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Abstract

1 Introduction

2 Genome Rearrangement

2.1 k -Breakpoint Median

Biological Motivation:

With breakpoint distance, the genome rearrangement field delivered one of the currently most
popular measures in phylogenetic studies for related species. Here, breakpoint median, whose
genomes are represented as signed orderings, is the core basic problem [GN02].
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Problem Definition:

Given a set S = {1, . . . , n}, an ordering π on S is a 1 : 1 function π : S → S. It is required that
every ordering is extended by two special elements namely s, marking the start, and t, marking
the end, and write the ordering π as 〈s π(1) π(2) . . . π(n) t〉. Then Ss is S ∪ {s} (St and Ss,t,
analogously) [GN02].

An ordering π is signed iff every π(x), x ∈ S, is equipped with a sign {+,−}, denoting the
“orientation” of the element, such that π(x) can be, for y ∈ S, a “positive” element +y (or, only
y), having left-to-right orientation, or a “negative” element −y, having right-to-left orientation.
Note that a signed ordering contains either y or −y, but not both at the same time. The special
elements s and t are always unsigned. We write S± for the set {−1, 1,−2, 2, . . . ,−n, n} and S±

s

for S± ∪ {s} (S±
t and S±

s,t analogously) [GN02].

We use succπ(x), for signed ordering π and x ∈ Ss, to denote the succesor y ∈ S±
s,t of element

x in π, which is defined w.r.t. x’s direction: For an element x ∈ G occurring positively in π,
the successor is the element following x. An x ∈ G occurring negatively, however, has “reverse”
orientation; hence, from x’s point of view, its successor is the “reverse version” of the element
preceding x [GN02].

Given two signed orderings π1 and π2, both over S, we call a pair (x, y), x ∈ S±
s and y ∈ S±

t , a
breakpoint of π1 w.r.t. π2, if

1. x = s or π1(l) = x for some l ∈ S, and

2. succπ1
(x) = y and succπ2

(x) '= y

Using the notion of breakpoints, we define the breakpoint distance dbp between two signed orderings
as follows: dbp(π1, π2) = |{(x, y)|x, y ∈ S±

s,t, x, y is breakpoint of π1 w.r.t. π2}| [GN02].

Due to symmetry, dbp(π1, π2) = dbp(π2, π1) [GN02].

Herein, dbp(πi, π) denotes the breakpoint distance between orderings πi and π.

Instance: Signed orderings π1, π2, ..., πm on n elements, and a positive integer k.

Parameter: k

Question: Is there a signed ordering π such that
∑m

i=1 dbp(πi, π) ≤ k?

Complexity:

NP-complete [PS].

Parameterized Complexity:

FPT, O(2.15k · mn) time [GN02].

2.2 Sorting by Reversals

Biological Motivation:

Studies of genomes evolving by rearrangements lead to combinatorial problem of sorting permuta-
tion by reversals. Physical maps usually do not provide information about directions of genes and,
therefore lead to representation of a genome as an unsigned permutation π. Biologists implicitly
try to derive a signed permutation from this representation by assigning a positive (negative) sign
to increasing (decreasing) strips of π. Biologists have to choose the desired degree of resolution
of the constructed physical maps. Low-resolution physical maps usually contain many singletons
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(strips of size one) and, as a result, rearrangement scenarios for such maps are hard to analyze
[HP96].

O(log n) singletons is the desired trade-off of resolution for cross-hybridization physical mapping in
molecular evolution studies. If the number of singletons is large, a biologist might choose additional
experiments (i.e. sequencing of some areas) to resolve the ambiguities in gene directions [HP96].

Problem Definition:

A reversal ρ = ρ(i, j) on a permutation π = π1 . . . πi−1πi . . .πjπj+1 . . .πn reverses the order of
elements πi . . .πj and transforms π into permutation π ·ρ = π1 . . . πi−1πj . . .πiπj+1 . . .πn. Reversal
distance d(π) is defined as the minimum number of reversals ρ1, . . . , ρt to transform π into the
identity permutation [HP96].

Let i ∼ j if |i − j| = 1. Extend a permutation π = π1 . . .πn by adding π0 = 0 and πn+1 = n + 1.
We call a pair of consecutive elements πi and πi+1, 0 ≤ i ≤ n, of π an adjacency if πi ∼ πi+1, and
a breakpoint if πi ! πi+1. Define a block of π as an interval πi . . . πj containing no breakpoints.
Define a strip of π as a maximal block. A strip of one element is called a singleton [HP96].

Instance: Given a permutation π of {1, 2, . . . , n} with k singletons.

Parameter: k

Question: Does there exist at most k reversals needed to transform π into the identity permutation?

Complexity:

NP-hard [KS93].

Parameterized Complexity:

FPT, O(2kn3 + n4) time [HP96].

2.3 Syntenic Distance

Biological Motivation:

Computational models measuring the genetic distance between two species can be used in the
construction of tree of evolutionary history, or—if such a tree is known through other means—in
estimating the rate of genomic evolution. These measures are generally based on a hypothesized
set of transformations that can alter a genome; the distance between the genomes of two species
is then the minimum number of these steps necessary to transform one into the other. Two genes
are syntenic if they appear in the same chromosome [LN02].

When comparing genomes containing multiple chromosomes, one must consider transformations
acting between chromosomes in addition to those acting within a single chromosome. These trans-
formations include fissions, in which one chromosome splits into two, fusions, in which two chromo-
somes merge into one, and translocations, in which two chromosomes exchange contiguous blocks
(usually prefixes or suffixes of genes) [LN02].

Problem Definition:

In this model, a genome is given by k subsets of a set of n characters (genes). These subsets
represent the chromosomes and the characters in a set represent the genes located on the chromo-
some. The mutation events in this model are the union of two chromosomes sets, the splitting of
a chromosome set into two sets, and the exchange of genes between two sets. [AGN01].

A genome can be transformed by any of the following operations:
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• a fusion (S, T ) −→ U , in which two chromosomes S and T merge into a single chromosome
U , where U = S ∪ T .

• a fission U −→ (S, T ), in which a chromosome U splits into two chromosomes S and T ,
where U = S ∪ T .

• a translocation (S, T ) −→ (S′, T ′), in which two chromosomes S and T exchange arbitrary
subsets of their genes, producing two new chromosomes S′ and T ′, where S ∪ T = S′ ∪ T ′.

The syntenic distance d(S1,S2) between two genomes S1 and S2 is the minimum number of fusions,
fissions, and translocations required to transform S1 into S2, ignoring all genes that appear in only
one of the two genomes [LN02].

Herein, d(S1,S2) denotes the syntenic distance between S1 and S2.

Instance: Given two genomes S1 = S11
, . . . , S1n

and S2 = S21
, . . . , S2m

.

Parameter: k

Question: Does there exist d(S1,S2) ≤ k?

Complexity:

NP-complete [LN02, DJK+97].

Parameterized Complexity:

FPT, O(nm + 2O(k log k)) time [LN02].

2.4 Vertex Bipartization

Biological Motivation:

In SNP haplotype assembly problems, the goal is to assign a given haplotype fragment, represented
by its sequence of SNP states, to one of two possible haplotypes. In the reconstruction of haplotype
structure, the goal is to divide the given genotype fragments, represented by their sequence of not
necessarily unique SNP states, into two haplotype fragments each. The commonality of both
problems is that we require a bipartition of haplotype fragments into two sets such that haplotype
fragments with differences in their SNP states belong to different sets.

In Vertex Bipartization we ask, given a graph G and a non-negative integer k, whether we can
transform the graph into a bipartite graph by deleting at most k vertices [Gra03].

Problem Definition:

Instance: Given a graph G = (V, E); a non-negative integer k.

Parameter: k

Question: Can we transform the graph into a bipartite graph by deleting at most k vertices?

Complexity:

NP-complete [GJ79], (Problem number GT25).

Parameterized Complexity:

FPT, O(4kkmn) time [RSV04].
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2.5 Open

2.5.1 Edge Bipartization

Biological Motivation:

See problem 2.4 for biological motivation.

In Edge Bipartization we ask, given a graph G and a non-negative integer k, whether we can
transform the graph into a bipartite graph by deleting at most k edges [Gra03].

Problem Definition:

Instance: Given a graph G = (V, E); a non-negative integer k.

Parameter: k

Question: Can we transform the graph into a bipartite graph by deleting at most k edges?

Complexity:

NP-complete [GJ79], (Problem number #).

Parameterized Complexity:

Is Edge Bipartization fixed-parameter tractable with respect to the number of allowed edge
deletions? [Gra03].

3 Sequence Alignment and Evolution

3.1 Binary Cladistic Character Compatibility

Biological Motivation:

In systematics, parsimony methods construct phylogenies, or evolutionary trees, in which charac-
ters evolve with the least evolutionary change. The Camin-Sokal and Dollo parsimony criteria are
used to construct phylogenies from discrete characters [DJS86].

Major strategies for inferring phylogenies have been developed from basic concepts of compatibility
and parsimony. For a given set of objects (e.g., terminal taxa, operational taxonomic units),
compatibility criteria are used to seek phylogenies on which a largest set of characters is perfectly
compatible, whereas parsimony criteria are used to seek phylogenies on which characters evolve
with the least evolutionary change [DJS86].

Problem Definition:

There exist finite nonempty sets of objects (e.g., terminal taxa) and of characters that describe
the objects.

Each character has two states and so is called binary.

A binary character is called cladistic if its states are ordered so that one is ancestral and the other
derived.

The n character states of an object x are described by a vector v(x) = 〈v1, · · · , vn〉, in which vi is
the state of character i for object x.
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Two binary characters are compatible with each other if three or fewer of the four possible combi-
nations of their states 00, 01, 10, and 11 are present in the objects being examined.

