we prove that, for any fixed k, one can construct a linear
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time algorithm that solves Πd
k(B) and Πc

k(B). An immediate consequence of this

result is that, for any fixed k, one can construct (i) a sentence in monadic second

order logic expressing whether a graph has branchwidth at most k or not and (ii)

the obstruction set of the class of graphs of branchwidth at most k.

2 Definitions and Preliminary Results

Given a graph G = (V, E) we denote its vertex set V and edge set E with V (G) and

E(G) respectively. Given two graphs Gi, i = 1, 2 we define G1 ∪ G2 = (V (G1) ∪

V (G2), E(G1) ∪ E(G2)). For any vertex set S ∈ V (G), we define as G[S] the

subgraph of G induced by S. We also denote as NG(S) the set of vertices in V (G)

adjacent with vertices of S in G. If v ∈ V (G), we set NG(v) = NG({v}). The

degree dG(v) (or simply d(v) when there is no doubt about G) of a vertex in V (G)

is the cardinality of NG(v). We denote as Kr the complete graph with r vertices

and as Kq,r the complete bipartite graph with parts consisting of q and r vertices

each. We call a vertex in V (G) pendant (isolated) if dG(v) = 1 (dG(v) = 0). We

call the pendant vertices of a tree leaves. We also call an edge in G pendant if

it contains at least one pendant vertex. We denote as A(G) (I(G)) the set of

all the pendant (isolated) vertices of a graph G. Given a tree T and a vertex t

we define C(T, t) = {T [V (T1) ∪ {t}], . . . , T [V (Tr) ∪ {t}]} where T1, . . . , Tr are the

connected components of T [V (T ) − {t}]. Given now an edge {t1, t2} ∈ E(T ) we

define C(T, t1, t2) = (T [V (T ′
1) ∪ {t2}], T [V (T ′

1) ∪ {t2}]) where for i = 1, 2 T ′
i is the

graph in C(T, t3−i) that contains ti as a vertex. Given two vertices x1, x2 ∈ V (T )

then we define T (x1, x2) = T [V (T ′′
1 ) ∩ T (T ′′

2 )] where, for i = 1, 2, T ′′
i is the graph

in C(T, xi) that contains x3−i as a vertex then. Finally given a tree T and a set of

leaves A ⊆ A(T ) we define the subtree of T spanned by A as the subtree of T that

contains A as leaves and the minimum number of edges. We call a tree caterpilar

if it contains a path whose neighborhood includes its vertex set. We call the edges

of this path ridge edges.

Let T1, T2 be trees. We call the set of isomorphisms between T1 and T2 as

I(T1, T2).

Let f : A → B be a function and A′ ⊆ A. We denote its domain as D(f).

If S ∈ B then we set f − S = {(a, f(a) − S) | a ∈ A}. We denote as f |A′ the

restriction of f to the pairs whose first elements belongs to A′ i.e. f |A′ = {(a, b) ∈

f | a ∈ A′}. If B′ ⊆ B we define f ∩̄B′ = {(x, φ(x) ∩ B′) | x ∈ A} We also define

max(f) = max{f(x) | x ∈ B}.
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If S is a collection of objects for which operation “∪” is defined then we define

∪S = ∪s∈Ss.

Let fi : Ai → B, i = 1, 2 be two functions and let σ : A1 → A2 be a bijection

between A1 and A2. Let also A be a set and ρ : A → A1 a bijection between

A and A1. Then we define f1 ∪σ f2 : A → B such that ∀x∈A(f1 ∪σ f2)(x) =

f1(ρ(x))∪ f2(σ(ρ(x))). We define f1 ∩σ f2 : A → B by replacing ∪σ with ∩σ in the

aforementioned definition. If “$” is a relation between the elements of B then we

define f1 $σ f2 iff ∀x∈A1f1(x) $ f2(σ(x)).

Given two graphs G, H we say that H is a minor of G (denoted by H ≤ G)

if H can be obtained by a series of the following operations: vertex deletions,

edge deletions, and edge contractions (a contraction of an edge {u, v} in G is the

operation that replaces u and v by a new vertex whose neighbors are the vertices

that where adjacent to u and/or v). Let G be a class of graphs. We say that G is

closed under taking of minors when all minors of any graph in G belong also in G.

Robertson and Seymour proved (see e.g. [17]) that any class of graphs G contains

a finite set of minor minimal elements. We call such a set the obstruction set of G.

It follows that if G is closed under taking of minors, then, for any graph H ,

G ∈ G iff there is no graph in the obstruction set of G such that H ≤ G.

2.1 Treewidth

We give now the formal definitions of treewidth and branchwidth.

A tree decomposition of a graph G is a pair (X, U) = ({Xi | i ∈ V (U)}, U),

where {Xi | i ∈ I} is a collection of subsets of V and U is a tree, such that

·
⋃

i∈I
Xi = V (G),

·for each edge {v, w} ∈ E(G), there is an i ∈ I such that v, w ∈ Xi, and

·for each v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of U.

The width of a tree decomposition ({Xi | i ∈ I}, U = (I, F )) equals maxi∈I{|Xi|−

1}. The treewidth of a graph G is the minimum width over all tree decompositions

of G.

A rooted tree decomposition is a tree decomposition D = (X, U) in which U is a

rooted tree. Let D = (X, U) be a rooted tree decomposition of a graph G For each

node i of T , let Ui be the subtree of U , rooted at node i. We set Vi = ∪v∈V (Ui)Xv

and let Gi = G[Vi]. Notice that if r is the root of U , then Gr = G. We call Gi

the subgraph of G rooted at i. We finally set, for any i ∈ V (U), Di = (X i, Ui)
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where X i = {Xv | v ∈ V (Ui)}. Observe that for each node i ∈ V (U), Di is a tree

decomposition of Gi.

Let D = (X, U) be a tree decomposition of a graph G where X = {Xi | i ∈

V (U)}. D is called a nice tree decomposition if the following are satisfied:

1. Every node of U has at most two children.

2. If a node i has two children j, h then Xi = Xj = Xk.

3. If a node i has one child, then either |Xi| = |Xj| + 1 and Xj ⊂ Xi or

|Xi| = |Xj| − 1 and Xi ⊂ Xj .

Lemma 1 For any constant k ≥ 1, given a tree decomposition of a graph G of

width ≤ k and O(|V (G)| nodes, there exist an algorithm that, in O(|V (G)|) time,

finds a nice tree decomposition of G of width ≤ k and with at most 4|V (G)| nodes.

We now observe that a nice tree decomposition ({Xi | i ∈ V (U)}, U) contains

nodes of the following four possible types. A node i ∈ V (U) is called

“start” if i ∈ A(U),

“join” if i has two children,

“forget” if i has one child j and |Xi| < |Xj|,

“introduce” if i has one child j and |Xi| > |Xj|,

We may also assume that if i is a start node then |Xi| = 1: the effect of start

nodes with |Xi| > 1 can be obtained by using a start node with an one vertex set,

and then |Xi| − 1 introduce nodes, which add all the other vertices.

2.2 branchwidth

A branch decomposition B of a graph G is a pair (T, θ), where T is a ternary tree

(a tree with vertices of degree 1 or 3) and θ is a bijection from the set of leaves of

T to E(G). We define the description Des(B) = (T, α, β, γ) of B as a quadruple

where

• α : E(T ) → 2V (G)−A(G)−I(G) is a function such that α(e) is the set of vertices

v ∈ V (G) for which there are leaves t1, t2 in T in different components of

T (V (T ), E(T ) − {e}) with θ(t1) and θ(t2) both containing v.

• β : A(T ) → 2A(G) is a function such that ∀v∈A(T )β(v) = θ(v) ∩ A(G).

• γ : E(T ) → S such that each edge e ∈ E(T ) is mapped through γ to the

sequence of integers (|α(e)|) (notice that ∀e∈E(T ) γ(e) is sequence consisting
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of only one number – this somehow overloaded definition will be justified by

considerations to be made later in this paper).

The width of (T, θ) is equal to max(α). edges of T . The branchwidth of G

is the minimum width over all the branch decompositions of G (in case where

|E(G)| ≤ 1, then we define the branchwidth to be 0; if |E(G)| = 0, then G

has no branch decomposition; if |E(G)| = 1, then G has a branch decomposition

consisting of a tree with one vertex – the width of this branch decomposition is

considered to be 0).

Figure 1: A branch decomposition B = (T, θ) of a graph G and its description

M = Des(B) = (T, α, β, γ).
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We modify the definition of θ above so that it is a function θ : A → E(G)∪{∅},

mapping only some leaves A ⊆ A(G) to either an edge or to the empty set and

having the property that for every edge e in G there is a unique leaf t ∈ A(T )

that is mapped to e through θ. Then we call (T, θ) extended branch decomposition.

One can easily observe that for any ternary subtree T ′ of T the pair (T ′, θ′) where

θ′ = θ|A(T ′)∩A(T ) is an extended branch decomposition of (V (G), {θ(t) : t ∈ A(T ′)∩

A(T )}) (clearly, the leaves of T ′ that are not leaves of T are not mapped to any

edge through θ′). It is easy to see that any extended branch decomposition (T, θ)

of a graph G can be transformed to an branch decomposition in O(|V (T )|) time.

This gives us the right, from now on, whenever we refer to branch decompositions

we will assume that they are extended. Moreover, given any branch decomposition

(T, θ) we will denote as Ã(T ) the leaves of T that are mapped through θ to some

edge of G or to the empty set. We call the leaves in Ã(T ) external leaves of T and

the leaves in A(T )−Ã(T ) internal leaves of T . For reasons of consistency with this

modification, we revise the definition of Des(B) above by putting Ã(G) instead of

A(G) so that θ(v) is well defined.

2.3 Sequences of integers

We denote as S the set of all the sequences of positive integers. If A = (a1, . . . , a|A|)

∈ S and 1 ≤ k ≤ l ≤ |A|, we define Ak,l = (ak, . . . , al), max(A) = max1≤i≤|A|{ai}

and for any positive integer t we set A + t = (a1 + t, . . . , a|A| + t). The typical

sequence τ(A) of a sequence of integers A is the sequence obtained after iterating

the following operations, until none is possible any more.

(i) If for some i, 1 ≤ i ≤ |A| − 1 ai = ai+1, then set A = (a1, . . . , a|A|) ←

(a1, . . . , ai, ai+2, . . . , a|A|).

(ii) If the sequence contains two elements ai and aj such that j − i ≥ 2 and

∀i<k<j ai ≤ ak ≤ aj or ∀i<k<j ai ≥ ak ≥ aj, then set A = (a1, . . . , a|A|) ←

(a1, ai, aj , . . . , a|A|).

As an example we mention that if A = (5, 5, 6, 7, 7, 7, 4, 4, 3, 5, 4, 6, 8, 2, 9, 3, 4, 6,

7, 2, 7, 5, 4, 4, 6, 4), then τ(A) = (5, 7, 3, 8, 2, 9, 2, 7, 4). We call a sequence A typical

if τ(A) = A i.e. it is not possible to apply (i) or (ii) on A. We denote the set of

all the typical sequnces as Ŝ.

Let A, B ∈ S. We say that A ! B when A can be obtained from B after a

series of operations (i) and (ii) above.
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Let A, B ∈ S where A = (a1, . . . , a|A|) and B = (b1, . . . , b|B|). If |A| = |B| then

we say that A ≤ B if ∀1≤i≤|A| ai ≤ bi. We define the set of extensions of A as

e(A) = {A∗ = (a∗
1, . . . , a

∗
A∗) | ∃1=t1<...<t|A|+1

∀1≤i≤|A| ∀ti≤k<ti+1 a∗
k = ai}.

We say that A ≺ B if there exist extensions A∗ ∈ e(A), B∗ ∈ e(B) such that

|A∗| = |B∗| and A∗ ≤ B∗. For example if A = (5, 7, 4, 8) and B = (1, 7, 2, 6, 4)

then B ≺ A because A∗ = (5, 7, 7, 7, 4, 8, 8, 8, 8) is an extension of A, B∗ =

(1, 7, 2, 6, 4, 4, 4, 4, 4) is an extension of A, and B∗ ≤ A∗. We also say that A ≡ B

when τ(A) = τ(B).

Given A = (a1, . . . , a|A|) and B = (b1, . . . , b|B|) we set A⊕B = (a1, . . . , a|A|, b1,

. . . , b|B|). We also say that A ≺! B if there exist a C ∈ S such that A ≺ C and

C ! B. The proof of the following Lemma can be found in [6] (Lemma 3.19).

Lemma 2 Let A, A′, B, B′ ∈ Ŝ such that A ≺ A′ and B ≺ B′. Then τ(A ⊕ B) ≺

τ(A′ ⊕ B′).

We also present, without proof, the two following easy Lemmata.

Lemma 3 Let A, Bi ∈ Ŝ, i = 1, . . . , q such that A ! B1 ⊕ · · · ⊕ Bq ( A ≺!

B1⊕· · ·⊕Bq). Then ∀1≤m≤|A|∃1≤r≤q A1,m ! B1 ⊕· · ·⊕Br ∧Am,|A| ! Br ⊕· · ·⊕Bq

( ∀1≤m≤|A|∃1≤r≤q A1,m ≺! B1 ⊕ · · · ⊕ Br ∧ Am,|A| ≺! Br ⊕ · · · ⊕ Bq).

Lemma 4 Let A, B, C, C ′ ∈ Ŝ four typical sequences such that C = τ(A ⊕ B)

and C ≺ C ′. Then one can construct two sequences A′, B′ ∈ Ŝ such that C ′ =

τ(A′ ⊕ B′), A ≺ A′ and B ≺ B′.

