
Alternative Proofs of the Asymmetric Lovász

Local Lemma and Shearer’s Lemma

Ioannis Giotis1 Lefteris Kirousis1∗ John Livieratos1

Kostas I. Psaromiligkos2† Dimitrios M. Thilikos1,3‡

1Department of Mathematics, National and Kapodistrian University of Athens
2Department of Mathematics, University of Chicago

3AlGCo project, CNRS, LIRMM, France

Abstract

We provide new algorithmic proofs for two forms of the Lovász Local
Lemma: the Asymmetric version and Shearer’s Lemma. Our proofs
directly compute an upper bound for the probability that the corre-
sponding Moser-type algorithms last for at least n steps. These algo-
rithms iteratively sample the probability space; when and if they halt,
a correct sampling, i.e. one where all undesirable events are avoided,
is obtained. Our computation shows that this probability is exponen-
tially small in n. In contrast most extant proofs for the Lovász Local
Lemma and its variants use counting arguments that give estimates of
only the expectation that the algorithm lasts for at least n steps. For
the asymmetric version, we use the results of Bender and Richmond on
the multivariable Lagrange inversion. For Shearer’s Lemma, we follow
the work of Kolipaka and Szegedy, combined with Gelfand’s formula
for the spectral radius of a matrix.

1 Introduction

Suppose we have a number of “undesirable” events, defined on a common probability space,
that we want to avoid. There are various sufficient conditions that guarantee that we
can. One of the most useful and celebrated such conditions, is the Lovász Local Lemma
(LLL), which first appeared in a paper by Erdös and Lovász [EL75] in 1975. The sufficient
conditions of LLL and its variants require that the probabilities of the undesirable events be
upper bounded in terms of parameters of a graph that expresses the dependencies between
the events (for a survey, see [Sze13]). The proofs of the original results were non-algorithmic

∗L. Kirousis’ research was partially supported by the Special Account for Research Grants of the National
and Kapodistrian University of Athens

†K. I. Psaromiligkos’ research was carried out while he was an undergraduate student at the Department
of Mathematics of the National and Kapodistrian University of Athens.

‡D. Thilikos’ research was supported by the project “ESIGMA” (ANR-17-CE40-0028)

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY,
published at http://ceur-ws.org

1

Essentially, the first algorithmic proof of a special case of the symmetric LLL, where the
sufficient condition requires a uniform bound for the probabilities of all events in terms of the
number of dependencies of each event, was given by Moser [Mos09]. The first algorithmic
proof of the asymmetric version, where the condition requires the existence of a number
in (0, 1) for each event, such that the probability of each event to occur is bounded by an
expression of these numbers, was given by Moser and Tardos [MT10]. These algorithmic
results were expressed in the variable framework, where each event is assumed to depend on
a number of independent random variables. The algorithms iteratively sample the variables;
when and if they stop, a sampling where all undesirable events are avoided is obtained. Such
algorithms were shown to come to a halt using a counting argument that became known as
the “entropic method” [Tao09].

In this paper, we first prove the asymmetric LLL by directly computing an upper bound
for the probability that the Moser-type algorithms last for at least n steps. This probability
is expressed by a recurrence relation, which we solve by employing the result of Bender and
Richmond on the multivariable Lagrange inversion formula [BR98]. Recurrence solving was
also utilized for the symmetric LLL by Giotis et al. in [GKPT15]. Previous proofs in the
literature that were based on counting arguments gave an estimate of only the expectation
of the algorithm lasting for at least n steps. Furthermore, we give an algorithmic proof of
the most general form of LLL, that of Shearer’s Lemma [She85]. This result gives a sufficient
and necessary condition for avoiding all the undesirable events. Following closely the work
of Kolipaka and Szegedy [KRS11], we again express the running time of a probabilistic
algorithm by a recurrence relation, that we solve using Gelfand’s formula for the spectral
radius of a matrix (see [HJ90]).

The variable setting framework:

Let Xi, i = 1, ..., l be mutually independent random variables on a common probabil-
ity space, taking values in the finite sets Di, i = 1, ..., l respectively. Suppose also that
E1, . . . , Em are “undesirable” events. The scope sc(Ej) of an event Ej is the minimal sub-
set of variables such that one can determine whether Ej occurs or not knowing only their
values. Events are assumed to be ordered according to their index. Our aim is to find an
assignment of values such that none of the events occur.