Instance: A set C of n binary cladistic characters over m objects; a positive integer k.

Parameter: k

Question: Is there a subset C′ ⊆ C, |C′| = k, such that all pairs of characters in C′ are compatible?

Complexity:

NP-complete [DS86].

Parameterized Complexity:

W [1]-complete, hardness: reduction from Clique [DJS86].

Comments:

The unconstrained-character version of this problem is also W [1]-complete [DJS86].

If k = |C|, one obtains the Perfect Phylogeny problem [DJS86].

3.2 Binary Qualitative Character Compatibility

Biological Motivation:

See problem 3.1 for biological motivation.

Major strategies for inferring phylogenies have been developed from basic concepts of compatibility
and parsimony. For a given set of objects (e.g., terminal taxa, operational taxonomic units),
compatibility criteria are used to seek phylogenies on which a largest set of characters is perfectly
compatible, whereas parsimony criteria are used to seek phylogenies on which characters evolve
with the least evolutionary change [DJS86].

Problem Definition:

A binary character is called qualitative if its states are an unordered set on which no further
structure is imposed.

Instance: A set C of n binary qualitative characters over m objects; a positive integer k.

Parameter: k

Question: Is there a subset C′ ⊆ C, |C′| = k, such that all pairs of characters in C′ are compatible?

Complexity:

NP-complete, by reduction from Binary Cladistic Character Compatibility [DS86].

Parameterized Complexity:

W [1]-complete, hardness: reduction from Binary Cladistic Character Compatibility [DJS86].

Comments:

The unconstrained-character version of this problem is also W [1]-hard [DJS86].
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3.3 Bounded Duplication Shortest Common Supersequence (SCS) for
Complete p-Sequences

Biological Motivation:

When trying to resolve the species tree for a set of n taxa, one typically creates a set of k gene
trees. It is not always the case that the gene trees agree. One such reason is due to paralogous
duplications of genes followed by subsequent loss of genes. This model implicitly makes use of trees
with repeated leaf labels. For problems about sequences, it is usually assumed that the sequences of
interest will contain occurrences of the same symbol many times. But there are some applications
where attention may be restricted to sequences x where any symbol occurring in x occurs at most
once [FHKS98b].

Problem Definition:

p-sequence: Say that a string of symbols (or sequence) x ∈ Σ∗ is a p-string (p-sequence) if no
symbol of Σ occurs more than once in x [FHKS98b].

complete p-sequence: x is a complete p-sequence if each symbol of the alphabet occurs exactly
once in x [FHKS98b].

A string x is a supersequence of a string s if we can delete some characters in x such that the
remaining string is equal to s.

A sequence S contains r duplication events if S is not a p-sequence but the exactly r symbols need
to be removed from S to result in a p-sequence [FHKS98b].

Instance: Complete p-sequences xi over an alphabet Σ of size n, a positive integer r, and a cost
function c : Σ → Z+

Parameter: r

Question: Is there a common supersequence x of duplication cost ‖x‖c ≤ r where the duplication
cost is defined as ‖x‖c =

∑

a∈Σ(na(x) − 1)c(a)na(x), a ∈ Σ, denotes the number of occurrences of
symbol a in x.

Complexity:

NP-complete [FHKS98b].

Parameterized Complexity:

FPT [FHKS98b].

3.4 Bounded Duplication SCS for p-Sequences

Biological Motivation:

See problem 3.3 for biological motivation.

Problem Definition:

rl-sequence: x is an rl-string or rl-sequence if it is a string in the usual sense, where symbols of
Σ may be repeated [FHKS98b].

Instance: A family of k p-sequences xi ∈ Σ∗ for i = 1, . . . , k and a positive integer r representing
the number of duplication events (for the definition of p-sequence and duplication event see problem
3.3). Assume that |Σ| = n and that each symbol of Σ occurs in at least one of the input sequences.
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Parameter: k and r

Question: Is there a common rl-supersequence x of length at most n + r?

Complexity:

NP-complete [FHKS98b].

Parameterized Complexity:

FPT, O(kr · n) [FHKS98b].

3.5 Bounded Duplication Smallest Common Supertree (SCT) for Bi-
nary p-Trees

Biological Motivation:

This definition is reasonable for applications in the study of gene duplication events in the sense
that both k and r may be small and the input trees complete when complete sequence data is
available for all of the species under consideration [FHKS98b].

Problem Definition:

p-tree: Phylogenetic tree or p-tree is a rooted tree where the leaves are labeled from an alphabet
Σ, and where no symbol in Σ is used more than once as a label [FHKS98b].

A tree T contains r duplication events if T is not a p-tree but the exactly r leaves must be removed
which result in a tree homeomorphic to a p-tree [FHKS98b].

Instance: A family of k complete binary p-trees Ti with leaf label set Σ, |Σ| = n, and a positive
integer r representing the number of duplication events.

Parameter: k and r

Question: Is there a common binary supertree T of the Ti of size at most n + r?

Complexity:

NP-complete [FHKS98b].

Parameterized Complexity:

FPT, [FHKS98b].

3.6 Closest String

Biological Motivation:

Primer Design: Primers are short sequences of nucleotides which are designed such that the
primer hybridizes to a given DNA sequence (or to all of a given set of DNA sequences) in order
to provide a start point for DNA strand synthesis by PCR (polymerase chain reaction). The
hybridization of primers depends on complex thermodynamic rules, but is largely determined by the
number of “mismatching” positions which should be as small as possible. Designing candidates for
primers is a task often done by biological experts using the output of multiple alignment programs
which is evaluated by hand [Gra03].
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Motif Search: A motif is a string that occurs approximately preserved, i.e., with changes in
at most d positions for a fixed integer d, as a substring in several DNA sequences. Motifs are
candidates for substrings of non-coding parts of the DNA sequence that have functions related to,
e.g., gene expression [Gra03].

Consensus Sequences: Given a collection of related sequences, a consensus sequence is a single
sequence that best represents the collection. A challenge associated with creating consensus se-
quences is sample bias. For example, given a dataset of sequences of orthologous genes form many
closely related species and a few more distantly related ones, the resulting consensus sequence could
be biased towards sequences from the over-represented species group. One proposed approach to
deal with the bias is to create a consensus sequence by minimizing the maximum distance from
any sequence rather than minimizing the total distance [BDLPR97] and this task is carried out by
Closest String problem [LLM+03].

Problem Definition:

The Hamming distance between two strings si and sj , both of length l, is given by dH(si, sj) =
{1 ≤ p ≤ l|si[p] '= sj [p]}.

Herein, dH(s, si) denotes the Hamming distance between strings s and si.

Instance: Strings s1, s2, . . . , sk over alphabet Σ of length L each, and a non-negative integers d
and k.

Parameters:

1. k

2. d

Question: Is there a string s of length L such that dH(s, si) ≤ d for all i = 1, . . . , k?

Complexity:

NP-complete even for binary alphabet [FL97, LLM+03].

Parameterized Complexity:

FPT, when parameterized by d, O(kL + kd · dd) time [Gra03].
FPT, when parameterized by k [Gra03].

3.7 Closest Substring

Biological Motivation:

A formal definition of the motif search problem leads to the Closest Substring problem. These
problems are of central importance for sequence analysis in computational molecular biology. These
problems have applications in fields such as genetic drug target identification or signal finding
[GHN02].

Problem Definition:

Instance: Strings s1, s2, . . . , sk over alphabet Σ, and non-negative integers d and L.

Parameters:

1. L, d and k
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2. k

Question: Is there a string s of length L such that, for every i = 1, . . . , k, there is a length-L
substring s′i of si with dH(s, s′i) ≤ d? (by dH(s, s′i) we denote the Hamming distance between
strings s and s′i, for definition see problem 3.6).

Complexity:

NP-complete [FGN02].

Parameterized Complexity:

W [1]-hard, when parameterized by the combination of L, d, and k, in case of unbounded alphabet
size, by reduction from Clique [FGN02].

W [1]-hard, when parameterized by the number k of input strings (even over a binary alphabet)
[FGN02].

3.8 k -Cluster Editing

Biological Motivation:

Novel DNA microarray technologies enable the monitoring of expression levels of thousands of
genes simultaneously. This allows a global view on the transcription levels of many (or all) genes
when the cell undergoes specific conditions or processes. Analyzing gene expression data requires
the clustering of gene into groups with similar expression patterns [SS00].

A key step in the analysis of gene expression data is the identification of groups of genes that man-
ifest similar expression patterns over several conditions. The corresponding algorithmic problem is
to cluster multicondition gene expression patterns. The grouping of genes with similar expression
patterns into clusters helps in unraveling relations between genes, deducing the function of genes
and revealing the underlying gene regulatory network [SS00].

Problem Definition:

Instance: An undirected graph G = (V, E), and a nonnegative integer k.

Parameter: k

Question: Can we transform G, by deleting and adding at most k edges, into a graph that consists
of a disjoint union of cliques?

Complexity:

NP-complete [Hüf03].

Parameterized Complexity:

FPT, O(1.92k + |V |3) time [Hüf03].

3.9 Distinguishing String Selection (DSS)

Biological Motivation:

DSS problems have the potential to help out in drug target selection. Given a dataset of sequences
of orthologous genes from a group of closely related pathogens, and a host (such as humans or
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livestock), the goal would be to find an essential sequence that is more conserved in all or most
of the pathogens but not as conserved in the hosts. The protein encoded by this fragment could
become a target for novel antibiotic development [LLM+03].

Another application of DSS problems is with consensus sequences. Given a collection of related
sequences, a consensus sequence is a single sequence that best represents the collection. A challenge
associated with creating consensus sequences is sample bias. For example, given a dataset of
sequences of orthologous genes from many closely related species and a few more distantly related
ones, the resulting consensus sequence could be biased towards sequences from the over-represented
species group [LLM+03].