Lemma 5 Let A1, . . . , Ar, B ∈ Ŝ such that A1 ⊕ · · · ⊕ Ar ≺ B. Then there

exist a sequence B1, . . . , Br of typical sequences such that B1 ⊕ · · · ⊕ Br ≡ B and

∀1≤i≤r Ai ≺ Bi.

Let A = (a1, . . . , a|A|) and B = (b1, . . . , b|B|) be two sequences in S where

|A| = |B|. We say that A ∼ B iff ∀1≤i≤|A| ai 4= ai+1 ⇔ bi = bi+1 (and, therefore,

bi 4= bi+1 ⇔ ai = ai+1).

Let now A, B ∈ Ŝ. The interleaving A ⊗ B of A and B is a set of sequences in

S defined as follows

A ⊗ B = {A∗ + B∗ | A∗ ∈ E(A) and B∗ ∈ E(B) and |A∗| ∼ |B∗|}.

Observe that all the sequences in A ⊗ B have length |A| + |B| − 1.
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Let A, B ∈ S where A = (a1, . . . , a|A|), B = (b1, . . . , b|B|) and such that |A| =

|B| = r. We define A + B = (a1 + b1, . . . , ar + br). We will need the following

lemmata.

Lemma 6 Let A, B, C be sequences such that |B| = |C| and A = B + C. Then

there exist a sequence A′ ∈ τ(B) ⊗ τ(C) such that τ(A′) ≺ τ(A).

Lemma 7 Let A, B be two typical sequence and C a sequence such that C ∈ A⊗B.

Suppose also that A′, B′ be two typical sequence such that A ≺ A′ and B ≺ B′.

Then there exist a sequence C ′ ∈ A′ ⊗ B′ such that C ≺ C ′.

2.4 Branch representations and branch Models

Let G be a graph and R ⊆ V (G). Let also M = (T, α, β, γ) be a quadruple

where T is a ternary tree, and α, β, γ be functions where α maps each edge of

T to a subset of R − A(G) − I(G), β maps each vertex of a set A ⊆ A(T ) to

a subset of R ∩ A(G) and with the property that ∀t1,t2∈A,t1 '=t2 β(t1) ∩ β(t2) = ∅,

and γ maps each edge of T to a sequence in S. We call M = (T, α, β, γ) branch

representation of G rooted on R and the tree T underlining tree of the branch

representation M . Given a branch representation M , we denote its underlining

tree as T (M). In accordance to the definition of β in subsection 2.2, we denote

the subset A used in the definition of β above as Ã(T ) and we call its vertices

external leaves of T (if a leaf of T is not external, we call it internal). We define

V (M) = (∪e∈E(T ) α(e))
⋃

(∪v∈Ã(T ) β(v)) and we observe that V (M) ⊆ R − I(G)

(we call V (M) vertex set of M). Suppose now that T ′ is a ternary subtree of

T . We define M |T ′ = (T ′, α|E(T ′), β|A(T ′)∩Ã(T ), γ|E(T ′)). Clearly, M |T ′ is a branch

representation of G rooted on R where Ã(T ′) = A(T ′)∩ Ã(T ). Given a set R′ ⊆ R

we define M‖R′ = (T, α∩̄R′, β∩̄R′, γ). Notice that M‖R′ is a branch representation

of G rooted on R′. Finally, given a vertex x ∈ R and a ternary subtree T ′ of T we

call T ′ x-free if x 4∈ V (M |T ′).

For any v ∈ R we set Vx(M) = V α
x (M) ∪ V β

x (M) where V β
x (M) = {t ∈

Ã(T ) | x ∈ β(t)} and V α
x (M) = V ({e ∈ E(T ) | x ∈ α(e)}). We call a branch rep-

resentation M = (T, α, β, γ) branch model of G rooted on R if ∀x∈R−I(G) T [Vv(M)]

is a subtree (connected subforest) of T whose leaves form a subset of Ã(T ). It

is not hard to verify that if ∀x∈R−I(G) Vx(M) 4= ∅ then V (M) = R − I(G)

and, in such a case, we call the branch representation M complete, otherwise,

we call it incomplete. As we will see in Lemma 14, given a branch decompo-

sition B = (T, θ) of G we have that Des(B) is a complete branch model of G
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rooted on V (G). We call a branch representation M = (T, α, β, γ) typical when

∀e∈E(T )γ(e) is a typical sequence. Let M = (T, α, β, γ) be a branch represen-

Figure 2: Values of Vx(M) and Ex→e(M) for the description M of the branch

decomposition B of Figure 1.

tation rooted on some vertex set R ⊆ V (G). A path P = (v1, . . . , vr), r ≥ 3

in T is a trunk of M if ∀2≤i≤r−1 NT (vi) contains an external leaf v′
i such that

β(v′
i) = ∅. If additionally ∀2≤i≤r−1 α({vi−1, vi}) = α({vi, vi+1}) then the trunk

P is a spine. A subgraph ({v, y, x, w}, {{v, y}, {v, w}, {v, x}}) of T (isomorphic

to K1,3) is called fork if w, x ∈ Ã(T ), β(w) = β(x) = ∅, α({v, w}) ⊆ α({v, y}),

and α({v, x}) ⊆ α({v, y}). Finally, given a vertex x ∈ R − I(G) (and an edge

e ∈ E(T )) we define Ex(M) (Ex→e(M)) as the minimum size edge set that should

be added in T [Vx(M)] (T [Vx(M) ∪ e]) in order to make it connected (it is easy to

see that this edge set is uniquely defined). Observe that Ex(M) = ∅ ⇔ T (Vx(M))

is connected. Notice that if M is a branch model then ∀x∈R Ex(M) = ∅ and

∀x∈R Ex→e(M) either induces a path where e is the first (or the last) edge or is

empty (in case x ∈ α(e)).
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Figure 3: An example of the operations compress and rake.

Let G be a graph and R ⊆ V (G). Let also M = (T, α, β, γ) be a branch

representation of G rooted on R. The characteristic C(M) of M is defined to be

the output of the following procedure.
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————————————————————————————–

Procedure Com(T, α, β, γ)

Input: A branch representation M = (T, α, β, γ) rooted on R

Output: A branch representation M = (T, α, β, γ) rooted on R.

1: Apply one of the following operations until this is no longer

possible.

• (Compress Operation) If P = (v1, . . . , vr) is a spine in M then

set α ← α|E(T )−E(P ) ∪ ({v1, vr}, α({v1, v2})),

set β ← β|Ã(T )−NT ({v2,...,vr−1})
,

set γ ← γ|E(T )−E(P ) ∪ ({v1, vr}, τ(γ({v1, v2}) ⊕ · · · ⊕

γ({vr−1, vr}))),

replace path P in T with edge {v1, vr}.

• (Rake operation) If ({v, y, x, w}, {{v, y}, {v, w}, {v, x}}) is a fork

in M having w, x as leaves then

set α ← α|E(T )−{{v,w},{v,x}},

set β ← β|Ã(T )−{w,x} ∪ (v, ∅),

set γ ← γ|E(T )−{{v,w},{v,x}},

remove vertices x and w and edges {v, w} and {v, x} from T .

2: end.

————————————————————————————–

Let Mi = (Ti, αi, βi, γi), i = 1, 2 be two branch representations. We say that

M1
φ
= M2 if there exist an isomorphism φ : T1 → T2 such that ∀{t1,t2}∈E(T1)

α1({t1, t2}) = α2({φ(t1), φ(t2)}), γ1({t1, t2}) = γ2({φ(t1), φ(t2)}), and ∀t∈V (T1) β1(t)

= β2(φ(t)). We say that M1 = M2 when there exist an isomorphism φ : T1 →

T2 such that M1
φ
= M2. If in the definition of “=” we replace γ1({t1, t2}) =

γ2({φ(t1), φ(t2)}) with γ1({t1, t2}) ≺ γ2({φ(t1), φ(t2)}) we define relation “≺” for

branch representations. We set M1 ≡ M2
def⇐⇒ C(M1) = C(M2). Suppose now

that M is a branch representation and M ′ is the result of the application of a series

of rake or compress operations on M . Then we call M ′ (M) descendant (ancestor)

of M (M ′) and we denote it as M ′ ! M (M ′ ! M).

Finally, we say that M1 ≺! M2 when there exist a branch representation M ′

such that M1 ≺ M ′ and M ′ ! M2.

Notice that if M1 ! M2 or M1 ≺! M2 then V (M1) = V (M2).

It is easy to see that relations “≺”,“≡”, “=”, “!”, and “≺!” are transitive.

We call a branch representation M dense if M = C(M), i.e. none of the two

12



operations of procedure Com can be applied on M .

It is easy to observe that if a branch representation M is dense and Ã(T (M)) =

A(T (M)) then T (M) has at most V (M) leaves.

Given a ternary tree T we denote as T (T ) the set of all its ternary subtrees.

Notice that each edge e ∈ E(T ) corresponds to a ternary subtree Te = (e, {e}) of

T . We denote as Te(T ) the set of the ternary subtrees of T that are corresponding

to edges in E(T ).

Lemma 8 Let M̂ = (T̂ , α̂, β̂, γ̂) and M = (T, α, β, γ), be two branch repre-

sentations such that M̂ ! M (M̂ ≺! M). Then, there exist two functions

ψ : Te(T̂ ) → T (T ) and ω : V (T̂ ) → V (T ) such that

1. ∀ê1,ê2∈E(T̂ ),ê1 '=ê2
V (ψ(T̂ê1)) ∩ V (ψ(T̂ê2)) = {ω(v̂) | v̂ ∈ ê1 ∩ ê2},

2. ∪{T ) ∈ T (T ) : ∃ê∈E(T̂ )ψ(T̂ê) = T )} = T ,

3. ∀ê∈E(T̂ ) M̂ |T̂ê
! M |ψ(T̂ê) ( ∀ê∈E(T̂ ) M̂ |T̂ê

≺! M |ψ(T̂ê)),

4. ∀t̂1,t̂2∈V (T̂ ) T (ω(t̂1), ω(t̂2)) = ∪ê∈E(T̂ (t̂1,t̂2)) ψ(T̂ (ê)).

Figure 4: A representation of functions ω, and ψ in Lemma 8.

Let M̂, M be branch representations where M̂ ! M . Let also T̂ , T be the un-

derlining trees of M̂ and M respectively. We denote as ψM̂ ,M , ωM̂,M the functions

defined according to Lemma 8. The images of ψM̂ ,M define a set of ternary subtrees

of T without common edges and whose union is T . We call this set T (ψM̂,M).

Let v ∈ V (T )−A(T ) and let e1, e2, e3 the three edges of T that contain v. We

call vertex v x-critical when exactly one or two trees in {Te1 , Te2, Te3} are x-free.

13



It is easy to verify that if M̂, M are branch representations where M̂ ! M then if

v̂ is x-critical then also ωM̂,M(v̂) is x-critical.

It is easy to verify that M ! M ′ ⇒ C(M) = C(M ′) and M ≺! M ′ ⇒ C(M) ≺

C(M ′).

The following Lemma follows easily from the definitions and Lemma 2.

We will also need the following three easy lemmata.

Figure 5: A scheme for Lemma 9.

Lemma 9 Let M1, M2 be two branch models of a graph G rooted on some set

R ⊆ V (G). Then, if M1 ≡ M2 then there exist a branch model M such that

Mi ! M, i = 1, 2 i.e. M is a common predecessor of Mi, i = 1, 2.

Figure 6: A scheme for Lemma 10.

Lemma 10 Let M+, M, M+∗ be three branch models of a graph G such that V (M) =

V (G), V (M+) = V (M+∗) = R, M+ ! M+∗, and M+ = M‖R where R ⊆ V (G).

Then there exist a branch model M∗ such that M ! M∗ and M+∗ = M∗‖R

14



Let Mi = (Ti, αi, βi, γi), i = 1, 2, 3 be three branch representations of a graph

G all rooted on R ⊆ V (G). Let also V (T1) ∩ V (T2) ∩ V (T3) = {x} 4∈ Ã(T1) ∪

Ã(T2) ∪ Ã(T3) (we call vertex x common leaf of M1, M2, M3 and we say that they

are touching). Then we define [M1 ⊕ M2 ⊕ M3] = (T1 ∪ T2 ∪ T3, α1 ∪ α2 ∪ α3, β1 ∪

β2 ∪ β3, γ1 ∪ γ2 ∪ γ3)

Lemma 11 Let M1, i = 1, . . . , 6 be six branch representations of a graph G rooted

on R ⊆ V (G). Suppose also that ∀j=1,2,3 Mj ! Mj+3 and ∀j=0,1 M1+3j , M2+3j , M3+3j

are touching. Then [M1 ⊕ M2 ⊕ M3] ! [M4 ⊕ M5 ⊕ M6]. Moreover, the lemma

holds if we replace “!” with “≺!”.

Let M be a complete branch representation that is not a branch model. We

define A so that it contains all the vertices x ∈ V (M) = R − I(G) such that

T [Vx(M)] is not connected, i.e. Ex(M) 4= ∅. We will now give a procedure that

can transform such a branch representation to a branch model if it is applied

successively for each x ∈ A.

————————————————————————————–

Procedure Norm(M, x)

Input: A branch representation M = (T, α, β, γ) rooted on R, and

a vertex x ∈ V (M).

Output: A branch representation M = (T, α, β, γ) rooted on R and

such that Ex(M) = ∅.

1: If Ex(M) 4= ∅ then apply the following steps.

• β ← β − {x}.

• For any e ∈ Ex(M) set α(e) ← α(e) ∪ {x} and γ(e) ← γ(e) + 1.

2: output M .

3: end.

————————————————————————————–

The following Lemma can be easily proved using Lemma 8 and Lemma 11.

