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boosting approach, applied to them, minimizes the out-
put size. These pages have provided convincing evidence
that the Burrows–Wheeler Transform is an elegant and
efficient permutation P. Surprisingly enough, other clas-
sic Data Compression problems fall into this framework:
Shortest Common Superstring (which is MAX-SNP hard),
Run Length Encoding for a Set of Strings (which is polyno-
mially solvable), LZ77 and minimum number of phrases
(which is MAX-SNP-Hard). Therefore, the boosting ap-
proach is general enough to deserve further theoretical and
practical attention [5].

Experimental Results

An investigation of several compression algorithms based
on boosting, and a comparison with other state-of-the-art
compressors is presented in [4]. The experiments show
that the boosting technique is more robust than otherbwt-
based approaches, and works well even with less effective
0th order compressors. However, these positive features
are achieved using more (time and space) resources.

Data Sets

The data sets used in [4] are available from http://www.
mfn.unipmn.it/~manzini/boosting. Other data sets for
compression and indexing are available at the Pizza&Chili
site http://pizzachili.di.unipi.it/.

URL to Code

The Compression Boosting page (http://www.mfn.
unipmn.it/~manzini/boosting) contains the source code
of all the algorithms tested in [4]. The code is organized
in a highly modular library that can be used to boost any
compressor evenwithout knowing thebwt or the boosting
procedure.
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Branchwidth, along with its better-known counterpart,
treewidth, are measures of the “global connectivity” of
a graph.

Definition

Let G be a graph on n vertices. A branch decomposition of
G is a pair (T; !), where T is a tree with vertices of degree
1 or 3 and ! is a bijection from the set of leaves of T to the
edges of G. The order, we denote it as ˛(e), of an edge e in
T is the number of vertices v ofG such that there are leaves
t1; t2 in T in different components of T(V (T); E(T) ! e)
with !(t1) and !(t2) both containing v as an endpoint.

The width of (T; !) is equal to maxe2E(T)f˛(e)g, i. e. is
the maximum order over all edges of T. The branchwidth
ofG is theminimumwidth over all the branch decomposi-
tions ofG (in the case where jE(G)j " 1, then we define the
branchwidth to be 0; if jE(G)j = 0, then G has no branch
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decomposition; if jE(G)j = 1, then G has a branch decom-
position consisting of a tree with one vertex – the width of
this branch decomposition is considered to be 0).

The above definition can be directly extended to hy-
pergraphs where ! is a bijection from the leaves of T to
the hyperedges of G. The same definition can easily be ex-
tended to matroids.

Branchwidth was first defined by Robertson and Sey-
mour in [25] and served as a main tool for their proof of
Wagner’s Conjecture in their Graph Minors series of pa-
pers. There, branchwidth was used as an alternative to the
parameter of treewidth as it appeared easier to handle for
the purposes of the proof. The relation between branch-
width and treewidth is given by the following result.

Theorem 1 ([25]) If G is a graph, then branchwidth(G) "
treewidth(G) + 1 " b3/2 branchwidth(G)c.

The algorithmic problems related to branchwidth are of
two kinds: first find fast algorithms computing its value
and, second, use it in order to design fast dynamic pro-
gramming algorithms for other problems.

Key Results

Algorithms for Branchwidth

Computing branchwidth is an NP-hard problem ([29]).
Moreover, the problem remains NP-hard even if we re-
strict its input graphs to the class of split graphs or bipartite
graphs [20].

On the positive side, branchwidth is computable in
polynomial time on interval graphs [20,24], and circular
arc graphs [21]. Perhaps themost celebrated positive result
on branchwidth is anO(n2) algorithm for the branchwidth
of planar graphs, given by Seymour and Thomas in [29]. In
the same paper they also give an O(n4) algorithm to com-
pute an optimal branch decomposition. (The running time
of this algorithm has been improved toO(n3) in [18].) The
algorithm in [29] is basically an algorithm for a parame-
ter called carving width, related to telephone routing and
the result for branchwidth follows from the fact that the
branch width of a planar graph is half of the carving-width
of its medial graph.

The algorithm for planar graphs [29] can be used to
construct an approximation algorithm for branchwidth of
some non-planar graphs. On graph classes excluding a sin-
gle crossing graph as a minor branchwidth can be approx-
imated within a factor of 2.25 [7] (a graph H is a minor of
a graph G if H can be obtained by a subgraph of G after
applying edge contractions). Finally, it follows from [13]
that for every minor closed graph class, branchwidth can
be approximated by a constant factor.