Finally, DSS problems may also find applications in creating diagnostic probes for bacterial infec-
tion and creating universal PCR primers [LLM+03].

Problem Definition:

Deng et al. [DLL+02] let all good strings be of same length L. The terminology “good” and “bad”
has its motivation in the application [LLM+99] of designing genetic markers to distinguish the
sequences of harmful germs (to which the markers should bind) from human sequences (to which
the markers should not bind) [GGN03].

Instance: Given “good” strings s1, . . . , sk1
“bad” strings s′1, . . . , s

′
k2

, positive integers d1 and d2.

Parameter: d1 and d2

Question: Is there an s “close” to the good strings, i.e.,

max
i=1,...,k1

dH(s, s′i) ≤ d1

and “far away” from the bad ones, i.e.,

min
j=1,...,k2

dH(s, s′j) ≥ L − d2?

By dH we denote the Hamming distance for definition see problem 3.6.

Complexity:

NP-hard [FL97, LLM+99].

Parameterized Complexity:

FPT, for fixed alphabet, O((k1 + k2)L · (max{d1 + 1, (d2 + 1)(|Σ|− 1)})d1) time [Gra03].

3.10 Fixed Alphabet Longest Common Subsequence

Biological Motivation:

The computational problem of finding the longest common subsequence (LCS) of a set of k strings
has been studied extensively over the last twenty years. This problem has many applications.
When k = 2, the longest common subsequence is a measure of the similarity of two strings and
is thus useful in molecular biology, pattern recognition, and text compression. The version of
longest common subsequence in which the number of strings is unrestricted is also useful in text
compression, and is a special case of the multiple sequence alignment and consensus subsequence
discovery problems in molecular biology [DF99].

Problem Definition:
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A string s is a subsequence of a string r if we can delete some characters in r such that the remaining
string is equal to s.

Instance: An alphabet Σ having fixed size; a set of k strings r1, . . . , rk over the alphabet Σ a
positive integer m.

Parameters:

1. k

2. k and m

Question: Is there a string s ∈ Σ∗ of length at least m that is a subsequence of each ri, for
i = 1, . . . , k?

Complexity:

NP-complete [Mai].

Parameterized Complexity:

W [1]-hard, when parameterized by k, by reduction from Partitioned Clique [Pie03].
FPT, when parameterized by k and m (by the trivial algorithm that generates all |Σ|m possible
subsequence strings and checks them against each ri) [Ces04].

Comments:

See also 3.15 problem, Longest Common Subsequence (LCS).

3.11 Fixed Alphabet Shortest Common Supersequence

Biological Motivation:

Current technology allows only relatively short regions of DNA or protein to be sequenced; hence,
the base sequences of longer regions must be determined by breaking such regions into fragments
that can be sequenced and then reconstructing the region from these fragments. In much the same
way as the LCS problem underlies various versions of multiple sequence alignments and consensus.
This problem underlies sequence reconstruction [BDF+].

Problem Definition:

A string s is a supersequence of a string r if we can delete some characters in s such that the
remaining string is equal to r [Ces04].

Instance: An alphabet Σ having fixed size; a set of strings {r1, . . . , rk} formed over alphabet Σ; a
positive integer λ.

Parameters:

1. k

2. λ

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is a supersequence of
each string ri, 1 ≤ i ≤ k?

Complexity:
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NP-complete when |Σ| ≥ 2 [GMS80].

Parameterized Complexity:

W [1]-hard, when parameterized by k, by reduction from Partitioned Clique [Pie03].
FPT, when parameterized by λ [FHK].

Comments:

See also 3.27 problem, Shortest Common Supersequence (SCS).

3.12 Gene Duplication

Biological Motivation:

When trying to resolve the tree of life one usually wants to compute the phylogenetic relationships
between the organisms based on the data provided by the DNA or protein sequences of families of
homologous genes [Ste99].

The problem is the determination of the correct species tree for a set of taxa given a set of possibly
contradictory gene trees. Several models for attacking the problem have appeared in the literature
including the famous Maximum Agreement Subtree (MAST) [Ste99].

The Gene Duplication is the problem of computing the optimal species tree for a given set of
gene trees under the Gene-Duplication Model [Ste99].

A species tree or evolutionary tree for a given set of taxa is a complete rooted binary tree built
over the set of taxa representing the phylogenetic relationships between the taxa [Ste99].

Taxa is a taxonomic group of any rank, including all the subordinate groups. Any group of
organisms, populations, or taxa considered to be sufficiently distinct from other such groups to be
treated as a separate unit.

Gene trees and species trees are rooted, binary and leaf labeled [Ste99].

Problem Definition:

Gene trees and species trees are rooted, binary, and leaf labeled.

T = (V, E, L) is a tree where V is the vertex set, E is the edge set, and L ⊆ V is the leaf-label set
(in short, leafset).

The vertex u is such that u ∈ V − L and Tu is the subtree of T rooted by vertex u. The root of
each tree T has a left and right subtree, rooted by the two kids of the root root(T ) and denoted
by Tl and Tr.

The leafset L of T is denoted by L(T ), and a node u ∈ V is denoted by L(u) instead of L(Tu).

For trees T1 = (V1, E1, L) and T2 = (V2, E2, L) and a vertex u ∈ V1 let lcaT2
(L(v)) be the least

common ancestor of all the leaves in L(v) in tree T2.

Let G = (VG, EG, L) be a gene tree and S = (VS , ES , L′), L ⊆ L′ be a species tree.

The function locG,S : VG -→ VS associate each vertex in G with a vertex in S.

The function eventG,S : VG -→ dup, spec indicate whether the event in G corresponds to a dupli-
cation or speciation event.

The function M maps a gene tree G into a species tree S by defining functions locG,S and eventG,S.
The quantity cost(G, S) = |{u|u ∈ VG − L, eventG,S(u) = dup}| is the minimum number of gene-
duplication events necessary to rectify the gene tree G with the species tree S,
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M(G, S): for each u ∈ VG − L, loc(u) = lcaS(L(u)) and

event(u) =

{

spec if locG,S(u′) '= locG,S(u), for all u′ where u′ is a kid of u in G,
dup otherwise.

For given G1, G2, . . . , Gk, and S let cost(G1, G2, . . . , Gk, S) =
k

∑

i=1

cost(Gi, S).

Let |L| = n.

Instance: Gene trees G1, . . . , Gk over leaf set L, and a positive integer C.

Parameter: C

Question: Does there exist a species tree S with cost(G1, . . . , Gk, S) ≤ C?

Complexity:

NP-complete [Ste99].

Parameterized Complexity:

FPT, O(4k · n3 · m2) time [Ste99].

3.13 3-Hitting Set

Biological Motivation:

In computational biology the 3-hitting Set has several applications that go from helping to
combine different phylogenetic trees [GW02, NR99] to help into gene regulatory networks [PH].

In phylogenetic when trying to combine different trees, the idea is to model the structure in triples
and delete a minimum number of species in order to avoid all conflicts in the tree structures [PH].

Problem Definition:

Instance: Collection C of subsets of size three of a finite set S, and a positive integer k.

Parameter: k

Question: Is there a subset S′ ⊆ S with |s′| ≤ k which allows S′ contain at least one element from
each subset in C?

Complexity:

NP-complete [NR99].

Parameterized Complexity:

FPT, O(2.270k + n) time [NR99].

3.14 Imperfect Phylogeny Reconstruction

Biological Motivation:

Perfect phylogeny (PP) is a fundamental structure in computational biology, as it describes evo-
lutionary histories in the case that every position is affected by a mutation at most once. The
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positions can be pieces of DNA, but also features of phenotypes. The notion of PP can be gen-
eralized to more than two characters. Then the condition is that every mutation creates a new
character (that never occurred before) at the affected position [Dam].

Problem Definition:

A well-known characterization of binary matrices that have a perfect phylogeny (PP matrices for
short). A pair of columns is called complete if each of the couples 00, 01, 10, 11 appears as a row
in the submatrix induced by these two positions [Dam].

A matrix is a PP matrix if and only if it does not contain complete pairs [Dam].

Instance: An n × m binary matrix and an integer k.

Parameter: k

Question: Changing a minimal set of at most k bits in such matrix so that it becomes a PP matrix.

Complexity:

NP-hard if the number of characters is part of the input [BFW92, Ste92].

Parameterized Complexity:

FPT, O(k6knm) time [Dam].

3.15 Longest Common Subsequence

Biological Motivation:

See problem 3.10 for biological motivation.

Problem Definition:

Instance: An alphabet Σ a set of k strings X1, . . . , Xk over the alphabet Σ a positive integer m.

Parameters:

1. A positive integer k (LCS-1).

2. A positive integer m (LCS-2).

3. Positive integers k, m (LCS-3).

4. Positive integers k, |Σ| (LCS-4).

Question: Is there a string X ∈ Σ∗ of length at least m that is a subsequence (for definition see
problem 3.10) of Xi, for i = 1, . . . , k?

Complexity:

NP-complete [Mai].

Parameterized Complexity:

W [t]−hard for all t for LCS-1 [BDFW95], by reduction from Monotone Weighted t-Normalized
Satisfiability [BDFW95, BDFW94, DF99]).
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W [2]−hard for LCS-2 in W [P ] [BDFW95], membership is easy; hardness: by reduction from
Dominating Set [BDFW95, DF99]; in FPT if |Σ| is parameter, by the trivial algorithm that
generates all |Σ|m possible subsequence strings and checks them against each ri.

W [1]−complete for LCS-3 [BDFW95], membership: by reduction to Weighted q-CNF Sat-
isfiability by [BDFW95, BDFW94, DF99]; hardness: by reduction from Clique [BDFW95,
BDFW94, DF99].