Lemma 12 Let M̂, M be two branch representations such that M̂ ! M (M̂ ≺!

M) and let ê = {t̂1, t̂2} be an edge of T̂ = T (M̂). Let also T̂1, T̂2 (resp. T̂4, T̂5) be

the two of the three trees in C(T̂ , t̂1) (resp. C(T̂ , t̂2)) that do not contain t̂2 (resp.

t̂1) as a vertex. We set T̂3 = ({t̂1, t̂2}, {{t̂1, t̂2}}) and M̂i = M |T̂i
for i = 1, . . . , 5.

Then, there exist 5 subtrees T1, T2, T3, T4, T5 of T = T (M) such that ∪i=1,...,5Ti =

T,∩i=1,2,3V (Ti) = {ω(t̂1)}, ∩i=3,4,5V (Ti) = {ω(t2)}, and if Mi = M |Ti
, i = 1, . . . , 5

then ∀i=1,...,5 M̂i ! Mi (M̂i ≺! Mi).
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Lemma 13 Suppose that M̂ and M are two representation models where M̂ ! M .

Let also x ∈ V (M̂) = V (M). Then Norm(M̂, x) ! Norm(M, x). Moreover, the

lemma holds if we replace “!” with “≺” or “≺!”.

Proof W.l.o.g. we will assume that V̂x(M̂) induces only two connected com-

ponents Ĉ1, Ĉ2 in T̂ (if they are one, then the proof is trivial and if they are

more is a straightforward generalization of the present one). For simplicity in

the notation we set ψ ← ψM̂ ,M and ω ← ωM̂,M . Using Lemma 8 (Relation iii.),

one can easily see that Vx(M) induces in T two connected components, namely

Ci = ∪ê∈E(Ĉi)
ψ(ê), i = 1, 2. Let P̂ = (v̂1, . . . , v̂r̂) be the shortest path connecting

V (Ĉ1) with V (Ĉ2) in T̂ . Clearly, the edges induced by this path are the edges in

Ex(M). We set v1 = ω(v̂1) and vr = ω(v̂r̂). Notice that T̂ (v̂1, v̂r̂) is x-free. From

Lemma 8 (Relation iv.) have that T (v1, vr) = ∪ê∈E(T̂ (v̂1,v̂r̂)) ψ(Tê) and we conclude

that T (v1, vr) is x-free as well. Observe now that, as v̂1 and v̂r̂ are x-critical,

then also v1 and v2 are x critical and now it is now easy to see that the shortest

path connecting V (C1) with V (C2) is the subpath P = (v1, . . . , vr) of T (v1, vr)

connecting v1 and vr in T . Suppose that the outputs of Norm(T̂ , α̂, β̂, γ̂, x) and

Norm(T, α, β, γ, x) are M̂ ′ and M ′ respectively. We will prove that M̂ ′ ! M ′.

Let ê1 = {v̂1, v̂2} be the first edge of P̂ and let Û1
1 , Û1

2 (resp. Û1
4 , Û1

5 ) be the two

of the three trees in C(T̂ , v̂1) (resp. C(T̂ , v̂2)) that do not contain v̂2 (resp. v̂1) as

a vertex (we exclude the case where ê1 is a pendant edge of T̂ as it is similar and

easier). We also set Û1
3 = T̂ (v̂1, v̂2) = T̂ê1 . Using Lemma 12 we have that there

exist 5 subtrees U1
1 , U1

2 , U1
3 , U1

4 , U1
5 of T such that ∪i=1,...,5U

i
i = T,∩i=1,2,3U

1
i =

{ω(v̂1)} = {v1},∩i=3,4,5U
1
i = {ω(v̂2)} = {v2}, and

∀i=1,...,5 M̂ |Û1
i

! M1|U1
i
. (1)

Observe that v̂r̂ is a vertex of U1
4 or U1

5 . W.l.o.g. we assume that v̂r̂ ∈ V (U1
4 ) and

as ω(v̂2) = V (U1
3 ) ∩ V (U1

4 ) then ω(v̂2) is a vertex of P . Clearly, the vertices that

are between v1 = ω(v̂1) and ω(v̂2) in P are the vertices of the path connecting

v1 = ω(v̂1) and ω(v̂2) in U1
3 . We denote as E1 the edges of this path. Suppose

that M |U1
3

= (U1
3 , α1

3, β
1
3 , γ

1
3) and that M̂ |Û1

3
= (Û1

3 , α̂1
3, β̂

1
3 , γ̂

1
3). We define M1′

3 =

(Û1
3 , α1′

3 , β1′
3 , γ1′

3 ) where ∀e∈E1α
1′
3 (e) = α1

3(e)∪{x}, ∀e∈E(U1
3 )−E1

α1′
3 (e) = α1

3(e), β
1′
3 =

β1
3 , ∀e∈E1γ

1′
3 (e) = γ3(e) + 1, and ∀e∈E(U1

3 )−E1
γ1′

3 (e) = γ1
3(e). We also define M̂1′

3 =

(T̂ê1, α̂
1′
3 , β̂1′

3 , γ̂1′
3 ) where α̂1′

3 = {(ê, α̂1
3(ê)∪{x})}, β̂1′

3 = β̂1
3 , and γ̂1′

3 = γ̂1
3 +1. Recall

that (α̂1
3, β̂

1
3 , γ̂

1
3) ! (α1

3, β
1
3 , γ

1
3) and using the definitions of M̂1′

3 and M1′
3 one can
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Figure 7: A scheme for the proof of Lemma 13.

easily conclude that

M̂1′
3 ! M1′

3 . (2)

Notice now that M ′
1 = [[M |U1 ⊕ M |U2 ⊕ M1′

3 ] ⊕ M |U4 ⊕ M |U5 ] and M̂ ′
1 = [[M̂ |Û1

⊕

M̂ |Û2
⊕ M̂1′

3 ] ⊕ M̂ |Û4
⊕ M̂ |Û5

] are well defined and using (1), (2), and Lemma 11

we have that M̂ ′
1 ! M ′

1. Notice that M̂1 is the result of the insertion of x for the

first edge of P̂ and M1 is the result of the insertion of x for the edges in E1 i.e.

the edges of the subpath of P that connect v1 = ω(v̂1) and ω(v̂2) in T .

Let now ê2 = {v̂2, v̂3} be the second edge of P̂ . Applying the same arguments

for M ′
1 M̂ ′

1 and ê2 = {v̂2, v̂3} as we did before for M , M̂ , and ê1 = {v̂1, v̂2}, we first

define the subtrees U2
1 , U2

2 , U2
3 , U2

4 , U2
5 of T , then we construct the branch models

M̂2′
3 , M2′

3 and we will finally end up with two equivalent branch representations

M̂ ′
2 and M ′

2 where M̂ ′
2 is the result of the insertion of x for the second edge of P̂

and M ′
2 is the result of the insertion of x for the edges in E2 i.e. the edges of the

subpath of P that connect ω(v̂2) and ω(v̂3) in T . Going on in this way we have

that for i = 1, . . . , |P̂ | − 1 M̂ ′
i ! M ′

i and, as M̂ ′ = M̂ ′
|P̂ |−1

and M ′ = M ′
|P̂ |−1

, we

conclude that M̂ ′ ! M ′ and we are done. The proof of the “≺!” version of the

lemma is simply obtained if in the above proof we replace “!” with “≺!” and use
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the “≺!” versions of Lemmata 8, 12 and 11. "

3 The algorithm

3.1 Introducing a new edge in a graph

Lemma 14 Let B = (T, θ) be a branch decomposition of a graph G. Then

Des(B) = (T, α, β, γ) is a complete branch model of G rooted on V (G).

Proof It is trivial to check that (T, α, β, γ) is a complete branch representation

rooted on V (G). It remains to prove that ∀x∈V (G)−I(G) T [Vx(M)] is a subtree

(i.e. connected subforest) of T whoose leaves is a subset of Ã(G). Let Ex =

{e1, . . . , er}, r = dG(x) be the edges of G containing x and let Lx = {t ∈ Ã | θ(t) ∈

Ex}. Let T ′ subtree of T spanned by Lx. It is enough to prove that ∀e∈E(T )x ∈

α(e) ⇔ e ∈ E(T ′). Let e be an edge of T ′. It is easy to see that T − e consists of

two connected components and each one of them has a leaf of Lx mapped through

θ to an edge of Ex. Certainly, this means that x ∈ α(e). Suppose now that e is

an edge where x ∈ α(e). This means that there exist two edges e1, e2 ∈ Ex where

ti = θ−1(ei), i = 1, 2 belong to different connected components of T − e. As e

belongs to the unique path connecting t1 and t2 in T and ti ∈ V (T ′), i = 1, 2 we

conclude that e ∈ E(T ′) and this completes the proof of the lemma. "

Suppose that M = (T, α, β, γ) is a complete branch model of a graph G rooted

on V (G). Suppose also that M is the description of a branch decomposition

B = (T, θ) of G. Then, it is easy to observe that the following hold.

∀e∈E(T ) |γ(e)| = 1, Ã(T ) = A(T ), ∀x,y∈A(T )α(ex) = α(ey) ⇒

α(ex) = ∅, and E(G) = {α(ex) ∪ β(x) | x ∈ A(T )}.

Where, if x is a pendant vertex, ex is the unique pendant edge that contains it.

We call a branch model with the above property entire. It is clear that if a branch

model is entire then it is also complete. Actually, one can prove the following.

Lemma 15 Let M be an entire branch model M = (T, α, β, γ) of a graph G rooted

on V (G) and such that width(M) ≤ k. Then there exist a branch decomposition

B of G with width ≤ k and such that B = Des(M).

Proof Notice that ∀x∈A(T ) the set α(ex) ∪ β(x) is either the empty set or an edge

of G. Let θ : Ã(T ) = A(T ) → E(G) be a function mapping each external leave
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of T to the set α(ex) ∪ β(x). It is now easy to verify that B = (T, θ) is a branch

decomposition of G rooted on V (G) and such that Des(B) = M . "

Lemma 16 Let B = (T, θ) be a branch decomposition of G and M = Des(B) =

(T, α, β, γ). Let also enew be an edge not in E(G) and eins = {t1, t2} be an edge of

T . Suppose that B′ = (T ′, θ′) be the branch decomposition of G′ = (V (G), E(G) ∪

{enew}) where T ′ = (V (T ) ∪ {tmid, tleaf}, (E(T ) − {eins}) ∪ {{t1, tmid}, {tmid, tleaf},

{tmid, t2}}) and θ′ = θ ∪ {(tleaf , enew)}. Then if Des(B′) = (T ′, α′, β ′, γ ′) then

(i) ∀e∈E(T ′)−{{t1,tmid},{tmid,tleaf},{tmid,t2}} α′(e) = α(e) ∪ {v ∈ enew | e ∈

Ev→eins(M)},

∀i=1,2 α
′({tmid, ti}) = α(eins) ∪ {v ∈ enew | ti ∈ V (Ev→eins(M) − eins)},

α′(tmid, tleaf) = enew − A(G′).

(ii) ∀v∈Ã(T ′)−{tleaf}
β ′(v) = β(v) − enew, where Ã(T ′) = Ã(T ) ∪ {tleaf},

β ′(tleaf) = enew ∩ A(G′),

(iii) ∀e∈E(T ′)−{{t1,tmid},{tmid,tleaf},{tmid,t2}} γ
′(e) = γ(e) + |{v ∈ enew | e ∈

Ev→eins(M)}|,

∀i=1,2 α
′({tmid, ti}) = α(eins)+ |{v ∈ enew | ti ∈ V (Ev→eins(M)−eins)}|,

γ ′(tmid, tleaf) = (|enew − A(G′)|).

Proof In order to prove (i), we notice first that ∀e∈T−{eins} α(e) ⊆ α′(e) and

∀i=1,2 α
′({ti, tmid}) ⊆ α(eins). Moreover, as only vertices from enew are introduced,

we have that ∀e∈T−{eins} α
′(e)−α(e) ⊆ enew and ∀i=1,2 α

′({ti, tmid})−α(eins) ⊆ enew.

Let x ∈ enew. We assume that x is not an isolated vertex in G (if x is an isolated

vertex in G, then Vx(M) = ∅ and, as no edge in T ′ should be mapped through α′

to a set containing x, (i) is directly justified). Clearly, Vx(M) 4= ∅ and if x 4∈ A(G)

then V α
x 4= ∅, otherwise V β

x 4= ∅. Using the definition of branchwidth one can

observe that, towards constructing α′, x must be introduced to the value of α for

any edge e in a shortest path of T connecting {t1, t2} with either the vertices in

V α
x (in case x 4∈ A(G)) or the unique vertex in V β

x (in case x ∈ A(G)). If eins ⊆ V α
x

then this path has no edges and x is not necessary to be introduced, otherwise it

is uniquely defined and contains one of t1, t2. Notice also that if this path contains

ti, i = 1 or 2 as an endpoint, then x must be introduced in α′({ti, tmid}) (and not

in α′({t3−i, tmid})). Notice also that x is not a pendant vertex in G′ and therefore
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Figure 8: An example of Lemma 16

x ∈ α′({tmid, tleaf}). It is now easy to see that the above implications justify (i)

when x is not an isolated vertex in G. This completes the proof of (i). (i) follows

immediately from the definition of functions β and θ. Finally, we omit (iii) as it

is almost the same with (i). "

3.2 Characteristic of a branch decomposition

Let B = (T, θ) be an branch decomposition of the graph G rooted on R. Let also

M = Des(B). We define DesR(B) = M‖R. Using Lemma 14 we can easily verify

that DesR(B) is a branch model of G rooted on R and we call it description of B

with respect to R. We set CR(B) = C(DesR(B)) and we call CR(B) characteristic

of B with respect to R. Clearly, CR(B) is dense and typical and is an ancestor of

DesR(B).

