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Abstract 

A graph is Z-apex if it can be made planar by removing at most 1 vertices. In this paper we show that the vertex set of any 
graph not containing an l-apex graph as a minor can be partitioned in linear time into 2’ sets inducing graphs with small 
treewidth. As a consequence, several maximum induced-subgraph problems when restricted to graph classes not containing 
some special l-apex graphs as minors, have practical approximation algorithms. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Much work in algorithmic graph theory has been 
done in finding polynomial approximation algorithms 
(or even NC algorithms) for NP-complete graph prob- 
lems when restricted to special classes of graphs. A 
wide class of such problems is defined in terms of 
hereditary properties (a graph property ?T is called 

hereditary when, if 7~ is satisfied for some graph G, 
then 7~ is also satisfied for all induced subgraphs of G) . 

The maximum induced subgraph problem for hered- 
itary property r is the following problem: Given a 
graph G = (UE), find a maximum subset of V that 
induces a subgraph satisfying 71. We call this problem 
MISP( r) . A wide range of this type of problems has 
been shown to be NP-complete by Yannakakis [ 171. 
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There is a long series of results concerning fast ap- 
proximation algorithms (serial or parallel) for such 
problems. An algorithm that, given an instance of 

MISP(rr), always returns a solution that is of size at 
least a constant factor l/a, is called an approxima- 
tion algorithm for MISP(r) with pelformance ratio 
a. Also, MISP( T) has a polynomial-time approxima- 
tion scheme (PTAS) if, for any fixed E > 0, there ex- 
ists a polynomial approximation algorithm with per- 

formance ratio 1 + E. Lipton and Tarjan [ 121 proved 
that various MISP( 7r)‘s have a PTAS when their in- 
stances are restricted to classes of planar graphs. This 
result has been considerably generalised to any class 
of graphs with an excluded minor by Alon et al. [ I]. 
Unfortunately, these schemes appear to have only the- 
oretical interest as their running time is a highly expo- 

nential function of l/e (see [ lo] ). Consequently, the 
following question appears: for which graph classes 
do there exist practical approximation algorithms for 
MISP(rr)‘s? In this direction, Baker [ 31 gave a prac- 
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tical PTAS for several MISP(r) when the input in- 
stances are planar. Chen [ 181 gave a nontrivial gen- 
eralisation of Baker’s result for the classes of graphs 

that do not contain K3,3 (or KS ) as a minor. 
In this paper we examine the practical approxima- 

bility of several MISP( 7~)‘s on some more general 
classes of graphs. We call a graph H l-apex of a pla- 

nar graph Ho if it contains at most 1 vertices whose 

removal produces Ho. Let G = ( Y!E) be an H-minor 
free graph, where H is an l-apex of some planar graph 
Ho. In Section 3, we give a linear and easy to im- 
plement algorithm that outputs a partition of V into 
2’ sets, each inducing a graph of bounded treewidth 
(intuitively, graphs of bounded treewidth are graphs 
that can be constructed by piecing together graphs of 
bounded size in a tree-like fashion). Using the fact that 

a wide range of MISP(g)‘s restricted to graphs with 
bounded treewidth can be solved by linear time algo- 
rithms, we can obtain approximation algorithms for 

these MISP(n)‘s with performance ratio 2’. In Sec- 
tion 4 we describe several Z-apex graphs that, when ex- 
cluded, our approach leads to practical approximation 
algorithms. Moreover, some interesting corollaries of 
our results are discussed. 

2. Definitions 

We consider undirected graphs without multiple 
edges or self-loops. Given a graph G = (YE) we de- 

note its vertex set and edge set with V(G) and E(G) 
respectively. Given two graphs G, H we say that H is 
a minor of G if H can be obtained by a series of vertex 
deletions, edge deletions and/or edge contractions (a 
contraction of an edge {u, 0) in G is the operation that 
replaces u and u by a new vertex whose neighbours 
are the vertices that where adjacent to u and/or u) . G 
is H-minorfree if G has no minor isomorphic to H. 

A graph class containing only H-minor free graphs is 
called H-minorfree. If V’ C V(G), we call the graph 

(V’, {{u, u} E E(G) I u, u E V’}) the subgraph of G 
induced by V’ and we denote it as G[ V’] . 