W [t]−hard for all t for LCS-4, by reduction from LCS-1 to LCS-4 [BDF+, BDFW94]. The
reduction required the size of Σ to grow as a function of the parameter.

Comments:

See also 3.10 problem, Fixed Alphabet Longest Common Subsequence.

3.16 k -Maximum Agreement Subtree (MAST)

Biological Motivation:

The MAST problem arises naturally in biology and linguistics as a measure of consistency between
two evolutionary trees over species and languages, respectively. It is often difficult to determine
the true phylogeny for a set of taxa, and one way to gain confidence in a particular tree is to have
different lines of evidence supporting that tree. In the biological taxa case, one may construct trees
from different parts of the DNA of species. These are known as gene trees. For many reasons,
these trees need not entirely agree, and so one is left with the task of finding a consensus of the
various gene trees. The Maximum Agreement Subtree is one method of arriving at such a
consensus [CCH+].

Therefore, the parameter k is the number of species to exclude from analysis [AGN01].

Problem Definition:

Instance: A set of rooted trees T1, . . . , Tr (r ≥ 3) with the leaf set of each Ti labeled 1 : 1 with a
set of species X , and a positive integer k.

Parameter: k

Question: Is there a subset S ⊆ X of size at most k such that Ti restricted to the leaf set X ′ = X−S
is the same (up to label-preserving isomorphism and ignoring vertices of degree 2) for i = 1, . . . , r?

Complexity:

NP-complete [DFS99].

Parameterized Complexity:

FPT, O(2.270k + rn3) time [AGN01].

3.17 k -Minimum Quartet Inconsistency (MQI)

Biological Motivation:

An application of Minimum Quartet Inconsistency problem in biology is the reconstruction
of evolutionary tree from biological data between quartet paradigm [VJLW02].
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Quartet methods infer the evolutionary tree only for four taxa, called a quartet. Once having
determined the evolutionary tree for every quartet of taxa, they try to combine these evolutionary
trees involving four taxa, called quartet topologies, in order to obtain a tree containing all taxa
[Gra03].

Problem Definition:

Phylogeny or phylogenetics is the classification of species and organisms according to their evo-
lutionary relationships. In molecular phylogenetics, this classifications is based on genomic data.
The single units being compared, usually species, are referred to as taxa. Given a set of taxa, a
commonly used model for their evolutionary relationship is a tree called phylogenetic tree in which
the leaves are in one-to-one correspondence to the taxa and in which inner nodes correspond to
(unknown) ancestors of these taxa [Gra03].

Herein, we consider an evolutionary tree to be an unrooted binary tree T in which the leaves are
bijectively labeled by a set of taxa S [GN01].

A quartet, then, is a size four subset {a, b, c, d} of S, and the topology for {a, b, c, d} induced by T
simply is the four leaf subtree of T induced by {a, b, c, d}. The three possible quartet topologies for
{a, b, c, d} are [ab|cd], [ac|bd], and [ad|bc], the fourth possible topology would be the star topology,
which is not considered here because it is not binary [GN01].

Instance: A set S of n taxa and a set QS of
(n
4

)

quartet topologies such that there is exactly one
topology for every quartet set corresponding to S, and a positive integer k.

Parameter: k

Question: Is there an evolutionary tree T where the leaves are bijectively labeled by the elements
from S such that the set of quartet topologies induced by T differs from QS in at most k quartet
topologies?

Complexity:

NP-complete [GN01].

Parameterized Complexity:

FPT, O(4k · n + n4) time [GN01].

3.18 k -Mismatch

Biological Motivation:

See problem 3.6 for biological motivation.

Problem Definition:

Let si,p,L denote the length-L substring of a given string si at position p.

Instance: Given strings s1, s2, . . . , sm of length n, and integer k.

Parameter: k

Question: Is there a string s of length L and a position p with 1 ≤ p ≤ n − L + 1, such that
dH(s, si,p,L) ≤ k for all i = 1, . . . , m? (by dH we denote the Hamming Distance for definition see
problem 3.6).

Complexity:
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NP-hard [FL97, LLM+99].

Parameterized Complexity:

FPT, O(mL + (n − L)mk · kk) time [Gra03].

3.19 Modified Distinguishing Substring Selection (MDSSS)

Biological Motivation:

See problem 3.9 for biological motivation.

Problem Definition:

Instance: Given an alphabet Σ = {0, 1}, two sets of strings over Σ,

- Sg = {s1, . . . , skg
}, each string of length at least L (the “good” strings),

- Sb = {s′1, . . . ..., s′kb
}, each string of length at least L (the “bad” strings), and two non-negative

integers dg and db

Parameter: dg and db

Question: Is there a length-L string s over Σ such that,

- in every si ∈ Sg for every length-L substring ti, dH(s, ti) ≥ dg and
- every s′i ∈ Sb has at least one length-L substrings t′i with dH(s, t′i) ≤ db?

By dH we denote the Hamming distance for definition see problem 3.6.

Complexity:

Distinguishing Substring Selection problem is NP-complete [GGN03].

Parameterized Complexity:

FPT, O(L ·kg +((d′g)
2kg +N

√
L logL) · (d′g)d′

g ) time where N =
∑

s′

i∈Sb
|s′i| is the total size of the

bad strings [GGN03].

3.20 Multiple Gene Duplication

Biological Motivation:

A fundamental problem in computational biology is the determination of the correct species tree for
a set of taxa given a set of (possibly contradictory) gene trees. In recent literature, the Duplication
Loss model has received considerable attention. Here one measures the similarity/dissimilarity
between a set of gene trees by counting the number of paralogous gene duplications and subsequent
gene losses which need to be postulated in order to explain (in an evolutionarilly meaningful way)
how the gene trees could have arisen with respect to the species tree. Here we count the number of
multiple gene duplication events (duplication events in the genome of the organism involving one
or more genes) without regard to gene losses [FHS98].

The Multiple Gene Duplication asks to find the species tree S which requires the fewest
number of multiple gene duplication events to be postulated in order to explain a set of gene trees
G1, G2, . . . , Gk [FHS98].

A duplication event in the genome of an organism involves a stretch of DNA where one or more
genes may reside. [FHS98].
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Problem Definition:

Instance: Set of gene trees G1, . . . , Gk, a species tree S (for definitions see problem 3.12), and
integer C.

Parameter: C

Question: Do there exist functions locGi,S , eventGi,S (for definitions see problem 3.12), for 1 ≤ i ≤
k, s.t. S receives G1, . . . , Gk with at most C multiple gene duplications?

Complexity:

NP-complete [FHS98].

Parameter Complexity:

W [1]-hard, by reduction from combinatorial model called the Ball and Trap Game [FHS98].

3.21 k -Pathwidth

Biological Motivation:

In order to study a genome, several copies of it are cut or broken down, and some of the resulting
shorter segments (called clones) are preserved for further analysis. Depending on the technique
used, the preserved clones may have variable length, or they may all have essentially the same
length. In the process of producing the clones, all information on their relative position along the
DNA chain is lost. The goal of physical mapping of DNA is to reconstruct that order, based on
experimental data on the overlaps between pairs of clones [KS96].

An important feature of real biological data is that the “width” of the map is consistently very
small: The largest number of mutually overlapping clones is typically between 5 and 15, compared
to a total number of clones in the thousands [KS96].

Problem Definition

A path decomposition of a given graph G = (V, E) is a sequence of subsets of V , X = (X1, . . . , Xl)
such that:

1. V = ∪iXi

2. For each edge (u, v) ∈ E, there exists some i ∈ {1, . . . , l} so that both u and v belong to Xi.

3. For each v ∈ V there exist some s(v), e(v) ∈ {1, . . . , l} so that s(v) ≤ e(v), and v ∈ Vj if and
only if j ∈ {s(v), s(v) + 1, . . . , e(v)}.

The width of X is defined by pwX(G) = max{|Xi||i = 1, . . . , l}− 1. The pathwidth of G, denoted
pw(G), is the minimum value of pwX(G) over all path decompositions, i.e.,

pw(G) = min{pwX(G)|X is a path decomposition of G}

The patwidth problem is to decide for a given graph G and a given integer k if pw ≤ k [KS96].

Instance: A graph G = (V, E), and a positive integer k.

Parameter: k

Question: Is the pathwidth of G no more than k?

Complexity:

19



NP-complete [ACP87].

Parameterized Complexity:

FPT, O(2k2

n) time [BK96, Bod96, BT98].

3.22 Perfect Phylogeny

Biological Motivation:

Infer the evolutionary history of a set of species is a fundamental problem in biology. Each of such
that set of species is specified by the set of traits of characters that exhibits. All information about
evolutionary history can be conveniently represented by an evolutionary tree or phylogenetic tree,
and often referred as a phylogeny [AFB96, VLM].

Problem Definition:

Instance: A set C = {1, . . . , m} of characters; for each c ∈ C, a set Ac = {1, . . . , rc} of states; and
a set S ⊆ A1 × . . . × Am where |S| = n (S represents a set of n species).

Parameters:

1. r = maxc∈C rc

2. r = maxc∈C rc, m

Question: Is there a tree T with the properties:

1. S ⊆ V (T ) ⊆ A1 × . . . × Am.

2. Every leaf in T is in S.

3. For each c ∈ C and each j ∈ Ac, the set of vectors v ∈ V (T ) such that vc = j induces a
subtree of T ?

Complexity:

NP-complete [BFW92, Ste92].

Parameterized Complexity:

FPT, when parameterized by r, O(23r(nm3 + m4)) time [AFB94].
FPT, when parameterized by r and m, O((r − n/m)mrnm) time [AFB96].

Comments:

This problem is also known as the Character Compatibility Problem.

This problem is also related with problem 4.11, Triangulating k-Colored Graphs.