Very similarly to [6] and [7] one can prove the following useful lemmata.
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Lemma 17 There exists a function δ(k) such that for any graph G and any dense

branch model M be of G rooted on some set R ⊆ V (G) with |R| ≤ k, we have that

|E(T (M))| ≤ δ(k).

Lemma 18 Let D = (X, U) be a tree decomposition of G with width ≤ l and

i ∈ V (U) be some node of U . The number of different characteristics with respect

to Xi of all possible branch decompositions of Gi with branchwidth at most k, is

bounded from a function depending only on k and l, i.e. is a constant not depending

on |V (G)|.

A set FS(i) of characteristics of branch decompositions of a graph Gi (i is a

node of tree decomposition) with width at most k is called a full set of characteris-

tics at i if for each branch decomposition B of Gi with branchwidth at most k, there

is a branch decomposition B′ such that CXi
(B′) ≺ CXi

(B) and CXi
(B′) ∈ FS(i),

i.e. the characteristic of B′ is in FS(i). The following lemma can be derived

directly from the definitions.

Lemma 19 A full set of characteristics at i is non-empty if and only if the branch-

width of Gi is at most k. If some full set of characteristics at i is non-empty, then

every full set of characteristics at this node is non-empty.

An important consequence of Lemma 19 is that the branchwidth of G is at

most k, if and only if any full set of characteristics of Gr = G is non-empty (r is

the root node of the tree decomposition). In what follows, we will show how to

compute a full set of characteristics at a node i in O(1) time, when the full sets of

characteristics of the children of i in U are given.
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3.3 Introducing a new edge in a branch model

————————————————————————————–

Procedure Int(M, eins, m, S, W )

Input: A branch model M = (T, α, β, γ) rooted on R, an edge

eins = {t1, t2} of T , an integer m, 1 ≤ m ≤ |γ(eins)| and two vertex

sets S, W where W ⊆ S ⊆ R.

Output: A branch model M = (T, α, β, γ) rooted on R.

1: (Splitting step) Construct the branch model M ′ = (T ′, α′, β ′, γ ′)

by applying the following four steps.

• Set T ′ = (V (T ) ∪ {tmid, tleaf}, (E(T ) − {eins}) ∪

{{t1, tmid}, {tmid, tleaf}, {tmid, t2}}),

• Set α′ so that

∀e∈E(T ′)−{{t1,tmid},{tmid,tleaf},{tmid,t2}} α
′(e) = α(e),

α′({tmid, t2}) = α′({tmid, t1}) = α(eins),

α′({tmid, tleaf}) = S − W .

• Set β ′ ← β ∪ {(tleaf), W} (and therefore Ã(T ′) = Ã(T ) ∪ {tleaf}).

• Set γ ′ so that

∀e∈E(T ′)−{{t1,tmid},{tmid,tleaf},{tmid,t2}} γ
′(e) = γ(e),

γ ′({tmid, t2}) = γ(eins)1,m,

γ ′({tmid, t1}) = γ(eins)m,|γ(eins)|,

γ ′({tmid, tleaf}) = (|S − W |).

2: (Normalizing step) For any x ∈ S − W set M ′ ← Norm(M ′, x).

3: output (T ′, α′, β ′, γ ′).

4: end.

————————————————————————————–

The next lemma follows easily from Lemma 16, Procedure Int, and the defini-

tions of α, β, and γ.

Lemma 20 Let G be a graph rooted on R ⊆ V (G) and G′ be the graph obtained by

G after introducing an edge enew with both endpoints in R. Suppose that B = (T, θ)

is a branch decomposition of G, eins = {t1, t2} is some edge of T , and B′ =

(T ′, θ′) is a branch decomposition of G′ where T ′ = (V (T ) ∪ {tmid, tleaf}, (E(T ) −

{eins})∪{{t1, tmid}, {tmid, tleaf}, {tmid, t2}}) and θ′ = θ∪{(tleaf , enew)}. Let also M =

DesR(B). Then DesR(B′) = Int(M, eins, 1, enew, W ) where W = enew − A(G′) =
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enew − I(G).

Lemma 21 Let M = (T, α, β, γ), M̂ = (T̂ , α̂, β̂, γ̂) be two branch models of

a graph G rooted on R ⊆ V (G) where M̂ ! M (M̂ ≺! M) and such that

T̂ = ({t̂1, t̂2}, {{t̂1, t̂2}}) and Ã(T̂ ) = ∅ (i.e. T̂ consists of only one edge whose end-

points are internal leaves). Let also s = |γ̂({t̂1, t̂2})|. Then for any m, 1 ≤ m ≤ s

there exist an edge {tr, tr+1} ∈ E(T ) such that if C(T, tr, tr+1) = (T r, T r+1),

M r = M |T r , M r+1 = M |T r+1, M̂1 = (T̂ , α̂, β̂, {({t̂1, t̂2}, γ̂({t̂1, t̂2})1,m)}, and M̂2 =

(T̂ , α̂, β̂, {({t̂1, t̂2}, γ̂({t̂1, t̂2})m,s)}, then M̂1 ! M2 and M̂ r ! M r+1 (M̂1 ≺! M2

and M̂ r ≺! M r+1).

proof Let ω ← ωM̂,M and let P = (t1, . . . , tq) be the path connecting ω(t̂1) and

ω(t̂2) in T (we assume that t1 = ω(t̂1) and tq = ω(t̂2). Clearly,

γ̂({t̂1, t̂2}) ! γ({t1, t2}) ⊕ · · · ⊕ γ({tq−1, tq}). (3)

From relation (3) and Lemma 3we have that there exist some r, 1 ≤ r < q such

that

γ̂({t̂1, t̂2})1,m ! γ({t1, t2}) ⊕ · · · ⊕ γ({tr, tr+1}) and (4)

γ̂({t̂1, t̂2})m,s ! γ({tr, tr+1}) ⊕ · · · ⊕ γ({tq−1, tq}) (5)

For i = 0, 1 we define as T r+i the tree of C(T, tr, tr+1) that do not contain tr+1−i as

a vertex. We now set M r+i = M |T r+i, i = 0, 1 and, from Relations (4) and (5), we

easily have the required. The proof of the “≺!” version of the lemma is obtained

by the current one if we replace “!” with “≺!” in Relations (3),(4), and (5). "

Lemma 22 Let B = (T, θ) be a branch decomposition of a graph G rooted on

R ⊆ V (G). We assume that M = DesR(B) and M̂ = CR(B) = C(M) Then for

any vertex sets S ⊆ R, and W ⊆ S, W ⊆ I(G) the following hold.

(i) For any êins ∈ E(T̂ ) and any m, 1 ≤ m ≤ |γ̂(êins)| there exists an edge

eins ∈ T such that Com(Int(M̂, êins, m, S, W )) = Com(Int(M, eins, 1, S, W )).

(ii) For any eins ∈ E(T ) there exists an edge êins ∈ T̂ and an m, 1 ≤ m ≤ |γ̂(êins)|

such that Com(Int(M̂, êins, m, S, w)) ≺ Com(Int(M, eins, 1, S, W )).

Proof (i) Set M = (T, α, β, γ), M̂ = (T̂ , α̂, β̂, γ̂), êins = {t̂1, t̂2} and s = |γ̂(êins)|.

Notice that, as M̂ = C(M), M̂ is a dense and typical branch model. We apply

Lemma 12 for edge êins and define Ti, T̂i, Mi, M̂i, i = 1, . . . , 5, accordingly (we
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exclude the case where êins is a pendant edge of T̂ as it is similar and easier). We

have that

∀1≤i≤5 M̂i = C(Mi) (6)

We set C(T3, t1, t2) = (T 1
3 , T 2

3 ), M1
3 = M |T 1

3
, M2

3 = M |T 2
3
, M̂1

3 = (T̂3, α̂|{êins}, {},

{(êins, γ̂(êins)1,m)}), and M̂2
3 = (T̂3, α̂|{êins}, {}, {(êins, γ̂(êins)m,s)}). From the fact

that M̂3 = C(M3) and Lemma 21 we have that there exist an edge eins = {t1, t2} ∈

E(T3) such that

M̂1
3 = C(M1

3 ), and M̂2
3 = C(M2

3 ) (7)

Clearly, in order to prove the required, it is sufficient to prove that Int(M̂, êins, m, S,

W ) ! Int(M, , eins, 1, S, W ). In what follows, we will proceed applying in parallel

the two steps of the procedures Int(M̂, êins, m, S, W ) and Int(M, eins, 1, S, W ). We

will show that the corresponding branch models constructed after each step are

relevant. Clearly, before the splitting step, we have that M̂ ! M .

We will first prove that the same holds after the splitting step. Observe that the

branch models M ′
1 = [M1⊕M2⊕M1

3 ], M ′
2 = [M4⊕M5⊕M2

3 ], M̂ ′
1 = [M̂1⊕M̂2⊕M̂1

3 ],

and M̂ ′
2 = [M̂4 ⊕ M̂5 ⊕ M̂2

3 ], are well defined and from (6),(7), and Lemma 11 we

have that

M̂ ′
1 ! M ′

1 and M̂ ′
2 ! M ′

2. (8)

Set M ′
3 = ({({tmid, tleaf}, S −W )}, {tleaf , W}, {({tmid, tleaf}, (|S−W |))}) and M̂ ′

3 =

({({t̂mid, t̂leaf}, S − W )}, {tleaf , W}, {({t̂mid, t̂leaf}, (|S − W |)}) Clearly,

M̂ ′
3 ! M ′

3. (9)

We now replace in M ′
1 (M ′

2) vertex t2 (t1) with tmid and in M̂ ′
1 (M̂ ′

2) we re-

place t̂2 (t̂1) with t̂mid. Notice that M ′ = (T ′, α′, β ′, γ ′) = [M ′
1 ⊕ M ′

2 ⊕ M ′
3] and

M̂ ′ = (T̂ ′, α̂′, β̂ ′, γ̂ ′) = [M̂ ′
1 ⊕ M̂ ′

2 ⊕ M̂ ′
3] are well defined and are the two branch

representations constructed after the application in parallel of the splitting step

are M ′
1, M

′
2, M

′
3 and M̂ ′

1, M̂
′
2, M̂

′
3 are touching the common vertices are tmid and

t̂mid respectively. From (8),(9), and Lemma 11 we have that

M̂ ′
! M ′. (10)

Notice now that M̂ ′ and M ′ are representation models but not necessarily branch

models. The normalizing step transforms both of them to branch models by intro-

ducing and/or removing vertices of V (M ′) (V (M̂ ′)) from M ′ (M̂ ′). The results of
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this step satisfy Relation (10) because of Lemma 13 and this completes the proof

of (i).

(ii) We define M̂ and M as in the proof of (i). Let êins = {t̂1, t̂2} be the unique

edge of T̂ such that eins ∈ E(ψM̂,M(T̂êins)). We also set eins = {t1, t2} and s =

|γ̂(êins)|. As we did in the proof of (i), we apply Lemma 12 for edge êins and

define Ti, T̂i, Mi, M̂i, i = 1, . . . , 5, accordingly (we exclude the case where êins is

a pendant edge of T̂ as it is similar and easier). We observe that (6) holds as

well. Let P = (e1, . . . , er) be the path in T3 connecting ω(t̂1) with ω(t̂2) (clearly,

ω(t̂1) ∈ e1 and ω(t̂2) ∈ er). We distinguish two cases.

Case I. eins is an edge in P . We assume that eins = ej , 1 ≤ j ≤ r. We observe that

γ̂(êins) ! γ(e1)⊕· · ·⊕γ(er). Suppose first that there exist an integer m such that

γ̂(êins)1,m ! γ(e1) ⊕ · · · ⊕ γ(ej) and (11)

γ̂(êins)m,s ! γ(ej) ⊕ · · · ⊕ γ(er). (12)

Notice that using (11) and (12) we can define M1
3 , M2

3 , M̂1
3 , M̂2

3 as we did in the

proof of (i). Clearly, (7) is satisfied as well and then it is sufficient to follow

the steps of the proof of (i) in order to prove that Com(Int(M, eins, 1, S, W )) =

Com(Int(M̂, êins, m, S, W )) which is a stronger version of the required. We now

examine the case where there exist no m such that (11) and (12) are satisfied.

We observe instead that there exist some m′, 2 ≤ m′ ≤ r − 1 and two integers

λ, µ, 1 ≤ λ < j < µ ≤ r such that

γ̂(êins)1,m′ ! γ(e1) ⊕ · · · ⊕ γ(eλ) and (13)

γ̂(êins)m′+1,s ! γ(eµ) ⊕ · · · ⊕ γ(er). (14)

Clearly γ(eλ) and γ(eµ) are sequences consisting of only one integer. We denote

these integers as qλ and qµ respectively. It is easy to notice that qλ 4= qµ. If qλ < qµ

then we set m ← m′, otherwise we set m ← m′ + 1. We will examine the case

where qλ < qµ (the other case is similar). We observe that

∀λ+1≤h≤µ−1γ̂( ˆeins)m,m ≺ γ(eh) (15)

Combining now (13),(14), and (15) we conclude to the following.

γ̂(êins)1,m ≺! γ(e1) ⊕ · · · ⊕ γ(ej) and (16)

γ̂(êins)m,s ≺! γ(ej) ⊕ · · · ⊕ γ(er). (17)

Let C(T3, t1, t2) = (T 1
3 , T 2

3 ). We define M1
3 = M |T 1

3
, M2

3 = M |T 2
3
, M̂1

3 = (T̂3, α̂|{êins},

{}, {(êins, γ̂(êins)1,m)}), and M̂2
3 = (T̂3, α̂|{êins}, {}, {(êins, γ̂(êins)m,s)}). Using (16)
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and (17) one can verify the following.