A dependency graph is now defined as follows: its vertex set is {1, ...,m}; two vertices
i, j are connected with an edge if sc(Ei) ∩ sc(Ej) 6= ∅. We denote the neighborhood, in the
dependency graph, of an event Ej by Nj (by assumption j /∈ Nj). We also assume that
Nj 6= ∅, j = 1, . . . ,m. This is a natural assumption, since it can be easily verified that
“isolated” events can be ignored.

2 Asymmetric Lovász Local Lemma

Our first objective is to provide an algorithmic proof of the following theorem:

Theorem 1 (Asymmetric Lovász Local Lemma). Suppose that there exist χ1, χ2, . . . , χm ∈
(0, 1), such that

Pr(Ej) ≤ χj

∏
i∈Nj

(1− χi),

for all j ∈ {1, . . . ,m}. Then, Pr[E1 ∧ E2 ∧ · · · ∧ Em] > 0.

To proceed with the proof of Theorem 1, consider M-Algorithm below. It successively

2

Algorithm 1 M-Algorithm.

1: Sample the variables Xi, i = 1, ..., l and let α be the resulting assignment.
2: while there exists an event that occurs under the current assignment, let Ej be the

least indexed such event and do
3: Resample(Ej)
4: end while
5: Output current assignment α.

Resample(Ej)

1: Resample the variables in sc(Ej).
2: if Ej occurs then
3: Resample(Ej)
4: else
5: while some event whose index is in Nj occurs under the current assignment,

let Ek be the least indexed such event and do
6: Resample(Ek)
7: end while
8: end if

produces random assignments, by resampling the variables in the scopes of occurring events,
until it finds one under which no undesirable event occurs. When the variables in the scope
of an occurring event Ej are resampled, the algorithm checks if Ej still occurs (lines 2 and
3 of the Resample routine) and, in case it doesn’t, proceeds to check its neighborhood.

A round is the duration of any Resample call during an execution of M-Algorithm.
A Resample call made from line 3 of the main algorithm is a root call, while one made
from within another call is a recursive call.

Lemma 1. Consider an arbitrary call of Resample(Ej). Let Xj be the set of events that
do not occur at the start of this call. Then, if and when this call terminates, all events in
Xj ∪ {Ej} do not occur.

Proof. For the purposes of this proof, say that Resample(Ej) is the main call, suppose
it terminates and that α is the produced assignment of values. Furthermore, suppose that
Ek ∈ Xj ∪ {Ej} and that Ek occurs under α.

Let Ek ∈ Xj . Then, under the assignment at the beginning of the main call, Ek did not
occur. Thus, it must be the case that at some point during this call, a resampling of some
variables caused Ek to occur. Let Resample(Es) be the last time Ek became occurring,
and thus remained occurring until the end of the main call. During Resample(Es), only
the variables in sc(Es) were resampled. Thus, Ek is in the neighborhood of Es. But then, by
line 5 of the Resample routine, Resample(Es) couldn’t have terminated and thus, neither
could the main call. Contradiction.

Thus Ek = Ej . Since under the assignment at the beginning of the main call, Ej occurred,
by lines 2 and 3 of the Resample routine, it must be the case that during some resampling
of the variables in sc(Ej), Ej became non-occurring. The main call could not have ended
after this resampling, since Ej occurs under the assignment α produced at the end of this
call. Then, there exists some r ∈ Nj such that Resample(Er) is the subsequent Resample
call. Thus Ej ∈ Xr and we obtain a contradiction as in the case where Ek ∈ Xj above.

An immediate corollary of Lemma 1, is that the events of the root calls of Resample

3

are pairwise distinct, therefore there can be at most m such root calls in any execution of
M-Algorithm.

Consider now rooted forests, i.e. forests of trees such that each tree has a special node
designated as its root, whose vertices are labeled by events Ej , j ∈ {1, . . . ,m}. We will use
such forests to depict the executions of M-Algorithm.

Definition 1. A labeled rooted forest F is called feasible if:

1. the labels of its roots are pairwise distinct,

2. the labels of any two siblings (i.e. vertices with a common parent) are distinct and

3. an internal vertex labeled by Ej has either one child labeled again by Ej or at most |Nj |
children, with labels whose indices are in Nj.

The number of nodes of a feasible forest F is denoted by |F|.
The nodes of such a labeled forest are ordered as follows: children of the same node are

ordered as their labels are; nodes in the same tree are ordered by preorder (respecting the
ordering between siblings) and finally if the label on the root of a tree T1 precedes the label
of the root of T2, all nodes of T1 precede all nodes of T2.