3.23 Removing Extra Columns in Imperfect Phylogeny Reconstruc-
tion

Problem Definition:

Instance: An n × m binary matrix and an integer k.
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Parameter: k

Question: Deleting at most most k columns such that the rest matrix has a PP (for definition see
problem 3.14).

Complexity:

?

Parameterized Complexity:

FPT, O(k2nm + k22k) time [Dam].

3.24 Removing Extra Rows in Imperfect Phylogeny Reconstruction

Problem Definition:

Instance: An n × m binary matrix and an integer k.

Parameter: k

Question: Finding all minimal combinations of at most k rows whose deletion leaves a PP matrix
(for definition see problem 3.14).

Complexity:

?

Parameterized Complexity:

FPT, O(3knm) time [Dam].

3.25 SCSs for p-Sequences

Biological Motivation:

See problem 3.11 for biological motivation.

Problem Definition:

Instance: p-sequences (for definition see problem 3.3) x1, . . . , xk and a positive integer M .

Parameter: k

Question: Is there a rl-sequence (for definition see problem 3.4) x, with |x| ≤ M and xi is a
subsequence (for definition see problem 3.10) of x for i = 1, . . . , k?

Complexity:

NP-complete [FHKS98b].

Parameterized Complexity:

W [1]-hard [FHKS98a], by reduction from the Clique problem [FHKS98b].
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3.26 SCT for p-Sequences

Biological Motivation:

In computational biology the question arises how to resolve the species tree for a given set of trees
such that the number of paralogous duplications is minimized [FHKS98b].

Problem Definition:

rl-tree: It is a rooted tree with leaves labeled from Σ, where labels may be repeated [FHKS98b].

Instance: Binary p-trees (for definition see problem 3.5) T1, . . . , Tk and a positive integer m.

Parameter: k

Question: Is there an rl-tree T , with |T | ≤ m and Ti is contained in T by topological containment
that respects ancestry with label isomorphism at the leaves for i = 1, . . . , k?

Complexity:

NP-complete [FHKS98b].

Parameterized Complexity:

W [1]-hard, by reduction from the Clique problem [FHKS98b].

3.27 Shortest Common Supersequence (SCS)

Biological Motivation:

See problem 3.11 for biological motivation.

Problem Definition:

Instance: An alphabet Σ; a set of strings {r1, . . . , rk} formed over alphabet Σ; a positive integer
λ.

Parameters:

1. k, |Σ|

2. λ

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is a supersequence (for
definition see problem 3.3) of each string ri, 1 ≤ i ≤ k?

Complexity:

NP-complete [Mai].

Parameterized Complexity:

W [t]-hard for all t, when parameterized by k, |Σ| [FHK, Hal].
FPT, when parameterized by λ [Hal96].

Comments:

See also 3.11 problem, Fixed Alphabet Shortest Common Supersequence.
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3.28 Steiner Tree

Biological Motivation:

Phylogeny construction from molecular sequence data is a prominent application of the notion
of a minimal Steiner Tree [HRW92, FHP79]. This is due to the use of the notion of a most
parsimonious tree to formalize the biological problem of reconstructing the evolutionary history
of a set of sequences. A most parsimonious tree is a tree whose leaves are labeled with the given
sequences and where sequences are assigned to the inner nodes in such a way that the overall
number of mutations along the tree edges is minimized [SV97].

Problem Definition:

Instance: A Graph G = (V, E), a set S of at most k vertices in V , an integer m.

Parameters:

1. k

2. m

Question: Is there a set of vertices T ⊆ V − S such that |T | ≤ m and G[S ∪ T ] is connected?

Complexity:

NP-complete by a reduction from Exact Cover [GKR, GJ79], (Problem number ND12).

Parameterized Complexity:

FPT, when parameterized by k, O(3kn + 2kn2 + n3) time [DW71]
W [2]-hard, when parameterized by m, by a reduction from Dominating Set(k) in [DF95].

3.29 Steiner Tree in HyperCubes

Biological Motivation:

The Steiner Problem for Hypercubes is of interest to biologists in the computation of phy-
logenetic trees under the criterion of minimum evolution/maximum parsimony. The set S corre-
sponds to a set of species, and the binary vectors correspond to information about the species,
each component recording the answer to some question (as 0 or 1), such as: “Does it have wings?”
or “Is there a thymine at a certain position in the DNA sequence?” [DFS99].

Problem Definition:

q-dimensional binary hypercube: all binary sequence of length q.

Edges: two nodes are adjacent if the dH(X1, X2) = 1 (by dH(X1, X2) we denote the Hamming
distance between strings X1 and X2, for definition see problem 3.6).

Instance: Binary sequences X1, . . . , Xk, where each Xi has length q; a positive integer M encoded
in binary.

Parameter: k

Question: Is there a subgraph S of the q-dimensional binary hypercube that includes the vertices
X1, . . . , Xk, such that S has at most M edges?

Complexity:

23



NP-complete [DFS99].

Parameterized Complexity:

FPT, by the reduction to problem kernel method [Ces04, DF99].

3.30 Substring Parsimony (SP)

Biological Motivation:

The Substring Parsimony problem (SPP) is a formalization of the phylogenetic footprinting,
which is a technique that identifies regulatory elements by finding unusually well conserved regions
in a set of orthologous non-coding DNA sequences from multiple species. Most of these regulatory
elements are relatively short stretches of DNA (5 to 25 nucleotide-long), located in the non-coding
sequence surrounding a gene. Most known transcription factor binding sites are located 5’ of the
coding region, but some are also found in the 3’ sequence, and even in introns. In all these cases,
REs are located in otherwise non-functional sequences [BST02].

This technique uses this functional/non-functional sequence dichotomy to identify regulatory ele-
ments. Functional sequences tend to evolve much slower than non-functional sequences, as they
are subject to selective pressure. It is the difference in mutation rates that phylogenetic footprint-
ing exploits. To identify regulatory elements associated with a given gene, one will consider a set
of orthologous non-coding sequences from a group of related species. If these sequences contain
unusually well conserved regions, it is a good conjecture that these regions have some regulatory
function [BST02].

Problem Definition:

Parsimony score of a set of sequences is the minimum total number of substitutions over the tree
T needed to explain the observed sequences [BST02, BST00].

Instance: A set of orthologous sequences (same string in different species) S1, . . . , Sn, one from
each of n related species, the phylogenetic tree T = (V, E) relating these species, the size k of the
motifs (substrings), and an integer d.

Parameters:

1. k

2. d

Question: Find all sets of substrings s1, . . . , sn of S1, . . . , Sn respectively, each of size k, such that
the parsimony score of s1, . . . , sn on T is at most d.

Complexity:

NP-hard [Aku98, Bla00]

Parameterized Complexity:

FPT, O(n · min{l · (3k)d/2, N · (4k + l)}) time [BST02].
If each string has N neighbors, O(n · min{l · Nd/2, N · (4k + l)}) time [BST02].
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3.31 k -Vertex Cover

Biological Motivation:

It is naturally that in computational biology, the data sets are often incomplete or faulty. It is
frequently, to formulate the corresponding problem of cleaning up data as a covering problem
[NR99].

Given a set of experimental data points, some of which are in conflict. Is possible to determine
a minimum size set of data points such that, if “deleted” from the experimental data, this would
remove or explain all inconsistencies? [NR99].

Problem Definition:

A vertex cover is a subset V ′ ⊆ V such that ∀(v, w) ∈ E, v ∈ V ′ or w ∈ V ′.

Instance: A graph G = (V, E), and a positive integer k.

Parameter: k

Question: Does G have a vertex cover of size at most k?

Complexity:

NP-complete [GJ79], (Problem number GT1).

Parameterized Complexity:

FPT, O(1.271k + kn) time [CKJ99].

3.32 Open

3.32.1 Closest String

Biological Motivation:

See problem 3.6 for biological motivation.

Problem Definition:

Instance: Strings s1, s2, . . . , sk over alphabet Σ of length L each, and a non-negative integer d.

Parameters:

1. d and k

2. d

Question: Is there a string s of length L such that dH(s, si) ≤ d for all i = 1, . . . , k? (by dH we
denote the Hamming distance for definition see problem 3.6).

Complexity:

NP-complete [dlHC00].

Parameterized Complexity:
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1. Algorithm in [Gra03], however, suffers from huge constant factors in the running time, even
for moderate values of k, that seem to make it impossible to find exact solutions with this
algorithm for k > 4. It is possible to give a fixed-parameter algorithm for parameter k that
is usable for larger values of k and arbitrary values of L and d? [Gra03].

2. Closest String is considered with respect to Hamming distance. What is, for constant
alphabet size, the parameterized complexity of Closest String with respect to parameter
d when using edit distance instead, i.e., allowing insertions, deletions, and substitutions?
[Gra03].

3.32.2 Closest Substring

Biological Motivation:

A formal definition of the motif search problem leads to the Closest Substring problem. These
problems are of central importance for sequence analysis in computational molecular biology. These
problems have applications in fields such as genetic drug target identification or signal finding
[GHN02].

Problem Definition:

Instance: Strings s1, s2, . . . , sk over alphabet Σ, and non-negative integers d and L.

Parameters:

1. d and k

2. d

Question: Is there a string s of length L such that, for every i = 1, . . . , k, there is a length-L
substring s′i of si with dH(s, s′i) ≤ d? (by dH we denote the Hamming distance for definition see
problem 3.6).

Complexity:

NP-complete [FGN02].

Parameterized Complexity:

In the case of constant alphabet size, the complexity of the problem remains open when parame-
terized by d and k together, or by d alone [FGN02].

3.32.3 Gene Duplication and Loss

Biological Motivation:

See problem 3.12 for biological motivation.