M̂1
3 ≺! M1

3 (18)

M̂2
3 ≺! M2

3 (19)

Following now the methodology of the proof of (i), we will proceed applying in

parallel the steps of procedures Int(M, eins, 1, S, W ) and Int(M̂, êins, m, S, W ). We

define the branch models M̂ ′
3 and M ′

3 as in the proof of (i). Clearly, the “≺!”

version of (9) holds. We now replace in M1
3 (M2

3 ) vertex t2 (t1) with tmid and in

M̂1
3 (M̂2

3 ) we replace t̂2 (t̂1) with t̂mid. Similarly to the proof of (i) we have that

M ′ = [[M1 ⊕ M2 ⊕ M1
3 ] ⊕ M ′

3 ⊕ [M1
3 ⊕ M4 ⊕ M5]] and M̂ ′ = [[M̂1 ⊕ M̂2 ⊕ M̂1

3 ] ⊕

M̂ ′
3⊕ [M̂1

3 ⊕M̂4⊕M̂5]] are the results of the application of the splitting step. Using

now (6),(18),(19),(9), and the “≺!” version of Lemma 11 we have that

M̂ ′ ≺! M ′ (20)

We need now to prove that (20) holds for the branch models occurring after the nor-

malization step and this follows immediately from the “≺!” version of Lemma 13.

Case II. eins does not belong to P . Let ej , ej+1 be the two neighboring edges of

P that are closer to eins in T3. We denote the common endpoint of ej , ej+1 as

v. Let also U3 be the tree of C(T, v) that contains eins as an edge. Recall that

τ(γ(e1) ⊕ · · · ⊕ γ(er)) = γ̂(êins). Clearly, r ≥ 2. Observe that we can choose

an integer m, 1 ≤ m ≤ s such that either relations (11) and (12) hold. or there

exist two integers λ, µ, 1 ≤ λ < j < µ ≤ r such that relations (13) and (14)

hold. Each of the above cases is faced by a case analysis very similar to the one

of Case I. The only difference is that now in the definition of M ′
3 we should set

M ′
3 = (T ), α), β), γ)) where

T ) = (V (U3)∪{tmid, tleaf}, E(U3)−{t1, t2}∪{{t1, tmid}, {tmid, t2}, {tmid, tleaf}}),

α) = α|E(U3)−{{t1,t2}}∪ {({t1, tmid}, α(eins)), ({tmid, t2}, α(eins)), ({tmid, tleaf}, ∅)},

β) = β ∪ {(tleaf , ∅)},

γ) = γ|E(U3)−{{t1,t2}}∪ {({t1, tmid}, γ(eins)), ({tmid, t2}, γ(eins)), ({tmid, tleaf}, ())})

and observe that the “≺!” version of relation 9 holds as well (i.e. M̂ ′
3 ≺! M ′

3). "

The proof of the following lemma is similar (and easier) to the one of Lemma 22.

Lemma 23 Let M i = (T i, αi, βi, γi), i = 1, 2 be two branch models of G rooted on

R such that M1 ≺ M2. Then for any S ⊆ R, W ⊆ S, W ⊆ I(G), e1
ins ∈ E(T 1), and

m1, 1 ≤ m1 ≤ |γ1(e1
ins)| there exist e2

ins ∈ T 2 and m2, 1 ≤ m2 ≤ |γ2(e2
ins)| such that

Com(Int(T 1, α1, β1, γ1, e1
ins, m1, S, W )) ≺ Com(Int(T 2, α2, β2, γ2, e2

ins, m2, S, W )).
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3.4 A full set for an introduce node

We will now consider the case where i is an introduce node. Let j be the child

of i.

Clearly Vi = Vj ∪ {x} where x 4∈ Vj . Suppose that Ex = {e1, . . . , er}, 0 ≤ r ≤

|Xj| ≤ l is the set of edges containing x in Gi (notice that, NGj
(x) ∪e∈Ex e ⊆ Xj).

If Ex = ∅, then, we simply set FS(i) = FS(j). What remains is to examine the

case where |Ex| ≥ 1.

We define Gp
i = (V (Gi), E(Gj) ∪ {e1, . . . , ep}), 0 ≤ p ≤ r. Clearly, FS(j) is a

full set of characteristics for G0
i = Gj. Notice also that Gi = Gp

i . Suppose that we

have a full set of characteristics FS(i, p− 1) for Gp−1
i , 1 ≤ p ≤ r (which is the case

when p = 1). It is sufficient to give a O(1) time algorithm constructing a full set

of characteristics FS(i, p) for Gp
i .

————————————————————————————–

Algorithm Introduce-edge

Input: A full set of characteristics FS(i, p − 1) for Gp−1
i .

Output: A full set of characteristics FS(i, p) for Gp
i .

1: Initialize FS(i, p) = ∅.

2: For each characteristic M ∈ FS(i, p − 1), each edge eins ∈

E(T ), and any integer m, 1 ≤ m ≤ |γ(eins)|, set M ′ =

Com(Int(M, eins, m, ep, ep ∩ A(Gp
i ))) and if max(γ ′) ≤ k, then set

FS(i, p) ← FS(i, p) ∪ {M ′}.

3: end.

————————————————————————————–

Lemma 24 The set FS(i, p) constructed by the above algorithm is a full set of

characteristics.

Proof. We will prove first that FS(i, p) is a set of characteristics. Let M̂ ′ ∈

FS(i, p). We will show that there exists a branch decomposition of Gp
i with M̂ ′ as a

characteristic. We set W = ep∩A(Gp
i ) = ep∩I(Gp−1

i ). Clearly, as M̂ ′ is constructed

by the algorithm above, there must be a characteristic M̂ = (T̂ , α̂, β̂, γ̂) ∈ FS(i, p−

1), an edge êins ∈ E(T̂ ), and an integer m, 1 ≤ m ≤ |γ̂(êins)| such that

Com(Int(M̂, êins, m, ep, W )) = M̂ ′. (21)

As M̂ ∈ FS(i, p − 1) we have that there exist a branch decomposition B = (T, θ)

of Gp−1
i such that M̂ = CXi

(B), i.e B that has M̂ as characteristic with respect
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to Xi. Let DesXi
(B) = M . Clearly, M̂ = C(M). From Lemma 22.i we have that

there exist an edge eins ∈ E(T ) such that

Com(Int(M̂, êins, m, ep, W )) = Com(Int(M, eins, 1, ep, W )). (22)

Let B′ = (T ′, θ′) be a branch decomposition defined from B as in Lemmata 16

or 20. Clearly, B′ = (T ′, θ′) is a branch decomposition of Gp
i . We claim that

CXi
(B′) = M̂ ′. Indeed, from Lemma 20, we have that

CXi
(B′) = Com(Int(M, eins, 1, ep, W )). (23)

and, now, CXi
(B′) = M̂ ′ follows directly from (21), (22) and (23).

It remains now to prove that FS(i, p) is a full set of characteristics. Let

B′ = (T ′, θ′) be a branch decomposition of Gp
i . We will show that there ex-

ists a branch decomposition B′! = (T ′!, θ′!) of Gp
i such that CXi

(B′!) ≺ CXi
(B′)

and CXi
(B′!) ∈ FS(i, p). Let eins = {tmid, tleaf} ∈ E(T ′) be the edge of T ′ such

that tleaf ∈ Ã(T ′) and θ′(tleaf) = ep. Let also ti, i = 1, 2 be the vertices of

NT ′(tmid) − {tleaf}. We set B = (T, θ) where T = (V (T ) − {tleaf , tmid}, E(T ) −

{{t1, tmid}, {tmid, tleaf}, {tmid, t2}}∪{{t1, t2}}) and θ = θ′|Ã(T )−{tleaf}
. Let CXi

(B) =

M̂ = (T̂ , α̂, β̂, γ̂) and DesXi
(B) = M . From Lemma 20 we have that

Com(Int(M, eins, 1, ep, W )) = CXi
(B′). (24)

From Lemma 22.(ii) we have that there exist and edge êins ∈ E(T̂ ) and an integer

m, 1 ≤ m ≤ |γ̂(êins)| such that

Com(Int(M̂, êins, m, ep, W )) ≺ Com(Int(M, eins, 1, ep, W )). (25)

As FS(i, p − 1) is a full set of characteristics, we have that there exists a branch

decomposition B! = (T !, θ!) of Gp−1
i such that CXi

(B!) ≺ CXi
(B) and CXi

(B!) ∈

FS(i, p − 1). Let CXi
(B!) = M̂ ! = (T̂ !, α̂!, β̂!, γ̂!). From Lemma 23 we have that

there exists an edge ê!

ins and an integer m!, 1 ≤ m! ≤ γ̂!(ê!

ins) such that

Com(Int(M̂ !, ê!

ins, m
!, ep, W )) ≺ Com(Int(M̂, êins, m, ep, W )). (26)

We set B′! = (T ′!, θ′!) where T ′! and θ′! are defined as in Lemmata 16 or 20 (notice

that |Ã(T )| = |Ã(T !)| = |E(Gp−1
i )|). Let DesXi

(B!) = M !. From Lemma 22.i

there exist an edge e!

ins ∈ E(T (M !)) such that

Com(Int(M̂ !, ê!

ins, m
!, ep, W )) = Com(Int(M !, e!

ins, 1, ep, W )). (27)
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Figure 9: A scheme for the proof of Lemma 24.

Moreover, from Lemma 20 we have that

CXi
(B′!) = Com(Int(M !, e!

ins, 1, ep, W )). (28)

From (28) and algorithm Introduce-edge we have that CXi
(B′!) ∈ FS(i, p). Finally,

from (24), (25), (26), (27), and (28), we have that CXi
(B′!) ≺ CXi

(B′). "

3.5 A full set for a forget node

We will now consider the case where i is a forget node. Let j be the child of i.

Clearly, Gi = Gj and there exists a unique vertex v ∈ Xj with v 4∈ Xi. We call

this vertex v forgotten. Given a full set of characteristics F (j) for j, the following

algorithm computes a full set of characteristics F (i) at i.
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————————————————————————————–

Algorithm Forget-Vertex

Input: A full set of characteristics FS(j) for Gj and a forgotten

vertex x.

Output: A full set of characteristics FS(i) for Gi.

1: Initialize FS(i) = ∅.

2: For any (T, α, β, γ) ∈ FS(j) set FS(i) ← FS(i) ∪ {Com(T, α−

{x}, β − {x}, γ)}.

3: end.

————————————————————————————–

Lemma 25 The set FS(i) constructed by the above algorithm is a full set of char-

acteristics for i.

Proof. We will prove first that FS(i) is a set of characteristics. Let (T̂ ′, α̂′, β̂ ′, γ̂ ′) ∈

FS(i). We will prove that there is a branch decomposition of Gi with this charac-

teristic. From algorithm Forget-Vertex, there exist some (T̂ , α̂, β̂, γ̂) ∈ FS(j) such

that

Com(T̂ , α̂− {x}, β̂ − {x}, γ) = (T̂ ′, α̂′, β̂ ′, γ̂ ′). (29)

As (T̂ , α̂, β̂, γ̂) ∈ FS(j) there will exist a branch decomposition B = (T, θ) of Gj

where CXj
(B) = (T̂ , α̂, β̂, γ̂). Let DesXj

(B) = (T, α, β, γ). Clearly, (T̂ , α̂, β̂, γ̂) !

(T, α, β, γ) and it is easy to see that

(T̂ , α̂− {x}, β̂ − {x}, γ̂) ! (T, α− {x}, β − {x}, γ). (30)

Notice that B′ = B is a branch decomposition of Gi as well. We claim that

CXi
(B′) = (T̂ ′, α̂′, β̂ ′, γ̂′). Let DesXi

(B′) = (T ′, α′, β ′, γ′). From the definition of

DesXi
(B′) we have that T ′ = T , α′ = α−{x}, β = β ′−{x}, and γ ′ = γ. Therefore,

we have that

Com(T ′, α′, β ′, γ) = Com(T, α− {x}, β − {x}, γ). (31)

Using now (29), (30), and (31) we conclude that CXi
(B′) = Com(T, α′, β ′, γ′).

Next we prove that FS(i) is a full set of characteristics. Let B′ = (T ′, θ′) be a

branch decomposition of Gi. We will show that there exists a branch decomposition

B′! of Gi such that CXi
(B′!) ≺ CXi

(B′) and CXi
(B′!) ∈ FS(i). We set B =
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(T, θ) ← B′ and observe that B is also a branch decomposition of Gj. We set

DesXi
(B) = (T ′, α′, β ′, γ′), DesXj

(B) = (T, α, β, γ), and CXj
(B) = (T̂ , α̂, β̂, γ̂).

Notice that relations (30) and (31) hold as well and finally we obtain

CXi
(B′) = Com(T̂ , α̂− {x}, β̂ − {x}, γ̂). (32)

As FS(j) is a full set of characteristics, there exist a branch decomposition B! =

(T !, θ!) of Gj such that if CXj
(l!) = (T !, α̂!, β̂!, γ̂!) then (T̂ !, α̂!, β̂!, γ̂!) ≺ (T̂ , α̂, β̂, γ̂).

It is now easy to verify that

(T̂ !, α̂! − {x}, β̂! − {x}, γ̂!) ≺ (T̂ , α̂− {x}, β̂ − {x}, γ̂). (33)

We now set B′! = (T ′!, θ′!) ← B! and notice that B′! is a branch decomposition of

Gi as well. We set DesXi
(B′!) = (T ′!, α′!, β ′!, γ ′!) and DesXj

(B!) = (T !, α!, β!, γ!).