A tree decomposition of a graph G = (YE) is a 
pair ({Xi ( i E Z},T= (Z,F)), where {Xi ( i E I} is 
a collection of subsets of V and T is a tree, such that 

l lJiE[Xi = V(G), 
l for each edge {u, w} E E, there is an i E I such 

that u, w E Xi, 

l for each u E V, the set of nodes {i E I ) u E Xi} 
induces a subtree of T. 

The width of a tree decomposition ({Xi ) i E I}, 

T = (I, F)) equals maxiEf( ]Xil - 1). The treewidth 

of a graph G is the minimum width over all tree de- 
compositions of G. 

Robertson and Seymour [ 141 proved (see also 

[ 151) that for any planar graph HO there exists a 
constant CH such that any Ho-minor free graph has 
treewidth at most CH. Given a planar graph H, we de- 

fine the minimum excluding bound of H, med (H) , as 
the maximum treewidth over all H-minor free graphs. 

In [ 151, it was shown that for all planar graphs H, 

med(H) G 202(21v(H)1+4)E(H)I)5 

There are several classes where smaller upper bounds 
for the minimum excluding bound have been found. 
Examples of such classes are forests with at most r 

vertices ( < r - 2, see [ 41) , minors of r-disjoint tri- 

angles (< 12r2 - 27r + 6, see [6] ), graphs that are 
minors of a 2 x q grid and an r-circus graph (< 
2(q-1)2(r-l)+1,see [5]),cyclesoflengthamost 
r(<r-2,see[111)andminorsofK2,r(<2r-2, 
see [ 81) . It is interesting to mention that, according to 
the results in [4,6&l 1,8], there exist algorithms that, 
given a graph G with an excluded minor belonging into 
one of the aforementioned classes, output the corre- 
sponding small width tree decompositions in time lin- 
ear on 1 V( G) 1 and polynomial on r and q. This means 
that when the size of the excluded graphs is small, 
there are really practical algorithms to build the cor- 

responding small width tree decompositions. We call 
such classes of graphs, where a tree decomposition of 
small width can computed, not only linearly, but also 
fast in practice, quickly and fast excluded. 

Given a planar graph HO we define the l-apex exten- 
sion of HO, ‘HI, as the class of graphs containing a set 
of at most I vertices whose removal produces HO, i.e., 

7i~lr = {G / 3S C V(G), ISI 6 1 

G[ V(G) - S] is isomorphic to HO}. 

Given a class ‘Flo of planar graphs, we define the l- 
apex extension of fro as the union of all the Z-apex 
extensions of the graphs in ‘Ha. We call a graph H Z- 
apex if it is contained in an l-apex extension of some 
planar graph HO (we call such a planar graph an E- 
apex root of H) . 
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A (/?,y)-partition of a graph is a partition 

{VI*. . . , VP} of its vertices such that 

treewidth(G[ x] ) < y, 1 < i < /?. 

3. The splitting algorithm 

The main result of this paper is the following. Note 
that H and HO are not necessarily required as part of 
the input for the algorithm. 

Lemma 1. There exists an algorithm that, when 

given a graph G = (YE) and an integer 1, such that 
G is an H-minorfree graph for a graph H that is an l- 

apexofaplanargraph Ho, outputsan (2’,med(Ho))- 
partitionofGinO(Z((V(G)(+jE(G)()) time. 

Proof. First, we remark that we may assume that 
2’ < IV(G) 1 6 (E(G) I: if not, then we just output the 
partition with one vertex per set. Now we claim that 
the required partition can be computed by algorithm 
Z-SPLIT(G) shown in Fig. 1. 

Algorithm Z-SPLIT(G) refines a partition of G I 
times; each time each set is (possibly) split in two. 
Thus, it outputs at most 2’ sets. Each split is done in 
the following way (per connected component of the 
induced graph): a breadth first search is done from 
some arbitrary vertex ub; in one set, we put all vertices 
with an even distance to ~6, and in the other set, we 
put all vertices with odd distance to u& 

As H is an l-apex of Ho, there exists a set 

s add = (a,. . . >sJ G V(H), P 6 1, 

such that HO is isomorphic to G[ V(H) -S&j]. We set 
Hi= (V(Ho) U{q,... >si), ECHO) U {{u,u} 1 u E 
V(Ho) U{SI,. . . , si), u E {sI,. . . , Si}})t 1 6 i 6 p,. 