Given an execution of M-Algorithm that lasts for at least n rounds, we construct, in
a unique way, a feasible forest with n nodes, by creating one node for each Resample call
and labeling it with its argument, where the root calls correspond to the roots of the trees
and a recursive call made from line 3 or 6 of a Resample(Ej) call gives rise to a child of the
corresponding node of this Resample(Ej) call. We say that a feasible forest F constructed
this way is the n-witness forest of M-Algorithm’s execution and we define WF to be the
event M-Algorithm executes with n-witness forest F .

Define Pn to be the probability that M-Algorithm lasts for at least n rounds. It is easy
to see that:

Pn = Pr

[⋃
F :|F|=n

WF

]
=

∑
F :|F|=n

Pr
[
WF

]
, (1)

where the last equality holds because the events WF are disjoint.
It is easy to see that M-Algorithm introduces various dependencies to the probabilistic

calculations. For example, suppose that the i-th node of a witness forest F is labeled by Ej

and its children have labels with indices in Nj . Then, under the assignment produced at
the end of the i-th round of this execution, Ej does not occur.

To avoid such dependencies, we introduce ValAlg below.
A round of ValAlg is the duration of any for loop executed at lines 2-8. If it manages

to go through its input without coming upon a non-occurring event at any given round, it
returns success.Thus, the success or failure of ValAlg is not conditioned on whether it
produces an assignment such that no event occurs.

The following result concerns the distribution of the random assignments at any round
of ValAlg.

Lemma 2 (Randomness Lemma). At the beginning of any given round of ValAlg, the
distribution of the current assignment of values to the variables Xi, i = 1, ..., l, given that
ValAlg has not failed, is as if all variables have been sampled anew.

Proof. This follows from the fact that at each round, the variables for which their values
have been exposed, are immediately resampled.

4

Algorithm 2 ValAlg.

Input: Feasible forest F with labels Ej1 , . . . , Ejn .

1: Sample the variables Xi, i = 1, ..., l.
2: for s=1,. . . ,n do
3: if Ejs does not occur under the current assignment then
4: return failure and exit.
5: else
6: Resample the variables in sc(Ejs)
7: end if
8: end for
9: return success.

Now, given a feasible forest F with n nodes, we say that F is validated by ValAlg if
the latter returns success on input F . The event of this happening is denoted by VF . We
also set:

P̂n =
∑

F : |F|=n

Pr[VF]. (2)

Lemma 3. For any feasible forest F , the event WF implies the event VF , therefore Pn ≤ P̂n.

Proof. Indeed, if the random choices made by an execution of M-Algorithm that produces
as witness forest F are made by ValAlg on input F , then clearly ValAlg will return
success.

By Lemma 3, it suffices to prove that P̂n is exponentially small to n.

For notational convenience, suppose that the neighborhood of an event Ej is Nj :=
{j1, . . . , jkj

}, j = 1, . . . ,m (recall that Nj is a set of indices of events). Now, let n =

(n1, . . . , n2m), n1, . . . , n2m ≥ 0 be such that
∑2m

i=1 ni = n and n − (1)j := (n1, . . . , nj −
1, . . . , n2m). Define, for j = 1, . . . ,m, the multivariate generating functions:

Qj(t) =
∑

n:nj≥1

Qn,jt
n and Rj(t) =

∑
n:nm+j≥1

Rn,jt
n, (3)

where t = (t1, . . . , t2m), tn := tn1
1 · · · t

n2m
2m and:

Qn,j = Pr[Ej]
(
Qn−(1)j ,j +Rn−(1)j ,j

)
, (4)

Rn,j = Pr[Ej] ·
∑

n1+···+nkj=n−(1)m+j

(
Qn1,j1 +Rn1,j1

)
· · ·
(
Qnkj ,jkj

+Rnkj ,jkj

)
(5)

and where Qn,j = 0 (resp. Rn,j = 0) when nj = 0 (resp. nm+j = 0) and there exists an
i 6= j (resp. i 6= m+ j) such that ni ≥ 1 and Q0,j = R0,j = 1, where 0 is a sequence of 2m
zeroes.

Since a rooted tree is trivially a rooted forest, Definition 1 applies accordingly. Also, VT
is the event the validation algorithm succeeds on input the feasible tree T .