Notice also that relations (30) and (31) hold also for the case of B!, (T ′!, α′!, β ′!, γ ′!),

(T !, α!, β!, γ!), (T̂ !, α̂!, β̂!, γ̂!) and therefore we obtain the following.

CXi
(B′!) = Com(T !, α̂! − {x}, β̂! − {x}, γ̂!) (34)

From Algorithm Forget-Vertex and (34) we have that CXi
(B′!) ∈ FS(i). Finally,

from relations (32), (33), and (34) we can easily conclude that CXi
(B′!) ≺ CXi

(B′).

3.6 Joining branch models

Let Mi = (Ti, αi, βi, γi), i = 1, 2 be two branch models of a graph G rooted on some

set R ⊆ V (G). Assume also that σ ∈ I(T (M1), T (M2)). Let T be a tree isomorphic

to T (M1) through a function ρ. We define function bothα : E(T ) → 2R−A(G)−I(G)

such that ∀e∈E(T ) bothα(e) = α(ρ(e)) ∩ α(σ(ρ(e))). We also define the function

γ1 ⊗σ,ρ γ2 : E(T ) → Ŝ such that

γ1 ⊗σ,ρ γ2 = {γ | ∀e∈E(T ) γ(e) + |bothα(e)| ∈ γ1(ρ(e)) ⊗ γ2(σ(ρ(e)))}
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————————————————————————————–

Procedure Join(M1, M2, σ)

Input Two dense and typical branch models Mi = (T, αi, βi, γi), i =

1, 2 of G rooted on R and an isomorphism σ ∈ I(T (M1), M2.

Output A collection M of dense and typical branch models of G

rooted on R.

1: (Interleaving step)

• Set Γ = {γ ∈ (γ1 ⊗σ,ρ γ2)}.

• Set M = {(T, (α1 ∪σ α2) ◦ ρ, (β1 ∪σ β2) ◦ ρ, τ(γ)) ◦ ρ | γ ∈ Γ}.

2: (Normalizing step) For any M = (T, α, β, γ) ∈ M and any

x ∈ V (M), set M ← Norm(M, x).

3: Output M.

4: end.

————————————————————————————–

3.7 A full set for a join node

Let M be a dense and typical branch model of a graph G rooted on some set

R ⊆ V (G).

Given an integer d, we call Dd(M) the set of all the dense branch models

that are predecessors of M and have underlying trees with at most d edges. Let

Mi, i = 1, 2 be two branch models. We call an isomorphism σ ∈ I(T (M1), T (M2))

regular if ∀t∈Ã(T (M1)) β1(t) ∩ β2(σ(t)) = ∅.
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————————————————————————————–

Algorithm Join-characteristics

Input: A full set of characteristics FS(q1) for Gq1 and a full set of

characteristics FS(q2) for Gq2.

Output: A full set of characteristics FS(p) for Gp.

1: Initialize FS(p) = ∅.

2: For any pair of characteristics M̂1 ∈ FS(q1), M̂2 ∈ FS(q2) apply

step (3).

3: For any pair M̂∗
i ∈ D3kδ(k)(M̂i), i = 1, 2 apply step (4).

4: For any regular isomorphism σ ∈ I(T (M̂∗
1 ), T (M̂∗

2 )) apply step

(5).

5: For any branch model M̂∗ ∈ Join(M̂∗
1 , M̂∗

2 , σ) where

width(M̂∗) ≤ k set FS(p) ← FS(p) ∪ {Com(M̂∗)}.

6: end.

————————————————————————————–

In what follows, we will prove that the set FS(p) constructed by the above

algorithm is a set of characteristics.

Figure 10: An illustration of Lemma 26

Lemma 26 Let G be a graph and let G1, G2 be graphs such that V (G1)∩V (G2) =

R and E(G1) ∩ E(G2) = ∅. Suppose that for i = 1, 2, Mi, M̂i are branch models

of Gi, rooted on V (G) and R respectively. Then if Mi, i = 1, 2 are entire, M̂i !

33



Mi‖R, i = 1, 2, and M̂ ∈ Join(M̂1, M̂2, σ), where σ is a regular isomorphism in

I(T (M̂1), T (M̂2), there exist an entire branch model M of G rooted on V (G) such

that M̂ ! M‖R.

Proof We set M+
i = Mi‖R, i = 1, 2. As M̂i ! M+

i , i = 1, 2, we can apply

lemma 8 and define functions ψM̂i,M
+
i
, ωM̂i,M

+
i

and we set ψi ← ψM̂i,M
+
i
, i = 1, 2

and ωi ← ωM̂i,M
+
i
, i = 1, 2. Notice that the underlining tree of Mi is the same

with the underlining tree of M+
i , i = 1, 2 and, in this way, ψi and ωi, i = 1, 2

can also be viewed as an one to one mapping between the same subtree families

T (ψ1) and T (ψ1) of the underlining trees of M1 and M2 respectively. We denote

Mi = (Ti, αi, βi, γi), i = 1, 2 and M̂i = (T̂i, α̂i, β̂i, γ̂i), i = 1, 2. Finally, we define

Figure 11: An illustration of the proof of Lemma 26

the function θ : T (ψ1) → T (ψ2) so that θ = ψ2 ◦ σ ◦ ψ−1
1 . Observe that θ is a one

to one function mapping each tree of T (ψ2) to a tree of T (ψ1).
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Let M̂ = (T̂ , α̂, β̂, γ̂) be the the branch representation that occurred after

the application of the interleaving step on M̂i, i = 1, 2 (notice that this branch

representation is not necessarily a branch model).

Let ê be an edge of T̂ . We observe that the values of γ̂ are formulated by

applying τ on some choice of a function γ in Γ and therefore a function γ ∈

γ̂1 ⊗σ,ρ γ̂2 (i.e. γ̂ = τ(γ)). Clearly, the sequence γ(ê) + |bothα̂(ê)| is a member of

γ1(ρ(ê)) ⊗ γ2(σ(ρ(ê))) (recall that |γ(ê)| = |γ̂1(ê)| + |γ̂2(ê)| − 1).

We set Tê,i = ψi(T̂iê), i = 1, 2, and if ê = {v̂, û} then for i = 1, 2 we set

vi = ψi(v̂) and ui = ψi(û). Notice that, the numbers of the (single number)

sequences of the values of γ1 (γ2) along the edges of the path P 1
ê (P 2

ê ) connecting

u1 and v1 (u2 and v2) in Tê,1 (Tê,2) define a sequence A (B) where τ(A) = γ̂1(ê)

(τ(B) = γ̂2(ê)). Let A = (a1, . . . , ar1) and B = (b1, . . . , br2). Using now the

sequences A and B and the way γ(ê) occurs from γ̂1(ê) and γ̂2(ê), we will construct

a complete branch representation Mê of G rooted on V (M1|Tê,1
) ∪ V (M2|Tê,2

) and

such that CX(Mê) ≡ M̂ |T̂ê
.

Let γ̂1(ê) = (â1, . . . , âr̂1), γ̂2(ê) = (b̂1, . . . , b̂r̂2), and γ(ê) = (ĉ1, . . . , ĉr̂3) (r̂3 =

r̂1 + r̂2 − 1). W.l.o.g. we assume that ĉ1 = â1 + b̂1 and ĉ2 = â1 + b̂2 (otherwise,

ĉ1 = â1 + b̂1 and ĉ2 = â2 + b̂1, which can be faced in the same way). We set

iA,1 = iB,1 = 1. Notice that there exist a subsequence B1,2 = (biB,1 , . . . , biB,2)

of B such that τ(B1,2) = (b̂1, b̂2) and τ(biB,2+1, . . . , br2) = (b̂2, . . . , b̂r̂2). Suppose

that (Ť , α̌, β̌, γ̌) = M2|Tê,2(uiB,1
,uiB,2+1) where u1 = uiB,1 and {uiB,2 , uiB,2 + 1} is

iB,2th edge of P 2
ê . We set M1,2 = (Ť , α̌ ∪ α1(e1), β̌, γ̌ + |α1(e1)| − |bothα̂(ê)|)

where e1 = uiB,1 is the first edge of P 1
ê . In the underlining tree of M1,2 we call edge

{viB,1 , viB,1+1} first and edge {viB,2−1, viB,2} last. We also denote them as first(M1,2)

and last(M1,2). We now observe that either ĉ3 = â2 + b̂2 or ĉ3 = â1 + b̂3 (in the

example of Figure 3.7 we have the first case). In any case, we work as in the case

of M1,2 and we now construct the branch representation M2,3. Moreover we notice

that, in both cases, M2,3|T (M2,3)first(M2,3)
= M1,2|T (M1,2)last(M1,2)

. Going on that way, we

construct M2,3, . . . , Mr̂3−1,r̂3 and observe that ∀2≤i≤r̂3−1 Mi,i+1|T (Mi,i+1)first(Mi,i+1)
=

Mi−1,i|T (Mi−1,i)last(Mi−1,i)
. Therefore, for i = 2, . . . , r̂ − 1, we can consider edge

first(Mi,i+1) and edge last(Mi−1,i) as the same edge and subsequently we can set

Mê = M1,2∪· · ·∪Mr̂3−1,r̂3 (given two branch representations Mi = (Ti, αi, βi, γi), i =

1, 2 where T1, T2 have a common pendant edge e containing an internal leaf and

such that α1(e) = α2(e) and γ1(e) = γ2(e), we define M1 ∪ M2 = (α1 ∪ α2, β1 ∪

β2, γ1∪γ2)). Suppose that Mê = (Tê, αê, βê, γ ê). Let also A1, . . . , Ar̂3 (C1, . . . , Cr̂3)
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Figure 12: An example of the “⊕-construction” in the proof of Lemma 26

be the values of αê, (γ ê) along the path of Tê connecting first(M1,2) and last(Mr̂3−1,r̂3).

We notice that ∀1≤i≤r̂3 Ai ∩ X = α̂(ê) and, by the way the sequence C1, . . . , Cr̂3

has been constructed, one can easily verify that γ(ê) ! C1 ⊕ · · · ⊕ Cr̂3. Using

these two facts, it is not hard to see that M̂ |T̂ê
! Mê. If we now apply the above

construction (we call it “⊗-construction” – see Figure 3.7 for an example) for all

the edges of T̂ we will construct a collection of branch models that, when merged

using Lemma 11, result to a complete branch representation M where M̂ ! M .

Using Lemma 13 one can prove that M̂ ! M holds also after the application

of the normalizing step to M and M̂ respectively. Moreover, using the facts that

σ is regular, G1, G2 have not edges in common, and that Mi, i = 1, 2 are entire

branch models, it can be easily proved that M is also an entire branch model of
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Gr rooted on V (Gr).(we omit the details as they are tedious and easy). "

Lemma 27 Let G be a graph and M, M̂, M̂∗ three branch models where V (M) =

V (G) and V (M̂) = V (M̂∗) = R for some R ⊆ V (G). Suppose also that M̂ =

CR(M) and M̂ ! M̂∗. Then, there exist a branch model M∗ rooted on V (G) such

that M ! M∗ and M∗ ! M∗‖R.

Figure 13: A scheme for Lemma 27

Proof Let M+ = M‖R. Clearly, M+, M̂∗ are both predecessors of M̂ . Using

Lemma 9 we construct a common predecessor M+∗ of them. As M+ ! M+∗ we

use Lemma 10 in order to construct a branch model M∗ such that M+∗ = M∗‖R

and M ! M∗ and the lemma is proved. "

Lemma 28 The set FS(p) constructed by the algorithm Join-characteristics is a

set of characteristics.

Proof. Let M̂ ∈ FS(p). We will show that there exists a branch decomposition

B of Gh with width ≤ k where CXp(B) = M̂ . Clearly, as M̂ was constructed

by the algorithm Join-characteristics, for i = 1, 2 there is a pair of characteristics

M̂i ∈ FS(qi) of Gqi
, rooted on Xq1 = Xq2 = Xp, that where chosen during step

(1) in order to construct M̂ . As M̂i ∈ FS(qi), i = 1, 2, there will exist two

branch decompositions Bi, i = 1, 2 of Gqi
, i = 1, 2 (both of width≤ k) such that

CX(Bi) = M̂i, i = 1, 2. Let M̂∗
i , i = 1, 2 be the pair chosen in step (3). Using

now Lemma 27 we construct two branch models M∗
i , i = 1, 2 that have width

≤ k and such that Mi ! M∗
i and M̂∗ ! M∗

i ‖Xi
, i = 1, 2. Let also σ be the

regular isomorphism of I(T (M̂∗
1 ), T (M̂∗

2 )) chosen in step (4). Applying Lemma 26

37



Figure 14: A scheme for Lemma 28

we have that there exist an entire branch model M∗ of G rooted on V (G) such

that width(M∗) ≤ k and M̂∗
! M‖Xp . Clearly, this means that Com(M̂∗) =

Com(M∗‖Xp). Moreover, Using Lemma 15 we construct a branch decomposition

B of width ≤ k and such that Des(B) = M∗ . It is now easy to conclude that

M̂ = Com(M̂∗) = Com(M∗‖Xp) = CXp(B) and this completes the proof of the

lemma. "

What now remains is to prove that FS(p) is a full set of characteristics. We

need first some definitions.

Let B = (T, θ) be a branch decomposition of a graph G and let Gi, i = 1, 2 be

two graphs where E(Gi) ∪ E(G2) = ∅ and V (G1) ∩ V (G2) = R. For i = 1, 2, we

define the natural restriction B[Gi] of B on Gi as the branch decomposition (T, θi)

such that

∀t∈Ã(T ) θ(t) ∈ E(Gi) ⇒ θi(t) = θ(t) ∧ θ(t) 4∈ E(Gi) ⇒ θi(t) = ∅. (35)

We observe that T1, T2 are nothing more that isomorphic copies of T . In this way,

each subtree Ui of Ti corresponds to a subtree U in T . We call Ui, i-clone of U

and we call U dote of Ui. In the natural way, we define the notion of i-clone for

any object referring to Ti such as vertices, edges, etc.