Branchwidth cannot increase when applying edge con-
tractions or removals. According to the Graph Minors
theory, this implies that, for any fixed k, there is a finite
number of minor minimal graphs of branchwidth more
than k and we denote this set of graphs by Bk . Checking
whether a graphG contains a fixed graph as a minor can be
done in polynomial time [27]. Therefore, the knowledge
of Bk implies the construction of a polynomial time algo-
rithm for deciding whether branchwidth(G) " k, for any
fixed k. Unfortunately Bk is known only for small values
of k. In particular, B0 = fP2g; B1 = fP4;K3g;B2 = fK4g
and B3 = fK5;V8; M6;Q3g (here Kr is a clique on r ver-
tices, Pr is a path on r edges, V8 is the graph obtained
by a cycle on 8 vertices if we connect all pairs of ver-
tices with cyclic distance 4, M6 is the octahedron, and
Q3 is the 3-dimensional cube). However, for any fixed
k, one can construct a linear, on n = jV(G)j, algorithm
that decides whether an input graph G has branchwidth
" k and, if so, outputs the corresponding branch de-
composition (see [3]). In technical terms, this implies
that the problem of asking, for a given graph G, whether
branchwidth(G) " k, parameterized by k is fixed parame-
ter tractable (i. e. belongs in the parameterized complexity
class FPT). (See [12] for further references on parameter-
ized algorithms and complexity.) The algorithm in [3] is
complicated and uses the technique of characteristic se-
quences, which was also used in order to prove the anal-
ogous result for treewidth. For the particular cases where
k " 3, simpler algorithms exist that use the “reduction
rule” technique (see [4]). We stress that B4 remains un-
known while several elements of it have been detected
so far (including the dodecahedron and the icosahedron
graphs). There is a number of algorithms that for a given k
in time 2O(k) # nO(1) either decide that the branchwidth of
a given graph is at least k, or construct a branch decompo-
sition of width O(k) (see [26]). These results can be gener-
alized to compute the branchwidth of matroids and even
more general parameters.

An exact algorithm for branchwidth appeared in [14].
Its complexity is O((2 #

p
3)n # nO(1)). The algorithm ex-

ploits special properties of branchwidth (see also [24]).
In contrast to treewidth, edge maximal graphs of given

branchwidth are not so easy to characterize (for treewidth
there are just k-trees, i. e. chordal graphs with all maximal
cliques of size k + 1). An algorithm for generating such
graphs has been given in [23] and reveals several structural
issues on this parameter.

It is known that a large number of graph theoretical
problems can be solved in linear time when their inputs
are restricted to graphs of small (i. e. fixed) treewidth or
branchwidth (see [2]).
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Branchwidth of Graphs, Figure 1
Example of a graph and its branch decomposition of width 3

Branchwidth appeared to be a useful tool in the design
of exact subexponential algorithms on planar graphs and
their generalizations. The basic idea behind this approach
is very simple: Let P be a problem on graphs and G be
a class of graphs such that
$ For every graph G 2 G of branchwidth at most `, the

problem P can be solved in time 2c!` # nO(1), where c is
a constant, and;

$ For every graph G 2 G on n vertices a branch decom-
position (not necessarily optimal) ofG of width at most
h(n) can be constructed in polynomial time, where h(n)
is a function.

Then for every graph G 2 G, the problem P can be solved
in time 2c!h(n) # nO(1). Thus, everything boils down to com-
putations of constants c and functions h(n). These compu-
tations can be quite involved. For example, as was shown
in [17], for every planar graphG on n vertices, the branch-
width of G is at most

p
4:5n < 2:1214

p
n. For extensions

of this bound to graphs embeddable on a surface of genus
g, see [15].

Dorn [9] used fast matrix multiplication in dynamic
programming to estimate the constants c for a number
of problems. For example, for the MAXIMUM INDEPEN-
DENT SET problem, c " !/2, where ! < 2:376 is the ma-
trix product exponent over a ring, which implies that the
INDEPENDENT SET problem on planar graphs is solv-
able in time O(22:52

p
n). For the MINIMUM DOMINAT-

ING SET problem, c " 4, thus implying that the branch de-
composition method runs in time O(23:99

p
n). It appears

that algorithms of running time 2O(
p
n) can be designed

even for some of the “non-local” problems, such as the
HAMILTONIAN CYCLE, CONNECTED DOMINATING SET,
and STEINER TREE, for which no time 2O(`) # nO(1) algo-

rithm on general graphs of branchwidth ` is known [11].
Here one needs special properties of some optimal planar
branch decompositions, roughly speaking that every edge
of T corresponds to a disk on a plane such that all edges
of G corresponding to one component of T ! e are inside
the disk and all other edges are outside. Some of the subex-
ponential algorithms on planar graphs can be generalized
for graphs embedded on surfaces [10] and, more gener-
ally, to graph classes that are closed under taking of mi-
nors [8].