Now, consider the coefficients of the generating functions in (3). It is not difficult to see

that, if T1, T2 are two feasible trees with n =
∑2m

i=1 ni nodes each, whose roots are labeled

5

with Ej and where, T1’s root has a unique child labeled by Ej , whereas T2’s root has children
labeled by indices in Nj , then:

Pr[VT1
] < Qn,j and Pr[VT2

] < Rn,j .

Also, observe that:

P̂n ≤
∑
n

∑
n1+...+nm=n

(
Qn1,1 +Rn1,1

)
· · ·
(
Qnm,m +Rnm,m

)
.

Our aim is to show that both Qn,j and Rn,j are exponentially small to n, for any given

sequence of n. Thus, by ignoring polynomial factors, the same will hold for P̂n.
As an intuitive point for n = (n1, . . . , n2m), note that, in a feasible tree T , nj corresponds

to the numbers of nodes u of T that have a unique child so that both u and its child are
labeled with Ej, j = {1, . . . , 2m}. On the other hand, nm+j corresponds to the number of
nodes labeled by Ej whose children are labeled by indices in Nj , j = 1, . . . ,m.

By multiplying both sides of (4) and (5) by tn and adding all over suitable n, we get the
system of equations (Q,R):

Qj(t) =tjfj((Q,R)),

Rj(t) =tm+jfm+j((Q,R)), (6)

where, for x = (x1, . . . , x2m) and j = 1 . . . ,m:

fj(x) =χj

(∏
i∈Nj

(1− χi)

)
(xj + xm+j + 2), (7)

fm+j(x) =χj

∏
i∈Nj

(1− χi)(xi + xm+i + 2). (8)

To solve the system, we will directly use the result of Bender and Richmond in [BR98]
(Theorem 2). Let g := pr2ms be the 2m-ary projection on the s-th coordinate and let B be
the set of trees B = (V (B), E(B)) whose vertex set is {0, 1, . . . , 2m} and with edges directed
towards 0. By [BR98], we get:

[tn]g((Q,R)(t)) =
1∏2m

j=1 nj

∑
B∈B

[xn−1]
∂(g, fn1

1 , . . . , fn2m
2m)

∂B
, (9)

where the term for a tree B ∈ B is defined as:

[xn−1]
∏

r∈V (B)

{(∏
(i,r)∈E(B)

∂

∂xi

)
fnr
r (x)

}
, (10)

where r ∈ {0, . . . , 2m} and fn0
0 := g.

We consider a tree B ∈ B such that (10) is not equal to 0. Thus, (i, 0) 6= E(B), for
all i 6= s. On the other hand, (s, 0) ∈ E(B), lest vertex 0 is isolated, and each vertex has
out-degree exactly one, lest a cycle is formed or connectivity is broken. From vertex 0, we

get
∂pr2ms (x)

∂xs
= 1. Since we are are interested only in factors of (10) that are exponential

in n, we can ignore the derivatives (except the one for vertex 0), as they introduce only

6

polynomial (in n) factors to the product. Thus, we have that (10) is equal to the coefficient
of xn−1 in:

m∏
j=1

{(
χ
nj

j

∏
i∈Nj

(1− χi)
nj

)
(xj + xm+j + 2)nj ·

(
χ
nm+j

j

∏
i∈Nj

(1− χi)
nm+j (xi + xm+i + 2)nm+j

)}
. (11)

We will say that the first part of (11) is the one with the factors whose exponents are nj
and the second, those whose exponents are nm+j , j = 1, . . . , n.

We now group the factors of each part of (11) separately, according to the i’s. We have
already argued each vertex i has out-degree 1. Note also that the j’s such that i ∈ Nj are
exactly the j ∈ Ni. Thus, the exponent of the term xi + xm+i + 2 in the first part of (11)
is ni and in the second,

∑
j∈Ni

nm+j . Taking all this together, we get that the product of
(11) is equal to:

m∏
i=1

{(
χni
i (1− χi)

∑
j∈Ni

nj (xi + xm+i + 2)ni

)
·(

χ
nm+i

i (1− χi)
∑

j∈Ni
nm+j (xi + xm+i + 2)

∑
j∈Ni

nm+j

)}
. (12)

Using the binomial theorem and by ignoring polynomial factors, we get that the coefficient
of xn−1 in (12) is:

m∏
i=1

(
χni
i (1− χi)

∑
j∈Ni

nj

(
ni
ni

))
·(

(1− χi)
nm+iχ

nm+i

i (1− χi)
∑

j∈Ni
nm+j−nm+i

(∑
j∈Ni

nm+j

nm+i

))
. (13)