Notice that the isomorphism between T1 and T2 is regular as any vertex that is
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pendant in both M1, M2 must be a vertex of X that belongs to exactly two edges

of G which in turn are mapped to two different leaves of T in B.

Figure 15: An example of functions LostM→M1,M2(e) and bothα(e).

Let M = Des(B) = (T, α, β, γ), and Mi = Des(BGi
) = (Ti, αi, βi, γi), i = 1, 2.

Let e be an edge of T and ei the i-clone of e in Ti, i = 1, 2. Notice that α(e) ⊆

α1(e) ∪ α2(e) (see figure 15). We define LostM→M1,M2(e) = α(e) − (α1(e) ∪ α2(e)).

Notice that Lost(e) ⊆ X. We will need the following lemma.

Lemma 29 Let B = (T, θ) be a branch decomposition of a graph G and let Gi, i =

1, 2 be two graphs where E(Gi) ∪ E(G2) = ∅ and V (G1) ∩ V (G2) = R. Let also
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M = Des(B) and Mi = Des(B[Gi]), i = 1, 2. If e ∈ E(T ), x ∈ R such that

x ∈ LostM→M1,M2(e) then the dote of Vx(M1) and the dote of Vx(M2) are vertex

sets each one belonging in different connected components of T − e.

Proof Let Lx (Li
x, i = 1, 2) be the leaves of T (Ti, i = 1, 2) that are mapped through

θ (θi, i = 1, 2) to edges containing to x in G (Gi, i = 1, 2). Using Lemma 14 it is

easy to see that for any Vx(M) (Vx(Mi)) induces the subtree U (Ui, i = 1, 2) of

T (Ti, i = 1, 2) spanned by Lx (Li
x, i = 1, 2). From Relation 35 and the fact that

E(Gi) ∪ E(G2) = ∅, we have that Lx = L1
x ∪ L2

x and L1
x ∪ L2

x = ∅. The fact that

x ∈ LostM→M1,M2(e) means that e is not an edge of U1 or U2. As Ui, i = 1, 2 are

connected, we have that their dotes belong in different connected components of

T − e. "

Figure 16: An illustration of Lemma 30

Lemma 30 Let Gi, i = 1, 2 be two graphs where E(G1)∪E(G2) = ∅ and V (G1)∩

V (G2) = R. Let B = (T, θ) be a branch decomposition of a graph G rooted on

a set R ⊆ V (G). Finally, let M̂i = CR(B[Gi]), i = 1, 2. Then there exist two

branch models M̂∗
i , i = 1, 2 of Gi, i = 1, 2 respectively, both rooted on R and such

that I(T (M̂∗
1 ), T (M̂∗

2 )) 4= ∅, a regular isomorphism σ ∈ I(T (M̂∗
1 ), T (M̂∗

2 )), and a

branch model M̂∗ of G rooted on R where
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1. M̂∗
i ∈ D3kδ(k)(M̂i), i = 1, 2

2. M̂) ∈ Join(M̂∗
1 , M̂∗

2 , σ).

3. M̂) ≺! DesR(B).

Proof We set DesR(B) = M+ = (T, α+, β+, γ+), DesR(B[Gi]) = M+
i = (Ti, α

+
i , β+

i ,

γ+
i ), i = 1, 2, M̂ = CR(B) = (T̂ , α̂, β̂, γ̂). Notice that T+ is isomorphic to T+

1

through an isomorphism ρ. Moreover there exist a regular isomorphism σ from

T+
1 to T+

2 .

As M̂ ! M+ we can apply Lemma 8 and define functions ψ, ω such that

ψ = ψM̂,M+ and ω = ωM̂,M+. As we in the proof of Lemma 26 we observe that M

and M+ have the same underlying tree T , and therefore, the functions ψ and ω

can be viewed as mappings of edges/vertices of T̂ to trees/vertices of M as well.

We consider an edge ê = (v̂, û) ∈ E(T̂ ). We set Tê = ψ(T̂ê) and v = ω(v̂), u =

ω(û). Let Pê = (e1, . . . , erê
) the path in Tê connecting v and u (we set rê = |Pê| and

we assume that v ∈ e1, u ∈ er). We denote as Rê all the edges of Tê that have not

common vertices with edges in Pê and we call them ê-raked edges. Notice that these

edges are some – but not all – of the edges that should be eliminated by the Com

procedure towards constructing T̂ from T+ and, in particular, constructing M̂‖T̂ê

from M+‖Tê
). Taking in mind the definition of M+, M+

1 , M+
2 ,, and Lemma 29 it

easy to verify that ∀ei∈Pê
the following holds.

γ+(ei) = γ+
1 (ρ(ei)) + γ+

2 (σ(ρ(ei))) −

|α+
1 (ρ(ei)) ∩ α

+
2 (σ(ρ(ei)))| + |LostM→M1,M2(ei) ∩ R| (36)

α+(ei) = α+
1 (ρ(ei)) ∪ α

+
2 (σ(ρ(ei))) ∪ (LostM→M1,M2(ei) ∩ R). (37)

Moreover, as Com(M+‖Tê
) = T̂ê, we have the following

∀ei∈Pê
α+(ei) = α̂(ê). (38)

For any x ∈ α̂(ê), we denote as I i
x the subinterval [ti1, t

i
2] of [1, rê] such that x ∈

α+
1 (ρ(ej)) ⇔ ti1 ≤ j ≤ ti2 and x ∈ α+

2 (σ(ρ(ej))) ⇔ ti1 ≤ j ≤ ti2. We now set

I lost
x = {i | x ∈ Lost(ei)} and we finally observe that ∀x∈R I1

x∪I2
x ∪ILost

x = [1, . . . , r].

From Relations (37) and (38) we have that if I1
x ∩ I2

x 4= ∅ then ILost
x = ∅, otherwise

I1
x, I

2
x, ILost

x form a partition of [1, . . . , rê]. It is now easy to see that we can partition

Pê = (e1, . . . , erê
) into a collection Eê = {E1, . . . , E|Eê|} of at most 3|α̂(ê)| ≤ 3|R|

subpaths such that

∀1≤m≤|Eê|∀e,e′∈Emα
+
1 (ρ(e)) = α+

1 (ρ(e′)) (39)
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∀1≤m≤|Eê|∀e,e′∈Emα
+
2 (σ(ρ(e))) = α+

2 (σ(ρ(e′))) and (40)

∀1≤m≤|Eê|∀e,e′∈Em(LostM→M1,M2(e) ∩ R) = (LostM→M1,M2(e
′) ∩ R) (41)

i.e. along these subpaths the values of α+
i , i = 1, 2 and LostM→M1,M2 are the

same for i = 1, 2. For the case of the values of LostM→M1,M2 we set L(ê, m) =

(LostM→M1,M2(e) ∩ R) where e is an arbitrary edge of Pm ∈ Eê i.e. of the mth

subpath of Eê.

Given an edge ê ∈ E(T (M̂)) we define as Eê,i the ith subpath of Eê.

We now construct an ancestor M̂∗ of M+ by applying rake and compress oper-

ations in two steps. The first allows only rake and compress operations for forks or

spines containing only non-central edges. The second step involves only compress

operations for spines where all of their edges belong to some set Ei,ê for some

ê ∈ E(T (M̂)) and some i, 1 ≤ i ≤ |Eê|. Notice that the above rake and compress

steps will reduce each subtree Tê ∈ T (ψM̂,M), ê ∈ E(T (M̂)) to a ternary caterpillar

containing |Eê| edges. We set M̂∗ = (T̂ ∗, α̂∗, β̂∗, γ̂∗).

We further construct for i = 1, 2 and ancestor M̂∗
i of M+

i by applying exactly

the same order of rake and compress operations that we described before in order

to construct M̂∗ from M+. It is easy to see that this construction is doable, as

Mi, i = 1, 2 are the descriptions of the natural restriction of B to Gi, i = 1, 2

respectively. Moreover, the underlining trees T̂ ∗
i , i = 1, 2 of M̂∗

i , i = 1, 2 remain

isomorphic under a regular isomorphism σ̂ (we omit the details as they are easy

and straightforward). Finally it is clear that there exist a isomorphism ρ̂ from T̂ ∗

to T̂ ∗
1 .

Notice that M̂ ! M̂∗ ! M+ and M̂i ! M̂∗
i ! M+

i , i = 1, 2. We set

M̂∗
i = (T̂ ∗

i , α̂∗
i , β̂

∗
i , γ̂

∗
i ), i = 1, 2. According to the construction, each edge ê of

T̂ corresponds to a subtree of T̂ ∗
i , i = 1, 2 that is a ternary caterpillar. Let

P ∗
ê = (ê∗1, . . . , ê

∗
|Eê|

) be the path formed by the ridge edges of this caterpillar (we

assume that the arrangement of the edges in P ∗
ê “follows” the ordering of the

arrangement of the edges in Pê). Using (39) and (40) we have that each edge

ê∗i ∈ P ∗
ê , 1 ≤ i ≤ |Eê| of such a ternary caterpillar corresponds to some subpath

Ei,ê in Eê. In particular, if Eê,i = (ei1 , . . . , ei|Eê,i|
), then the following relations hold.

∀1≤j≤|Eê| ∀e∈Eê,j
α+(e) = α̂∗(ê∗j) and (42)

∀1≤j≤|Eê| γ̂
∗(ê∗j ) = τ(γ(ρ(eii)) ⊕ · · · ⊕ γ+(ei|Eê,i|

)). (43)

∀1≤j≤|Eê| ∀e∈Eê,j
α+

1 (ρ(e)) = α̂∗
1(ρ̂(ê

∗
j )) and (44)

∀1≤j≤|Eê| γ̂
∗
1(ρ̂(ê

∗
j )) = τ(γ+

1 (ρ(eii)) ⊕ · · · ⊕ γ+
1 (ρ(ei|Eê,i|

))). (45)
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∀1≤j≤|Eê| ∀e∈Eê,j
α+

2 (σ(ρ(e)) = α̂∗
2(σ̂(ρ̂(ê∗j ))) and (46)

∀1≤j≤|Eê| γ̂
∗
2(σ̂(ρ̂(ê∗j ))) = τ(γ+

2 (σ(ρ(eii)) ⊕ · · · ⊕ γ+
2 (σ(ρ(ei|Eê,i|

))). (47)

From Lemma 17 we have that as M̂ is dense then T̂ has at most δ(|R|) edges.

In the construction above, each edge of T̂ correspond to at most 3k edges of

T̂ ∗, i = 1, 2. Therefore, |E(T̂ ∗
i )| ≤ 3kδ(k) and M̂∗

i ∈ D3kδ(k)(M̂i), i = 1, 2. In

what follows we will construct a branch model M̂) = (T̂ ), α̂), β̂), γ̂)) such that

M̂) ∈ Join(M̂∗
1 , M̂∗

2 , σ̂). and we will prove that M̂) ≺ M̂∗.

We set M̂) = (T̂ ∗, α̂), β̂), γ̂)). As M̂) and M̂∗ have the same underlying tree

we can consider ρ̂ as an isomorphism from the underlining tree of M̂) to the one

of M̂∗
1 as required in order to apply Join(M̂∗

1 , M̂∗
2 , σ̂).

Clearly, α̂) = (α̂∗
1 ∪σ̂ α̂

∗
2)◦ ρ̂ and β̂) = (β̂∗

1 ∪σ̂ β̂
∗
2)◦ ρ̂. It remains now to describe,

for any edge ê∗j of T̂ ∗ that belongs to a set P ∗
ê for some ê ∈ E(T̂ ), how sequences

γ̂∗
1(ρ̂(ê

∗
j)) and γ̂∗

2(σ̂(ρ̂(ê∗j))) should be interleaved during the interleaving step of

Join(M̂∗
1 , M̂∗

2 , σ̂).

We now apply Lemma 6 for the sequences (γ+(e1), . . . , γ+(ei)) (γ+
1 (ρ(e1)), . . . ,

γ+
1 (ρ(erê

))), and (γ+
2 (σ(ρ(ei))), . . . , γ+

2 (σ(ρ(eê)))), and from Relations (36), (43),

(42), (45), (44),(47), (46), (39) and (40) we easily have that there exist a sequence

C ∈ γ̂∗1(ρ̂(ê
∗
j )) ⊗ γ̂∗2(σ̂(ρ̂(ê∗j ))) such that

τ(C) + |bothα̂∗(ê∗j)| ≺ γ̂∗(ê∗j ) + |L(ê, j)|. (48)

We set γ̂)(ê∗j ) ← τ(γ) and going on that way we define all the values of γ̂). It is

easy to verify that β̂∗ = β̂). Moreover, using Relations (36), (37), (41), and (48)

we have that for any ê and any ê∗j ∈ P ∗
ê the following hold.

α̂∗(ê∗j) = α̂)(ê∗j) ∪ L(ê, j) (49)

γ̂∗(ê∗j) ; γ̂)(ê∗j ) + |L(ê, j)| (50)

(51)

Clearly, M̂) is not necessarily a branch model. Let ê∗j be an edge of T ∗ where

ê∗j ∈ P ∗
ê . We will prove that during the normalization step the vertices (numbers)

that will be added to the values of α̂∗ γ̂∗ will be exactly those that are required in

order relation M̂) ≺ M̂∗ to hold.