A biological cost model which has received considerable attention is the Gene Duplication and
Loss model. The basic idea is to measure the similarity/dissimilarity between a set of gene trees
by counting the number of postulated paralogous gene duplications and subsequent gene losses
required to explain (in evolutionary meaningful way) how the gene trees could have arising with
respect to the species tree [Ste99].

Problem Definition:
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See problem 3.12 for definition of species tree, gene trees and cost model.

Instance: Gene trees T1, . . . , Tk.

Parameters:

1. m and k

2. m

Question: Does there exist a species tree S with cost(T1, . . . , Tk, S) ≤ m?

Complexity:

NP-complete [Ste99].

Open problem:

In [Ste99] suspect the problem to be in FPT when parameterized by both the number of duplication
and loss events (m) and the number of gene trees (k).

In [Ste99] conjecture the Duplication and Loss problem to be W [1]-hard when parameterized
by the number of duplications and losses (m) only.

4 Sequencing and Mapping

4.1 Arc Preserving Longest Common Subsequence (LAPCS)

Biological Motivation:

Molecular biologists use algorithms that compare and otherwise sequences that represent genetic
and protein molecules. However, most of these algorithms, operate on the basic sequence and do
not incorporate the additional information that is often known about the molecule and its pieces.
The annotation schemes include adding colors and arcs to the sequence, and these arcs can be used
to link sequence symbols or colored substrings to indicate molecular bonds or other relationships.
Adding these annotations to sequence analysis problems such as sequence alignment or finding
the longest common subsequence can make the problem more complex, often depending on the
complexity of the annotation scheme [Eva99].

The arcs represent a few types of information that go naturally with these restrictions, and produce
five different levels of allowed arc structure for the problem [Eva99].

The term “plain” refers to sequences without arcs, “crossing” denotes arc structures where no two
arcs share an endpoint, and “unlimited” refers to a completely unrestricted arc structure. With
these terms, it is possible to define various versions of LAPCS where LAPCS(type1, type2) refers
to the case in which input sequence S1 has an arc structure of type1 and S2 has an arc structure
of type2 [Gra03].

Problem Definition:

Annotation: The descriptive text that accompanies a sequence in a database record [Eva99].

An arc is a directed edge (p1, p2) ∈ P × P , where P is the set of positions in the sequence. If n
is the length of the sequence, P = {1, . . . , n}. An arc can be viewed as a link that connects two
symbols that are part of the same sequence. The order of the pair (p1, p2) should be consistent
with the sequence order, so p1 < p2 [Eva99].
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A sequence y is a common subsequence of sequences S1 and S2 if y is a subsequence of S1 and
y is a subsequence of S2 [Eva99].

An annotation scheme is a system of representing additional information (beyond that found
in the basic sequence) in a way that relates it to the basic sequence [Eva99]. An individual
annotation for a specific sequence is its associated additional information, as represented according
to the chosen annotation scheme (pag ”2”-11)

A basic sequence is the sequence of base symbols that form the fundamental, unannotated
sequence. Mathematically, an alphabet is a set of symbols, generally represented by

∑

[Eva99].

For a sequence S of length |S| = n, an arc annotation (or arc set) A of S is a set of pairs of
numbers from {1, 2, . . . , n}. Each pair (i, j) connects the two bases S[i] and S[j] at positions i and
j in S by an arc [Gra03].

Arc annotation (or arc set): A of S is a set of unordered pairs of number from {1, 2, . . . , n}.
Each pair (i, j) connects the two bases S[i] and S[j] at positions i and j in S by an arc [Eva99].

Instance: The target length k, and the pair of annotated sequences (S1, P1) and (S2, P2). These
annotated pairs consist of the sequences S1 and S2 over some fixed alphabet Σ, with arc annotations
P1 ⊂ {1, . . . , |S1|}2 and P2 ⊂ {1, . . . , |S2|}2. The length of S1 and S2 arc n and m respectively.

Parameters:

1. l, length of desired subsequence.

2. s, levels of nested arcs (for non-crossing arcs).

3. k, cutwidth of arc structure.

4. d, bandwidth of arc structure (so (i2 − i1) ≤ d for any arc (i1, i2)).

5. The length of desired subsequence l is independent of the other parameters. The others are
related; s = k, and k ≤ d for all restriction levels except unlim.

Question: Finding a common subsequence of length k which preserves induced arcs.

Complexity:

NP-complete [Gra03].

Parameterized Complexity:

FPT, LAPCS(cross, cross), when parameterized by cutwidth k, O(9knm) time [Eva99].
FPT, LAPCS(cross, cross), when parameterized by bandwidth d, O(9dnm) time [Eva99].
FPT, LAPCS(nested, nested), when parameterized by nesting depth s, with modifications to
take advantage of non-crossing arcs, O(s24snm) time [Eva99].
FPT, LAPCS(nest, nest), when parameterized by bandwidth d, O(d24dnm) time [Eva99].

4.2 Colored Proper Interval Graph Completion

Biological Motivation:

Suppose a set of clones is obtained by complete digestion of the genome by one or more restriction
enzymes. Since the digestion is complete, in such a set, no two clones will overlap. Consider
a Physical Mapping project in which the set of clones consists of equal length clones, and it is
composed of several subsets of clones, where each subset is obtained by a complete digest with a
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different set of enzymes. One would like to reconstruct the map from clone overlap data, in the
presence of “false negative” errors, i.e., some overlaps which are not detected experimentally. One
wishes to construct a map which is as close as possible to our input data, i.e., it assumes as few
errors as possible [GGK+95].

A biologically motivated restriction of Restricted Completion to a Proper Interval Graph
Completion with Bounded Clique Size is defined by the graph and a k-coloring c of it, and
the requirement that the set of added edges must not violate the coloring [KST94].

Problem Definition:

A graph G = (V, E) is a supergraph of the graph G′ = (V ′, E′) if V = V ′ and E ⊇ E′.

Instance: A graph G = (V, E), and a k-coloring of G.

Parameter: k

Question: Is there a supergraph G′ of G which is a proper interval graph and has clique size at
most k, and no edge in G′ connects two vertices in G with the same color?

Complexity:

NP-complete [AS99, GGK+95].

NP-complete for colored caterpillars of hair length 2 and in P for caterpillars of hair length 1 or
0, by reduction from the Multiprocessor Scheduling problem [AS99].

Parameterized Complexity:

W [1]-hard, by a parameterized reduction from Independent Set [KS96].

Comments:

This problem is equivalent to Colored Unit Interval Graph Completion, as the class of
unit interval graphs and proper interval graphs are equivalent [Ces01].

See also 4.9 problem, Restricted Completion to a Proper Interval Graph with Bounded
Clique Size [Ces01].

4.3 Completion to a Proper Interval Graph with Bounded Clique
Size

Biological Motivation:

Most work on Physical Mapping with errors has involved heuristics. Imposing an additional con-
straint, prevalent in real biological data, leads to a polynomial-time problem: The “width” of a
map (or of a set of interval on the line) is the largest number of mutually overlapping clones. In
the corresponding interval graph G, this is its clique size, denoted ω(G). Typical biological maps
have width between 5 and 15, even when the total number of clones is in the thousands [KST94].

This problem is motivated by the situation where overlap information for pairs of clones (intervals)
may be definite yes, definite no or undetermined [KST94].

Problem Definition:

Instance: Given a graph G = (V, E) and a constant k.

Parameter: k
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Question: Does there exist a supergraph (for definition see problem 4.2) G′ of G which is a proper
interval graph and has clique size at most k?

Complexity:

NP-hard [KST94].

Parameterized Complexity:

W [t]-hard for any t > 0 [KST94].

This problem is equivalent to Bandwidth problem [KS96], by reduction from Uniform Emula-
tion on a Path problem.

Comments:

This problem is a completion problem, but instead of bounding the number of added edges, we
bound the clique size of the map. Here even the existence of a polynomial algorithm for fixed k is
not obvious [KST94].

This problem is equivalent to decide whether the proper pathwidth of G is not greater than k − 1
[KST94].

4.4 Consensus Pattern

Biological Motivation:

Applications for the consensus word analysis of DNA, RNA, or protein sequences include locating
binding sites and finding conserved regions in unaligned sequences for genetic drug target identifi-
cation, for designing genetic probes, and for universal PCR primer design. These problems can be
regarded as various generalizations of the common substring problem, allowing errors. This leads
to Closest Substring and Consensus Pattern, where errors are modeled by the (Hamming)
distance parameter d [Gra03].

Problem Definition:

Instance: Strings s1, s2, . . . , sk over alphabet Σ, and a non-negative integer d and L.

Parameters:

1. k

2. d and L

Question: Is there a string s of length L, and, for every i = 1, . . . , k, a length-L substring s′i of si

such that
∑k

i=1 dH(s, s′i) ≤ d? (by dH we denote the Hamming distance for definition see problem
3.6).

Complexity:

NP-complete [FGN02].

Parameterized Complexity:

W [1]-hardness, by reduction from Clique, results as for Closest Substring given unbounded
alphabet size [FGN02].

W [1]-hard, when parameterized by the number k of strings, for a binary alphabet [FGN02].
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4.5 Intervalizing Colored Graphs or DNA Physical Mapping

Biological Motivation:

This problem models a problem arising in sequence reconstruction, which appears in some investiga-
tions in molecular biology (such as protein sequencing, nucleotide sequencing and gene sequencing).
A sequence X (usually a large piece of DNA) is fragmented (or k copies of the sequence X are
fragmented) such that the fragments can be further analyzed. The information about the order of
the fragments in the original sequence is lost during the fragmentation process. The objective of
DNA physical mapping is to reconstruct this order. To this end, a set of characteristics is deter-
mined for each fragment (list ‘fingerprint’ or ‘signature’), and based on respective fingerprints, an
‘overlap’ measure is computed. Using this overlap information, the fragments are assembled into
islands of contiguous fragments (contigs) [BdF95].