A similar approach can be used for parameterized
problems on planar graphs. For example, a parameter-
ized algorithm that finds a dominating set of size " k (or
reports that no such set exists) in time 2O(

p
k)nO(1) can

be obtained based on the following observations: there
is a constant c such that every planar graph of branch-
width at least c

p
k does not contain a dominating set of

size at most k. Then for a given k the algorithm com-
putes an optimal branch decomposition of a palanar graph
G and if its width is more than c

p
k concludes that G

has no dominating set of size k. Otherwise, find an opti-
mal dominating set by performing dynamic programming
in time 2O(

p
k)nO(1). There are several ways of bound-

ing a parameter of a planar graph in terms of its branch-
width or treewidth including techniques similar to Baker’s
approach from approximation algorithms [1], the use
of separators, or by some combinatorial arguments, as
shown in [16]. Another general approach of bounding the
branchwidth of a planar graph by parameters, is based on
the results of Robertson et al. [28] regarding quickly ex-
cluding a planar graph. This brings us to the notion of
bidimensionality [6]. Parameterized algorithms based on
branch decompositions can be generalized from planar
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graphs to graphs embedded on surfaces and to graphs ex-
cluding a fixed graph as a minor.

Applications

See [5] for using branchwidth for solving TSP.

Open Problems

1. It is known that any planar graphG has branchwidth at
most

p
4:5 #

p
jV(G)j (or at most 3

2 #
p

jE(G)j+2) [17].
Is it possible to improver this upper bound? Any possi-
ble improvement would accelerate many of the known
exact or parameterized algorithms on planar graphs
that use dynamic programming on branch decompo-
sitions.

2. In contrast to treewidth, very few graph classes are
known where branchwidth is computable in polyno-
mial time. Find graphs classes where branchwidth can
be computed or approximated in polynomial time.

3. Find Bk for values of k bigger than 3. The only struc-
tural result on Bk is that its planar elements will be ei-
ther self-dual or pairwise-dual. This follows from the
fact that dual planar graphs have the same branch-
width [29,16].

4. Find an exact algorithm for branchwidth of complexity
O"(2n) (the notation O"() assumes that we drop the
non-exponential terms in the classic O() notation).

5. The dependence on k of the linear time algorithm for
branchwidth in [3] is huge. Find an 2O(k) # nO(1) step
algorithm, deciding whether the branchwidth of an
n-vertex input graph is at most k.

Cross References
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ProblemDefinition

TheModel Overview
Consider a set of stations (nodes) modeled as points in
the plane, labeled by natural numbers, and equipped with
transmitting and receiving capabilities. Every node u has
a range ru depending on the power of its transmitter, and
it can reach all nodes at distance at most ru from it. The
collection of nodes equipped with ranges determines a di-
rected graph on the set of nodes, called a geometric ra-
dio network (GRN), in which a directed edge (uv) exists
if node v can be reached from u. In this case u is called
a neighbor of v. If the power of all transmitters is the same
then all ranges are equal and the corresponding GRN is
symmetric.

Nodes send messages in synchronous rounds. In every
round every node acts either as a transmitter or as a re-
ceiver. A node gets a message in a given round, if and only
if, it acts as a receiver and exactly one of its neighbors

transmits in this round. The message received in this case
is the one that was transmitted. If at least two neighbors
of a receiving node u transmit simultaneously in a given
round, none of the messages is received by u in this round.
In this case it is said that a collision occurred at u.

The Problem

Broadcasting is one of the fundamental network commu-
nication primitives. One node of the network, called the
source, has to transmit a message to all other nodes. Re-
mote nodes are informed via intermediate nodes, along di-
rected paths in the network. One of the basic performance
measures of a broadcasting scheme is the total time, i. e.,
the number of rounds it uses to inform all the nodes of the
network.

For a fixed real s % 0, called the knowledge radius, it
is assumed that each node knows the part of the network
within the circle of radius s centered at it, i. e., it knows the
positions, labels and ranges of all nodes at distance at most
s. The following problem is considered:

How the size of the knowledge radius influences deter-
ministic broadcasting time in GRN?

Terminology and Notation

Fix a finite set R = fr1; : : : ; r!g of positive reals such that
r1 < # # # < r!. Reals ri are called ranges. A node v is a triple
[l ; (x; y); ri ], where l is a binary sequence called the label
of v, (x, y) are coordinates of a point in the plane, called
the position of v, and ri 2 R is called the range of v. It is
assumed that labels are consecutive integers 1 to n, where
n is the number of nodes, but all the results hold if labels
are integers in the set f1; : : : ; Mg, whereM 2 O(n). More-
over, it is assumed that all nodes know an upper bound "

on n, where " is polynomial in n. One of the nodes is dis-
tinguished and called the source. Any set of nodes C with
a distinguished source, such that positions and labels of
distinct nodes are different is called a configuration.

With any configuration C the following directed graph
G(C) is associated. Nodes of the graph are nodes of the
configuration and a directed edge (uv) exists in the graph,
if and only if the distance between u and v does not ex-
ceed the range of u. (The word “distance” always means
the geometric distance in the plane and not the distance in
a graph.) In this case u is called a neighbor of v. Graphs of
the form G(C) for some configuration C are called geomet-
ric radio networks (GRN). In what follows, only configura-
tions C such that in G(C) there exists a directed path from
the source to any other node, are considered. If the size
of the set R of ranges is #, a resulting configuration and
the corresponding GRN are called a #-configuration and