Suppose also that Norm(M̂), x) adds some vertex x in α̂) and increases by

one all the numbers in γ̂). Clearly, ê∗j ∈ Ex(M̂)) and thus x 4∈ α̂∗(ê∗j). From

Relation (42) we have that ∀e∈Eê,j
x 4∈ α+(e). As x ∈ V (M+), we have that

x ∈ L(ê, j).
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Suppose now that a vertex x belongs in some set L(ê, j). This means that

ρ−1(Vx(T
+
1 )) and (ρ ◦ σ)−1(Vx(T ∗

2 )) induce two connected trees in T+ that lay into

different connected components of T − e where e is any edge in Eê,j. It is not hard

to see that this property holds for the ancestors of M∗
i , i = 1, 2 in the following way:

ρ̂−1(Vx(T̂ ∗
1 )) and (ρ̂◦ σ̂)−1(Vx(T̂ ∗

2 )) induce two connected trees in T̂+ = T̂ ) that lay

into different connected components of T̂ ∗− ê∗j . This means that ê∗j ∈ Ex(M̂)) and

therefore Norm(M̂), x) will add x in α̂) and will increase by one all the numbers

in γ̂).

From the above we have that, after the normalization step, M̂) is modified in

a way that M̂) ≺ M̂∗. We omit the proof of the correctness of b̂) as it is easy

and do not give any further insight. The lemma now follows from the fact that

M̂∗
! M+ = DesR(B). "

Figure 17: An illustration of Lemma 31

Lemma 31 Let M̂, M̂∗ be two branch models of a graph G rooted on R ⊆ V (G)

and such that M̂ ! M̂∗. We also assume that there exist an entire branch model

M ! such that if M̂ ! = CR(M !) then M̂ ! ≺ M̂ . Then, there exist two entire branch

models M∗! and M̂∗! rooted on V (G) and R respectively such that

1. M̂ ! ! M̂∗!,

2. M ! ! M∗!,

3. M̂∗! ! M∗!‖R,

4. M̂∗! ≺ M̂∗.
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Proof Clearly there is a sequence of rake and compress steps that reduce M̂∗

to M̂ . If we now follow these steps in the inverse order and apply Lemma 4 for

the cases of compression we can easily construct a branch model M̂∗! such that

M̂∗! ≺ M̂∗ and M̂ ! ! M̂∗!. We now observe that M̂∗! and M+! = M !‖R are

common predecessors of M̂ . Using now Lemma 27 we can construct a branch

model M∗! that is a predecessor of M ! and such that M̂∗! ! M∗!‖R. "

Figure 18: An illustration of Lemma 32

Lemma 32 Let G be a graph and let Gi, i = 1, 2 be graphs such that V (G1) ∩

V (G2) = R and E(G1) ∩ E(G2) = ∅. Let, Mi, M
!

i , i = 1, 2 be branch models of

Gi rooted on R such that M !

i ≺ Mi, i = 1, 2. Let σ be a regular isomorphism in ∈

I(T (M1), T (M2)) and σ! ∈ I(T (M !

1), T (M !

2)). Then, for any M ∈ Join(M1, M2, σ)

there exist a regular isomorphism σ! ∈ I(T (M !

1), T (M !

2)) 4= ∅ and a branch model

M ! ∈ Join(M !

1, M
!

2, σ
!, σ!) such that M ! ≺ M .

Proof We set Mi = (Ti, αi, βi, γi), i = 1, 2 and M !

i = (T !

i , α
!

i, β
!

i , γ
!

i), i = 1, 2.

As Mi ≺ M !

i we can assume that for i = 1, 2 there exist a isomorphism πi ∈

I(Ti, T
!

i ). Suppose that M and M! be the sets created after the interleaving steps

of Join(M1, M2, σ) and Join(M !

1, M
!

2, σ
!) respectively. We also assume that each

branch model in M (M!) has as underlining tree a tree T (T !) isomorphic to T1

(T !

1) through a function ρ (ρ!). Clearly, M occurs after the normalization step is

applied to some member M ′ = (T, (α1 ∪σ α2) ◦ ρ, (β1 ∪σ β2) ◦ ρ, τ(γ)) ◦ ρ of M

where γ ∈ γ1 ⊗σ,ρ γ2.
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Let M !′ = (T !, (α!

1 ∪σ! α!

2)◦ρ
!, (β!

1 ∪σ! β!

2)ρ
!, τ(γ!)) be the member of M! where

for any edge e ∈ E(T !) γ!(e) is defined if we apply Lemma 7 for the sequences

γ1(e), γ2(e), γ(e), γ!

1(e), and γ!

2(e) (clearly, γ! ∈ γ!

1 ⊗σ!,ρ! γ!

2). Notice that π =

ρ!◦π1◦(ρ!)−1 is an isomorphism in I(T, T !) and ∀e∈E(T ) γ(e) ≺ γ!(π(e)) ⇒ γ ≺π γ
!.

Moreover it is clear that (α1 ∪σ α2) ◦ ρ =π (α1 ∪σ α2) ◦ ρ(α!

1 ∪σ! α!

2) ◦ ρ! and

(β1 ∪σ β2) ◦ ρ =π (β!

1 ∪σ! β!

2) ◦ ρ
! and therefore M ′ ≺ M !′. Let M ! be the branch

model occuring after we apply the normalization step on M !′. Appplying now the

“≺” version of Lemma 13 on M ′ and M !′ we have that M ≺ M ! and this completes

the proof of the lemma. "

Figure 19: The structure of the proof of Lemma 28

Lemma 33 The set FS(p) constructed by the above algorithm is a full set of

characteristics.

Proof From 28 we have that FS(p) is a set of characteristics. Ir remains to

prove that it is a full set of characteristics. Let B be a branch decomposition

of Gp We will prove that there exist a branch decomposition B! of Gp such that

CXp(B
!) ∈ FS(h) and CXp(B

!) ≺ CXp(B). Let M̂i = CXqi
(B[Gqi

]), i = 1, 2. We

apply Lemma 30 and we have that, for i = 1, 2, there exists a branch model
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M̂∗
i of Gqi

rooted on Xqi
(notice that Xq1 = Xq2 = Xp)), a regular isomorphism

σ ∈ I(T (M̂∗
1 ), T (M̂∗

2 )) 4= ∅, and a branch model M̂∗ rooted on Xp where

M̂∗
i ∈ D3kδ(k)(M̂i), i = 1, 2 (52)

M̂∗ ∈ Join(M̂∗
1 , M̂∗

2 , σ) (53)

M̂∗ ≺! DesR(B). (54)

For i = 1, 2 we observe that, as FS(qi) is a full set of characteristics and M̂i is a

characteristic of B[Gqi ]
there will exist a branch decomposition B!

i of Gqi
such that

if M̂ !

i = CXi
(B!

i) we will have the following.

M̂ !

i ∈ FS(qi). (55)

M̂ !

i ≺ M̂i. (56)

For i = 1, 2, we set M !

i = Des(B!

i) and notice that M !

i is entire. Observe that the

following hold for i = 1, 2.

M̂ !

i = CXqi
(M !

i ). (57)

Moreover, from Relation (58) we have that

M̂i ! M̂∗
i . (58)

If now, for i = 1, 2 we use Relations (56),(57),(58) and Lemma 31 we have that

there exist two branch models M∗!

i and M̂∗!

i rooted on V (G) and Xqi
respectively

such that

M̂ !

i ! M̂∗!

i , (59)

M !

i ! M∗!

i , (60)

M̂∗!

i ! M∗!

i ‖Xqi
, (61)

M̂∗!

i ≺ M̂∗
i . (62)

Using now relations (62) and (63) for i = 1, 2 and Lemma 32 we have that there

exist a regular isomorphism σ! ∈ I(T (M !

1), T (M !

2)) 4= ∅ and a branch model M̂∗!

rooted on Xp that satisfies the following relations.

M̂∗! ∈ Join(M̂∗!

1 , M̂∗!

2 , σ!) (63)

M̂∗! ≺ M̂∗. (64)
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As M !

i , i = 1, 2 are entire, Relation (60) gives that M∗!

i , i = 1, 2 are entire as well.

From Relations (61),(63) and Lemma 26 we have that there exist an entire branch

model M ! of G rooted on V (G) such that

M̂∗!
! M !‖Xp. (65)

From Lemma 15 we construct a branch decomposition B! of Gp rooted on V (Gp)

such that Des(B!) = M !. Clearly, Relation (65) gives that M̂∗!
! DesXp(B

!) and

therefore CXp(B
!) = Com(M̂∗!). From Relation (64) we have that Com(M̂∗!) ≺

Com(M̂∗) and from Relation (54) we have that Com(M̂∗) ≺ Com(DesXp(B)) =

CXp(B) and therefore CXp(B
!) ≺ CXp)(B) as required. It remains to prove

that CXp(B
!) ∈ FS(p). Notice that because of Relation (55), algorithm Join-

characteristics can choose M̂ !, i = 1, 2 in step (2). Moreover, from Relation (62)

we have that M̂∗!

i , i = 1, 2 have underlining trees of the same size of those of the

underlining trees of M̂∗
i , i = 1, 2. Using Relations (52) and (59) we easily have

that M̂∗!

i ∈ D3kδ(k)(M̂
!

i ), i = 1, 2 and therefore M̂∗!

i , i = 1, 2 can be chosen in step

(3) of algorithm Join-characteristics. Recall that σ! ∈ I(T (M !

1), T (M !

2)) is regular

and therefore can be chosen in step (4) of algorithm Join-characteristics. Finally,

from Relation (63) we have that M̂∗! can be chosen during step (5) of algorithm

Join-characteristics and therefore Com(M̂∗!) ∈ FS(p). As CXp(B
!) = Com(M̂∗!) we

have that CXp(B
!) ∈ FS(p) and this completes the proof of the lemma. A diagram

for the proof is depicted in Figure 19. "

4 Conclusions

Notice that, because of Lemma 17, the algorithms Introduce-edge, Forget-vertex,

and Join-characteristics run in O(1) time when k and l are fixed. We resume the

results of the previous subsections in the following (we omit the details of how

to transform the decision algorithm to a constructive one as they are an direct

consequences of the machinery in the proofs of Lemmata 22,24,25,26,28 and 30).

Theorem 1 For all k, l ≥ 1 there exists an algorithm that, given a graph G and a

tree decomposition of G with width at most l, computes whether the branchwidth of

G is at most k and, if so, constructs a branch decomposition of G with branchwidth

at most k and that uses O(V (G) + |X|) time.

In [18] it is proved that treewidth(G) + 1 ≤ <3
2branchwidth(G)= . Combining

this fact with Theorem 1 and the result in [5] we have the following:
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Theorem 2 For all k, there exists an algorithm, that given a graph G, computes

whether the branchwidth of G is at most k, and if so, constructs a branch decom-

position of G with minimum branchwidth in O(|V (G)|) time.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with

bounded decomposability – A survey. BIT, 25:2–23, 1985.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[3] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors charac-

terization of partial 3-trees. Disc. Math., 80:1–19, 1990.

[4] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,

11:1–23, 1993.

[5] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of

small treewidth. Siam Journal on Computing, 25:1305–1317, 1996.

[6] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the

pathwidth and treewidth of graphs. J. Algorithms, 21:358–402, 1996.

[7] H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in lin-

ear time. Technical Report No. UU-CS-1998-05, Dept. of Computer Science,,

Utrecht University, 1998.

[8] H. L. Bodlaender and D. M. Thilikos. Graphs with branchwidth at most

three. Journal of Algorithms, 32:167–197, 1999.

[9] W. Cook, 1996. Personal Comunication.

[10] W. Cook and P. Seymour. An algorithm for the ring-routing problem. Bellcore

technical memorandum, Bellcore, 1993.

[11] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of

polynomial-time algorithms. J. Comp. Syst. Sc., 49(3):769–779, Dec. 1994.

[12] H. Friedman, N. Robertson, and P. D. Seymour. The metamathematics of

the graph minor theorem. Contemporary Mathematics, 65:229–261, 1987.

49



[13] Y. Kajitani, A. Ishizuka, and S. Ueno. A characterization of the partial k-

tree in terms of certain substructures. Graphs and Combinatorics, 2:233–246,

1986.

[14] N. Kinnersley and W. Kinnersley. An efficient polynomial-time algorithm for

three-track gate matrix layout. The Computer Journal, 37(5):449–462, 1994.

[15] N. Kinnersley and M. A. Langston. Obstruction set isolation for the gate

matrix layout problem. Discrete Applied Mathematics, 54:169–213, 1994.

[16] N. G. Kinnersley. Obstruction Set Isolation for Layout Permutation Problems.

PhD thesis, Washington State University, May 1989.

[17] N. Robertson and P. D. Seymour. Graph minors — a survey. In I. Anderson,

editor, Surveys in Combinatorics, pages 153–171. Cambridge Univ. Press,

1985.

[18] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-

decomposition. J. Comb. Theory Series B, 52:153–190, 1991.

[19] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Net-

works, 20:299–322, 1990.

[20] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combina-

torica, 14(2):217–241, 1994.

[21] A. Takahashi, S. Ueno, and Y. Kajitani. Minimal forbidden minors for the

family of graphs with proper-path-width at most two. IEICE Trans. Funda-

mentals, E78-A:1828–1839, 1995.

[22] D. M. Thilikos. Algorithms and obstructions for linear-width and related

search parameterso. Discrete Applied Mathematics, 105:239–271, 2000.

[23] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. A constructive linear time

algorithm for small cutwidth. Technical Report No. UU-CS-2000-24, Dept. of

Computer Science, Utrecht University, 2000.

[24] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Constructive linear time

algorithms for small cutwidth and carving-width. In Proceedings of 11th An-

nual International Symposium on Algorithms And Computation ISAAC, 2000.

50