Instances of ICG model the situation where k copies of X are fragmented, and some fragments
(clones) are known to overlap. Fragments of the same copy of X will not overlap. Now each vertex
in V represents one fragment; the color of a vertex represents to which copy of X the fragment
belongs. It can be seen that ICG (and specially the constructive version of ICG, which also
outputs an interval model of the interval graph G′) helps here to predict other overlaps and to
work towards reconstruction of the sequence X [BdF95].

Problem Definition:

Instance: A graph G = (V, E) and a coloring c : V → {1, . . . , k}; and a positive integer k.

Parameter: k

Question: Is there a supergraph (for definition see problem 4.2) G′ = (V, E′) of G which is an
interval graph and has clique size at most k, and no edge in G′ connects two vertices in G with
the same color?

Complexity:

NP-complete for four or more colors (for any fixed number of colors ≥ 4) even when the graph is
a caterpillar tree, colored with k ≥ 4 colors [BdF95, ADS01, BFH+00].

Parameterized Complexity:

W[t]-hard for all t ∈ N, by reduction from Colored Cutwidth (CC-1) [BFH94, BFH+00].

Comments:

1. ICG is closely related to Triangulating Colored Graph (TCG) [BdF95].

2. The Proper Path Decomposition (PPD) is equivalent to Intervalizing Colored
Graphs (ICG) [BdF95].

4.6 Minimum Fill-in

Biological Motivation:

The Minimum Fill-in problem is very important in the area of computational biology called
perfect phylogeny [DF99].

This problem is to decide if a graph can be triangulated by adding at most k edges. Is to find
a minimum triangulating (fill-in) of a given graph [KST99]. The importance of this problem lies
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mainly in the fact that it is equivalent to finding an order of Gaussian elimination steps of a
(usually sparse) symmetric matrix, minimizing the number of generated non-zero entries [BKKM].

This problem is also known as Chordal Completion problem [KST99], and there are studied
variants of the completion problem, motivated by DNA mapping, in which the input graph is
pre-colored and the required supergraph also obeys the coloring [NSS01].

Problem Definition:

Instance: A graph G = (V, E) and a positive integer k.

Parameter: k

Question: Can we add no more than k edges to G and cause G to become chordal?

Complexity:

NP-complete [Yan81].

Parameter Complexity:

FPT, O(k2mn + k624k) time [KST99].

Comments:

This problem is also known as Chordal Graph Completion problem [KST99].

4.7 k-Interval Positional Sequencing by Hybridization (Interval PSBH)

Biological Motivation:

In Sequencing by Hybridization (SBH), one has to reconstruct a sequence from its l-long
substring. SBH was proposed as an alternative to gel-based DNA sequencing approaches, but in
its original form the method is not competitive. Positional SBH (PSBH) is a recently proposed
enhancement of SBH in which one has additional information about the possible positions of each
substring along the target sequence [Pe’02, BDPSS01].

In PSBH additional information is gathered concerning the position of the l-mears in the target
sequence. More precisely, for each l-mer in the spectrum its allowed positions along the target are
registered [Pe’02, BDPSS01].

Problem Definition:

p-spectrum The p-spectrum of a string X ∈ Σ∗ is the multi-set of all p-long substrings of X
[Pe’02, BDPSS01].

p-long: It is a substring of length p [Pe’02, BDPSS01].

Instance: A multi-set S of p-long strings. For each s ∈ S, a set P (s) which is a sub-interval of
{0, |S|− 1}.

Parameter: k

Question: Is S the p-spectrum of some string X , such that for each s ∈ S its positions along X is
in P (s)?

Complexity:

NP-complete, even if all sets of allowed positions are intervals of equal length, by reduction from
Interval Positional Eulerian Path (PEP) problem [Pe’02, BDPSS01].
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Parameterized Complexity:

FTP, O(mk1.54k) time [Pe’02].

Comments:

The parameter k is an upper bound on the sizes of the intervals of allowed positions for each edge
[Pe’02, BDPSS01].

4.8 Proper Interval Graph Completion (PIGC)

Biological Motivation:

This problem is to find the smallest edge set whose addition to the input graph will form a proper
interval graph. Interval completion problems arise in molecular biology and in the Human Genome
Project: In physical mapping of DNA, a set of long contiguous intervals of the DNA chain (called
clones) is given together with experimental on their pairwise overlaps. The goal is to build a map
describing the relative position of the clones [KST94].

The biologically important case is where all clones have equal length. In the presence of “false
negative” errors (unidentified overlaps) the problem of building a map with fewest errors is equiv-
alent to Proper Interval Graph Completion (PIGC) [KST94].

Problem Definition:

Instance: A graph G = (V, E), and a positive integer k.

Parameter: k.

Question: Does there exist a set of no more than k edges, whose addition to the input graph will
form a proper interval graph?

Complexity:

NP-hard [GKS94].

Parameterized Complexity:

FPT, when k is all minimal triangulations of a graph G and m is the edge set, O(24km) time
[KST94].

4.9 Restricted Completion to a Proper Interval Graph with Bounded
Clique Size

Biological Motivation:

See problem 4.3 for biological motivation.

Problem Definition:

Instance: A graph G = (V, E); a set E′ ⊆ V × V of forbidden edges; a positive integer k.

Parameter: k

Question: Is there a G′ ⊃ G which is a proper interval graph, has clique size at most k, and G′

has no edges from E′?

Complexity:
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NP-Complete [KST94].

Parameterized Complexity:

W [t]-hard for all t [KST94, KS96].

It remains W [t]-hard even when E′ = ∅ [KS96].

Comments:

This problem is a generalization of Completion to a Proper Interval Graph with Bounded
Clique Size [KST94].

4.10 Strongly Chordal Completion

Biological Motivation:

See problem 4.6 for biological motivation.

Problem Definition:

A graph is strongly chordal if it admits a strong elimination ordering [KST99].

Instance: Given a graph G = (V, E) and a positive integer k.

Parameter: k

Question: Does there exist an edge set A such that |A| ! k and G = (V ∪ A) is strongly chordal
graph?

Complexity:

NP-hard [KST99].

Parameterized Complexity:

FPT, O(82kmlogn) time [KST99].

4.11 Triangulating k -Colored Graphs

Biological Motivation:

Infer the evolutionary history of a set of species is a fundamental problem in biology. Each of such
that set of species is specified by the set of traits of characters that exhibits. All information about
evolutionary history can be conveniently represented by an evolutionary tree or phylogenetic tree,
and often referred as a phylogeny [AFB96, VLM].

Problem Definition:

Instance: A graph G = (V, E), a vertex coloring c : V → {1, . . . , k}, and a positive integer k.

Parameter: k

Question: Does there exist a supergraph (for definition see problem 4.2) G′ = (V ′, E′) where
E ⊆ E′, G′ is properly colored by c, and G′ is triangulating?

Complexity:

NP-complete [BFH+00].
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Parameterized Complexity:

W [t]-hard for all t, the perfect phylogeny algorithm leads to an O((2e/k)ke2k) algorithm for trian-
gulating a k-colored graph [AFB96], by reduction from Longest Common Subsequence when
parameterized by k [BFH94].

Comments:

This problem is related with 3.22 problem, Perfect Phylogeny.

4.12 Open

4.12.1 Consensus Pattern

Biological Motivation:

Applications for the consensus word analysis of DNA, RNA, or protein sequences include locating
binding sites and finding conserved regions in unaligned sequences for genetic drug target identifi-
cation, for designing genetic probes, and for universal PCR primer design. These problems can be
regarded as various generalizations of the common substring problem, allowing errors. This leads
to Closest Substring and Consensus Pattern, where errors are modeled by the (Hamming)
distance parameter d [Gra03].

Problem Definition:

Instance: Strings s1, s2, . . . , sk over alphabet Σ, and a non-negative integer d and L.

Parameter: d

Question: Is there a string s of length L, and, for every i = 1, . . . , k, a length-L substring s′i of si

such that
∑k

i=1 dH(s, s′i) ≤ d? (by dH we denote the Hamming distance for definition see problem
3.6).

Complexity:

NP-complete [FGN02].

Parameterized Complexity:

Parameterized by “distance parameter” d, the complexity remains open for alphabets of constant
size [FGN02].

5 ?

5.1 Multicut in Trees

Biological Motivation:

Problem Definition:

Instance: An undirected Tree T = (V, E), n = |V |, a collection H of m pairs of nodes in V ,
H = {(ui, vi)|ui, vi ∈ V, 1 ≤ i ≤ m}, and an integer k.

35



Parameter: k

Question: Does there exist a subset E′ ≤ k of E such that the removal of edges in E′ separates
each pair of nodes in H?

Complexity:

NP-complete [GVY97].

Parameterized Complexity:

? [Nie04].

6 Acknowledgements
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Glossary

Alignment A one-to-one matching of two sequences, so that each character in a pair of sequences
is associated with a single character of the other sequence or with a gap. Alignments are
often displayed as two rows with a third row in between indicating levels of similarity.

Chromosome The self-replicating genetic structures of cells containing the cellular DNA that
bears in its nucleotide sequence the linear array of genes. In prokaryotes, chromosomal DNA
is circular, and the entire genome is carried on one chromosome. Eukaryotic genomes consist
of a number of chromosomes whose DNA is associated with different kinds of proteins.

Clone Contiguous chain of DNA.

Consensus A single sequence that represents, at each subsequent position, the variation found
within corresponding columns of a multiple sequence alignment.

Contig A set of overlapping sequence fragments that represent a large piece of DNA, usually a
genomic region from a particular chromosome.