By expanding (χi + 1− χi)
∑

j∈Ni
nm+j , we get that (13) is at most:

m∏
i=1

(
χni
i (1− χi)

∑
j∈Ni

nj

)(
(1− χi)

nm+i

)
<

m∏
i=1

(1− χi)
∑

j∈Ni
nj(1− χi)

nm+i . (14)

By letting χ := mini=1,...,m{χi}, we obtain that (14) is bounded from above by
∏2m

i=1(1 −
χi) = (1 − χi)

∑2m
i=1 . Thus, [tn]g((Q,R)(t̄)) ≤ (1 − χ)n, which is exponentially small to n.

Thus, the proof is now complete.

3 Shearer’s Lemma

We now turn our attention to Shearer’s Lemma. For a graph G with vertex set V :=
{1, . . . ,m}, an independent set I is a subset of V with no edges between its vertices (∅ is
trivially such a set). Let I(G) = {I0, I1, . . . , Is} denote the set of independent sets of G
and suppose that its elements are ordered according to their indices, where I0 = ∅. For any
I ∈ I(G), let N(I) be the set of vertices of I, together with their neighboring ones in G.
Following [KRS11], we sat that I covers J if J ⊆ N(I).

7

Theorem 2 (Shearer’s Lemma). Given a graph G = (V,E) on m vertices and a vector
p̄ = (p1, . . . , pm) ∈ (0, 1)m, the following are equivalent:

1. For all I ∈ I(G), qI(G, p̄) =
∑

J∈I(G): I⊆J(−1)|J\I|
∏

j∈J pj > 0,

2. For every (finite) sequence of events E1, . . . , Em, if their dependency graph is G and if
Pr[Ej] = pj, j = 1, . . . ,m, then Pr[E1 ∧ · · · ∧ Em] > 0.

We will not be concerned with the proof of (2⇒ 1). It is the direction that gives us the
necessity of condition 1 (see [She85]).

The algorithm we will use is the Generalized Resample algorithm, designed by Koli-
paka and Szegedy in [KRS11]. Abusing the notation, we will sometimes say that an in-
dependent set I ∈ I(G) contains events (instead of indices of events). Also, for any
I = {j1, ..., jk} ∈ I(G), k ≥ 0, let vbl(I) denote the set of variables contained in the
scopes of the events in I.

Algorithm 3 GenResample.

1: Sample the variables Xi, i = 1, ..., l and let α be the resulting assignment.
2: while there exists an event that occurs under the current assignment, let Ii be the least

indexed maximal independent set that contains only occurring events and do
3: Resample every variable in vbl(Ii) and let α be the current assignment.
4: end while
5: Output current assignment α.

A round of GenResample is the duration of each repetition of lines 2 and 3. Let Pn be
the probability GenResample executes for at least n rounds. Our aim again, is to show
that there is a d ∈ (0, 1) such that Pn ≤ dn.

Consider an execution of GenResample that lasts for at least n rounds and let Ii1 , . . . Iin
be the independent sets selected at line 2.

Lemma 4. Iit covers Iit+1
, for all t ∈ {1, . . . , n− 1}.

Proof. It suffices to prove that if the index of an event is in Iit+1
, then it is also in N(Iit).

Suppose Ej is in Iit+1 . Then, under the assignment produced at the end of round t, Ej

occurred. To obtain a contradiction, suppose that Ej /∈ N(Iit). Ej does not occur at the
beginning of round t, lest Iit is not maximal. But then, since it is not dependent on any event
in Iit , it cannot occur at the beginning of round t+ 1. Thus, Ej /∈ Iit+1

. Contradiction.

Now, as in the previous section, we will depict an execution of GenResample by a
graph structure. In place of forests, we will now use directed paths, that have one vertex
of in-degree 0 (source), one of out-degree 0 (sink), and all edges directed from the source
to the sink. The vertices of such a path are labeled by independent sets from I(G) and we
order them from the source to the sink.

Definition 2. A directed labeled path P with |P| = n vertices, whose labels are Ii1 , . . . , Iin , is
feasible if Iit covers Iit+1

, for all t ∈ {1, . . . , n} (in the terminology of [KRS11], (Ii1 , . . . , Iik)
is a stable set sequence).

A feasible path with n nodes, whose labels correspond to the independent sets selected
by GenResample in an execution that lasted for at least n rounds, is called the n-witness
path of GenResample’s execution.

8

Algorithm 4 GenVal.