Claim. Let each connected component of G[ Vj+n] be 

H,-minor free, where 

n = (m - 1)2h-1, 1 < h < s, 1 < m < 2h-‘. 

Then, after the execution of Procedure SPLIT( m, h), 

each connected component of the graphs G[ Vi+], 

G[ VI+n+2~-/8] is H,_l-minorfree. 

Proof of Claim. Suppose not. As any connected com- 

ponent is entirely inside one of the sets q, as com- 

puted in Step 7, we can obtain H, as a minor of G’: 

Algorithm I-SPLIT(G) 
Input: An H-minor free graph G, where H is 

an [-apex extension of a planar graph Ho. 

Output: A (I, med( HO) )-partition { t$, , V,, } of G. 

1 begin 

2 setVt=V(G),~=0,2<i<2’. 

3 forh=l,...,ldo 
4 for m = 1 to 2*-l call procedure SPLIT(rn, h) 

5 output {vl,...,V*/} 
6 end 

Procedure SPLIT( m, h) 

1 begin 

2 set n = (m - 1)2”-i. 

3 Let G’, , Gr be the connected components of G[ Vt+n]. 

4 for each connected component G’, i = 1, , (T do 

5 begin 

6 Choose arbitrarily a vertex uh E V( G’) 
7 Compute a partition Vl, V{, , v:] of V(G’) such that 

Vi = {ub} and any set v, 1 < ti, contains the vertices 

of V( G’) whose distance from L& is exactly j. 

8 Set Vl+n+21--h + V1+n+21--A u (Uj+... L,.,*J $j) . I I 
9 end 

10 Set VI+~ + Y+n - VL+n+21-~, 
11 end 

Fig. 1. Algorithm I-SPLIT(G). 

contract all vertices in Vi U . . - U v_1 to one vertex 

(~5) , contract (and remove) the edges (and vertices) 
in q to H,_I, and remove all other vertices. As each 

vertex in Vi is adjacent to at least one vertex in V’_t 

for any q = 2, . . . , j, we now have a graph, obtained 

by adding a vertex to H,_l that is adjacent to all ver- 
tices in H+_t : this graph is isomorphic to H,. A con- 
tradiction. 0 

Using inductively the Claim above, we can con- 
clude that each connected component of each set in 

the partition, outputted by algorithm Z-SPLIT is HO- 
minor free and hence has treewidth at most med ( HO). 
As the treewidth of a graph is the maximum of the 
treewidth of its connected components, it follows that 
the output is a (2’, med( Ho))-partition of G. 

Implementing Step 7 of Procedure SPLIT by the 
standard breadth first search algorithm, it directly fol- 
lows that the algorithm uses O(Z( IV(G)/ + IE(G) I)) 
time. 0 

We mention that any H-minor free graph G is 
a sparse graph (i.e. /E(G)) 6 cnIV(G)I for some 
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constant CH) . According to a result of Mader [ 13 1, 
CH < 21V(H)I-3 (see [9]) and thus, we can con- 

clude that the time complexity of Z-SPLIT(G) is 
0(21V’H)l-3Z]V(G)I). 

4. Conclusions 

For a planar graph Ha and a hereditary property rr 
such that MISP( g) can be solved in linear time when 
restricted to graphs with bounded treewidth, we let 
PH,,~ be the value, such that MISP( 7~) can be solved 
in < p~~,~ . n time when restricted on Ha-minor free 
graphs with n vertices (as we have already mentioned, 

such graphs have bounded treewidth, so this value does 

exist). 

Theorem 1. Let n be a hereditary property. Let H E 

‘H where ‘l-i is an l-apex extension of some planar 

graph HO. Then, there exists an approximation algo- 

rithm for MISP( ?r) on H-minor free graphs G with 
pe$ormance ratio 2’, and with running time 

< PH,,,~. \vGl +cl(lV(G)I + lE(G)l), 

where c is a constant not depending on IT, 1. 

Proof. We apply the following steps. 
(i) Using SPLIT(G), we find a (2[,med(Hs))- 

partition{Vt,...,V$}ofG. 
(ii) We find a maximum subset Wi of K such that 

G[W,] satisfiesn,i= l,..., 2’. 
(iii) We output the maximum cardinality set in 

{Wl,..., W2f}. We denote this set as Waprx. 