DNA The molecule that encodes genetic information. DNA is a double-stranded molecule held
together by weak bonds between base pairs of nucleotides. The four nucleotides in DNA
contain the bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In nature, base
pairs form only between A and T and between G and C; thus the base sequence of each single
strand can be deduced from that of its partner.

DNA sequencing Determination of the order of nucleotides (base sequences) in a DNA or RNA
molecule or the order of amino acids in a protein.

Dichotomy Successive division and subdivision, as of a stem of a plant or a vein of the body, into
two parts as it proceeds from its origin; successive bifurcation.

Enzyme Proteins that act as catalysts, speeding the rate at which biochemical reactions proceed
but not altering the direction or nature of the reactions.

Evolution A change in the genetic composition of a population over time.

Evolutionary Tree It is a two-dimensional graph showing evolutionary relationships among or-
ganisms, or in the case of sequences, in certain genes from separate organisms. The separate
sequences are referred to as taxa (singular taxon), defined as phylogenetically distinct units
on the tree. The tree is composed of outer branches (or leaves) represented as sequences.

False Negative A negative data point collected in a data set that was incorrectly reported due
to a failure of the test in avoiding negative results.

False positive A positive data point collected in a data set that was incorrectly reported due to
a failure of the test. If the test had correctly measured the data point, the data would have
been recorded as negative.

Fingerprint A set of characteristics for each fragment.

Fission One chromosome splits into two.

Fusion Two chromosomes merge into one.

Gap Mismatch in the alignment of two sequences caused by either an insertion in one sequence
or a deletion in the other.
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Gene A segment of DNA (a locus on a chromosome) that serves as the basic unit of biological
inheritance. It includes a region that is transcribed into RNA as well as flanking regulatory
sequences. A Discrete subunit of the DNA molecule.

Gene Expression Biochemical process which genes are read.

Gene Tree A tree based on different parts of the DNA of species.

Genome All of the genetic material in a cell or an organism.

Genotype The genetic constitution of an organism. Compare phenotype.

Haplotype A combination of alleles (for different genes) which are located closely together on
the same chromosome and which tend to be inherited together.

Hybridization The process of joining two complementary strands of DNA or one each of DNA
and RNA to form a double- stranded molecule.

Homologous Genes Two genes with a common ancestor. A pair of genes from different but
related species which correspond to each other and which are identical or very similar to
each other.

Human Genome Project Collective name for several projects begun in 1986 by the Depart-
ment of Energy (DOE) to create an ordered set of DNA segments from known chromosomal
locations, develop new computational methods for analyzing genetic map and DNA sequence
data, and develop new techniques and instruments for detecting and analyzing DNA. This
DOE initiative is now known as the Human Genome Program. The national effort, led by
DOE and National Institute of Health (NIH), is known as the Human Genome Project.

Indel An insertion or deletion in a sequence alignment.

Intron (intervening sequence) A segment of DNA that is transcribed, but removed from the
mRNA by a splicing reaction before translation into protein occurs.

Maximum Parsimony The minimum number of evolutionary steps required to generate the
observed variation in a set of sequences, as found by comparison of the number of steps in
all possible phylogenetic trees.

Mismatch In an alignment, two corresponding symbols that are not the same.

Motif A region within a group of related protein or DNA sequences that is evolutionary conserved-
presumably due to its functional importance.

Mutation A heritable change in DNA sequence resulting from mutagens. Various types of mu-
tations include frame-shift mutations, missense mutations, and nonsense mutations.

Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine, guanine,
thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a phosphate
molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). Thousands of
nucleotides are linked to form a DNA or RNA molecule.

Orthologous Genes A gene from one species which corresponds to a gene in another species
that is related via a common ancestral species (a homologous gene), but which has evolved
to become different from the gene of the other species.

Overlap Buscar

Pattern Buscar
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Pathogen Organism which can cause disease in another organism.

Pattern Recognition It aims to classify data (patterns) based on either a priori knowledge or on
statistical information extracted from the patterns. The patterns to be classified are usually
groups of measurements or observations, defining points in an appropriate multidimensional
space.

Parsimony The principle that the hypothesis that requires the fewest assumptions is the most
likely to be true (i.e., the most defensible hypothesis).

PCR (Polymerase Chain Reaction). A method of repeatedly copying segments of DNA using
short oligonucleotide primers (10-30 bases long) and heat stable polymerase enzymes in a
cycle of heating and cooling so as to produce an exponential increase in the number of target
fragments.

Phenotype The physical appearance/observable characteristics of an organism. See genotype.

Phylogenetic The field of biology that deals with the relationships between organisms. It includes
the discovery of these relationships an the study of the causes behind this patterns.

Phylogeny The evolutionary history of an organism as it is traced back, connecting through
shared ancestors to lineages of other organisms.

Physical Map A map of the locations of identifiable landmarks on DNA (e.g., restriction enzyme
cutting sites, genes), regardless of inheritance. Distance is measured in base pairs. For the
human genome, the lowest-resolution physical map is the banding patterns on the 24 different
chromosomes; the highest-resolution map would be the complete nucleotide sequence of the
chromosomes.

Primer A short DNA (or RNA) fragment that can anneal to a single-stranded template DNA to
form a starting point for DNA polymerase to extend a new DNA strand complementary to
the template, forming a duplex DNA molecule.

Protein A large molecule composed of one or more chains of amino acids in a specific order; the
order is determined by the base sequence of nucleotides in the gene coding for the protein.
Proteins are required for the structure, function, and regulation of the bodys cells, tissues,
and organs, and each protein has unique functions. Examples are hormones, enzymes, and
antibodies.

Protein sequecing Determination of the order of nucleotides (base sequences) in a DNA or RNA
molecule or the order of amino acids in a protein.

Quartet A quadruple of taxa, with an associated topology —a partition of the four taxa into two
pairs of taxa. This subdivision expresses the most likely topology induced by the underlying
n taxa phylogeny.

RNA (Ribonucleic Acid) A chemical found in the nucleus and cytoplasm of cells; it plays an
important role in protein synthesis and other chemical activities of the cell. The structure
of RNA is similar to that of DNA. There are several classes of RNA molecules, including
messenger RNA, transfer RNA, ribosomal RNA, and other small RNAs, each serving a
different purpose.

Sequence The order in which subunits appear in a chain, such as amino acids in a polypeptide
or nucleotide bases in a DNA or RNA molecule.

Sequence Alignment It is the procedure of comparing two (pair-wise alignment) or more (mul-
tiple sequence alignment) sequences by searching for a series of individual characters or
character patterns that are in the same order in the sequences.
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Signature A set of characteristics for each fragment.

Single Nucleotide Polymorphism (SNP) DNA sequence variations that occur when a single
nucleotide (A, T, C, or G) in the genome sequence is altered.

Species Groups of populations (which are groups of individuals living together that are separated
from other such groups) which can potentially interbreed or are actually interbreeding, that
can successfully produce viable, fertile offspring (without the help of human technology).
The species is the most fundamental unit of evolution and is the most specific taxonomic
level.

Syntenic Two genes appearing in the same chromosome.

Synteny The presence of a set of homologous genes in the same order on two genomes.

Systematics The process of classification of organisms into a formal hierarchical system of groups
(taxa).

Taxa A named group of related organisms identified by systematics. The single units being
compared, usually species.

Translocation Two chromosomes exchange contiguous blocks (usually prefixes or suffixes) of
genes.
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Institut für Informatik, October 1999. Revised version in Journal of Discrete Algo-
rithms.

[NSS01] Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some
edge modification problems. Discrete Appl. Math., 113(1):109–128, 2001. 25th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG’99)
(Ascona).

[Pe’02] Itsik Pe’er. Algorithmic Methods for Reconstruction of Biological Sequences, Gene
Orders and Maps. Ph. D., Tel-Aviv University, 2002.

[PH] T.J. Perkins and M. T. Hallett. On the Computational Complexity of Finding Small
Sets of Explanatory Variables. NIPS 2002 Workshop on Machine Learning Techniques
for Bioinformatics.

[Pie03] K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and
System Sciences, 67(4):757–771, 2003.

52



[PS] Itsik Pe’er and Ron Shamir. Aproximation Algorithms for the Median Problem in
the Breakpoint Model. Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. (D.
Sankoff and J. H. Nadeau, editors), Kluwer Academic Press (Dordrecht) 2000.

[RSV04] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004.

[SFR+99] N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodmanand W.
Miller, and R. Hardison. Comparison of five methods for finding conserved se-
quences in multiple alignments of gene regulatory regions. Nucleic Acids Research,
27(19):3899–3910, 1999.

[SS00] Roded Sharan and Ron Shamir. CLICK: A Clustering Algorithm with Applications
to Gene Expression Analysis. In Proceedings: ISMB, pages 307–316, 2000.

[Ste92] M. A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9:91–116, 1992.

[Ste99] Ulrike Stege. Gene trees and species trees: the gene-duplication problem is fixed-
parameter tractable. In Algorithms and data structures (Vancouver, BC, 1999), vol-
ume 1663 of Lecture Notes in Comput. Sci., pages 288–293. Springer, Berlin, 1999.

[SV97] Benno Schiwikoski and Martin Vingron. The Deferred Path Heuristic for the Gen-
eralized Tree Alignment Problem. In Proceedings of the First Annual International
Conference on Computational Molecular Biology, 1997.

[VJLW02] Gianluca Della Vedova, Tao Jiang, Jing Liz, and Jianjun Wen. Approximating Mini-
mum Quartet Inconsistency. 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA2002), pages 894–895, 2002.

[VLM] Martin Vingron, Hans Peter Lenhof, and Petra Mutzel. Computational Molecular
Biology. Chapter written for Annotated Bibliography in Combinatorial Optimization.

[Yan81] M. Yannakakis. Computing the Minimum Fill-in is NP-complete. SIAM J. Alg. Disc.
Meth., 2, 1981.

53