Input: Feasible path P with labels Ii1 , . . . , Iin .

1: Sample the variables Xi, i = 1, ..., l.
2: for t=1,. . . ,n do
3: if there exists an event Ej , with j ∈ Iit , that does not occur under the current

assignment then
4: return failure and exit.
5: else
6: Resample the variables in vbl(Iit)
7: end if
8: end for
9: return success.

Again, we want to avoid the dependencies that GenResample produces during its exe-
cution. We will thus use a validation algorithm, in the spirit of ValAlg of section 2. The
rounds of GenVal are defined as usual. Also, Lemma 2 holds for GenVal too. Define VP
to be the event that GenVal returns success, on input P and suppose we have real numbers
Qn,i such that Pr[VP] ≤ Qn,i, where P is a path with n-nodes, whose source is labeled by
Ii ∈ I(G) and where Q1,I =

∏
j∈I pj , for all I ∈ I(G).

Thus, it holds that the numbers Qn,i satisfy:

Qn,i =
∏
j∈Ii

pj
∑

Ii covers J

Qn−1,J . (15)

Following again the terminology of [KRS11], we define the stable set matrix M , as an s× s
matrix, whose element in the i-th row and j-th column is

∏
j∈I pj if I covers J and 0

otherwise. Furthermore, let qn = (Qn,1, . . . , Qn,s). Easily, (15) is equivalent to:

qn = Mqn−1, thus qn = Mn−1q1. (16)

Note now that:

Pn ≤
s∑

i=1

Qn,i = ‖qn‖1,

where ‖ · ‖1 is the 1-norm defined on Rs.
It is known that any vector norm, and thus 1-norm too, yields a norm for square matrices

called the induced norm [HJ90] as follows:

‖M‖1 := sup
x 6=0

‖Mx‖1
‖x‖1

≥ ‖Mq1‖1
‖q1‖1

. (17)

By (16) and (17), we have that:

‖qn‖1 = ‖Mn−1q1‖1 ≤ ‖Mn−1‖1 · ‖q1‖1. (18)

Since ‖q1‖1 is a constant, it suffices to show that ‖Mn−1‖1 is exponentially small in n. Let
ρ(M) be the spectral radius of M (see [KRS11]). By Gelfand’s formula (see again [HJ90])
used for the induced matrix norm ‖ · ‖1, we have that:

ρ(M) = lim
n→∞

‖Mn‖1/n.

9

Furthermore, in [KRS11] (Theorem 14), it is proved that the condition of Shearer’s Lemma,
i.e. Theorem 2 in our work, is equivalent to ρ(M) < 1. Thus, by selecting an ε > 0 such
that ρ(M) + ε < 1, we have that there exists a constant (depending only on ε,M) such that
‖Mn−1‖1 ≤ (ρ(M) + ε)n−1, which, together with (18), gives us that the bound for Pn is
exponentially small in n.

References

[BR98] Edward A Bender and L Bruce Richmond. A multivariate Lagrange inversion
formula for asymptotic calculations. the electronic journal of combinatorics,
5(1):33, 1998.

[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. Infinite and finite sets, 10:609–627, 1975.

[GKPT15] Ioannis Giotis, Lefteris Kirousis, Kostas I. Psaromiligkos, and Dimitrios M.
Thilikos. On the algorithmic Lovász local lemma and acyclic edge col-
oring. In Proceedings of the twelfth workshop on analytic algorithmics
and combinatorics. Society for Industrial and Applied Mathematics, 2015.
http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2.

[HJ90] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 1990.

[KRS11] Kashyap Kolipaka, Babu Rao, and Mario Szegedy. Moser and Tardos meet
Lovász. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 235–244. ACM, 2011.

[Mos09] Robin A. Moser. A constructive proof of the Lovász local lemma. In Proceedings
of the 41st annual ACM Symposium on Theory of Computing, pages 343–350,
2009.

[MT10] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász
local lemma. Journal of the ACM (JACM), 57(2):11, 2010.

[She85] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.

[Sze13] M. Szegedy. The Lovász local lemma - a survey. In Springer, editor, Computer
Science - Theory and Applications, pages 11–23, 2013.

[Tao09] Terence Tao. Moser’s entropy compression argument. 2009.
Available: https://terrytao.wordpress.com/2009/08/05/

mosers-entropy-compression-argument/.

10

http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/

	Introduction
	Asymmetric Lovász Local Lemma
	Shearer's Lemma