Let W be a solution of MISP( 7r) and V* a set in the 
partitionsuch thatVi, 1 6 i < 2’: jWnV*j > (WnK). 

Clearly, I W U V* I > I WI /2’. Notice that, as 7~ is hered- 
itary, G[ W U V* ] satisfies r and thus 1 W n V* I < 
I Waprx(. It follows that I WaprxI 2 ) W1/2’, thus the per- 
formance ratio of the algorithm is 2’. By Lemma 1 step 

(i)canbedoneinO(Z(]V(G)I+IE(G))))time.Also, 
step (ii) can be done in < PH~,~(V( G) 1 time. 0 

The term IE(G)I can be replaced by a factor 
21v(H)I-3jV(G)I, by the result of Mader [ 131, dis- 
cussed above. 

Theorem 1 leads to practical approximation al- 
gorithms when p~~,~ is a relatively small constant. 
As in many cases, given a tree decomposition of 

G with width < k the time to solve MISP(7r) 
is 0(2%), an important bottleneck will often be 

the time needed to construct such a decomposi- 
tion. Therefore, the size of p,~,~,~ depends heavily 

on the existence of fast algorithms that, given a 
graph with a planar graph as an excluded minor, 
output a tree decomposition with relatively small 
treewidth. Consequently, we conclude, that pH,,?r is 
often practically small when HO is quickly and fast 

excluded. 
We mention that any new result characterising 

some planar graph as quickly and fast excluded will 
extent further the collection of graph classes where 
Theorem 1 leads to practical approximation algo- 

rithms. 

Corollary 1. For any hereditary property r such that 
MISP(r) can be solved in < t(i)n time in graphs 

with treewidth at most i = 1,2, there exists an 

O(t(i)n+ (IV(H)1 - 2 - i)(lV(G)I + IE(G)l)) 

time approximation algorithm for MISP(rr) on 

H-minor free graphs G, with peflormance ratio 
21V(rf)I-2-i 

Proof. It is enough to observe that if we apply l- 
SPLIT(G) where 1 = IV(H)1 - 2 - i, i = 1,2, the 

output will be a partition of sets inducing forests (in 
case i = 1) or graphs with treewidth < 2 (in case 
i=2). 0 

In fact, we can obtain somewhat better approxima- 
tion ratios than Corollary 1. If we run algorithm Z- 
SPLIT(G) for 1 = IV(H) I - 5 and with input an H- 
minor free graph G, we can easily see that the out- 
put is a partition {VI,. . . , V,IUMI+S} of V(G) such 
that G[ x] is a KS free graph for i = 1,. . . ,21v(H)l-5. 
Using now the practical PTAS of Chen [ 181 we can 
easily conclude that, for several hereditary proper- 
ties rr, given a H-minor free graph G and some E > 
0, there exists a practical approximation algorithm 
for MISP(r) with performance ratio 21v(H)I-5 + E 

(e.g. for K6-minor free graphs the performance ra- 
tio is 2 + E) ). We also have the following corol- 
lary. 

Corollary 2. Let T be a hereditary property such that 
MISP(n) can be solved in 6 t( r)n time for n vertex 
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l ** 4 

. . . 2 

4 6 8 

6 8 IO 

IO 43 17 

Fig. 2. Examples of some l-apex graphs where I= 1.2. The I-root 
of each graph is the one induced by the dark vertices. The number 
below each graph is an upper bound to the minimum excluding 
bound of its I-apex root. 

graphs given with a tree decomposition of width < r. 
Then, there exists an 

O(t(2k2 - 2)IV(GI\ 

+ (kl -2)(IV(G)I + I.WG)l)) 

time approximation algorithm withpeflonnance ratio 

2k1-2 for MISP(rr) on graphs G that are H-minor 

free, where H is a bipartite graph that is a subgraph 

OfKk,,kz, kl < k2, 

hoof, Observe that Kk, ,k2, and hence H is an (k~ -2) - 
apex extension of K2,kz. Further we use that, given a 
K2,r-minor free graph G one can find a tree decompo- 
sition of G with width < 2r - 2 in 0( r/V(G) 1) time 
(see [ 81). The result now follows from discussions 

above. 0 

Some examples of l- or 2-apexes of quickly and 
fast excluded graphs along with the performance ra- 
tio of the corresponding approximation algorithms are 
shown in Fig. 2. 
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