

The Question Answering System GeoQA2

Dharmen Punjani, Sergios - Anestis Kefalidis, Konstantinos Plas, Eleni Tsalapati, Manolis Koubarakis and Pierre Maret

Outline

- Previous work on Geospatial Question Answering
- GeoQA2
- Evaluation
- Future work

Previous work on Geospatial Question Answering

- Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of DBpedia.
 - Younis et al., 2012
- Template-based question answering over linked geospatial data.
 - Punjani et al., 2018 and 2020
- Neural factoid geospatial question answering.
 - Li et al., 2021
- Qualitative spatial reasoning over questions.
 - Beydokhti et al., 2022
- Translating place-related questions to GeoSPARQL queries.
 - Hamzei et al., 2022

Overview of the Question Answering Process with GeoQA

Dharmen P., Kefalidis S.-A., Plas K., Tsalapati E., Koubarakis M., Maret P. *The Question Answering System GeoQA2*. Geospatial Knowledge Graphs and GeoAI: Methods, Models, and Resources - 2023
Kyzirakos K., Karpathiotakis M., Koubarakis M. *Strabon: A Semantic Geospatial DBMS*. International Semantic Web Conference - 2012

Improvements in GeoQA2

- Different target knowledge graph:
 - GeoQA:
 - DBpedia [1]
 - OpenStreetMap [2] (UK and Ireland)
 - Global Administrative Areas [3] (UK and Ireland)
 - GeoQA2:
 - YAGO2 [4]
 - YAGO2geo [5] (UK, Ireland, USA and Greece)
- More supported question types:
 - **Quantities**: How many lakes are there in Greece?
 - Aggregates: What is the total area of lakes in Monaghan?
 - **Comparatives**: Is Lake Baikal bigger than the Ioannina lake?
- Optimized modules.
- [1] https://www.dbpedia.org/[2] https://www.openstreetmap.org/
- [3] https://gadm.org/
- [4] https://yago-knowledge.org/
- [5] https://yago2geo.di.uoa.gr/

Knowledge Representation in GeoQA2

The GeoQA2 Pipeline: Overview

• Which bays intersect with county councils that border with County Mayo?

The GeoQA2 Pipeline: Dependency and Constituency Parse Tree Generator (1)

This component carries out:

- part-of-speech tagging
- dependency parse tree generation (annotated by pipeline components)
- **constituency parse tree** generation (used by the query generator)

Dependency Parse Tree

The GeoQA2 Pipeline: Dependency and Constituency Parse Tree Generator (2)

The GeoQA2 Pipeline: Instance Identifier

- Identifying **geographic features** (instances), e.g. County Mayo, and linking to the target KG.
- How it works:

[1] Ferragina P., Scaiella U. TAGME: on-the-fly annotation of short text fragments (by wikipedia entities). CIKM - 2010

- Which bays intersect with county councils that border with County Mayo?
 - Instances: yago:County_Mayo

The GeoQA2 Pipeline: Concept Identifier

- Identifying types of geographic features (concepts), e.g. forest, and mapping to the ontology of the KG.
- How it works:

- Which bays intersect with county councils that border with County Mayo?
 - Instances: yago:County_Mayo
 - <u>Concepts</u>: y2geoo:OSI_County_Council, y2geoo:OSM_bay

The GeoQA2 Pipeline: Geospatial Relation Identifier

- Identifying **geospatial relations**, e.g. borders, and mapping to GeoSPARQL/stSPARQL functions.
- How it works:

- Which bays intersect with county councils that border with County Mayo?
 - Instances: yago:County_Mayo
 - <u>Concepts</u>: y2geoo:OSI_County_Council, y2geoo:OSM_bay
 - <u>Relations</u>: geof:sfIntersects, geof:sfTouches

The GeoQA2 Pipeline: Property Identifier

- Identifying attributes of types of geographic features and attributes of geographic features (properties), e.g. population, and mapping them to the target KG.
- How it works:
 - Identify potential properties: POS tags {NN, JJ, NNP, NP}.
 - Match with KG properties (1-hop relations) of the **Concepts** and **Instances** identified previously.

- Which bays intersect with county councils that border with County Mayo?
 - Instances: yago:County_Mayo
 - <u>Concepts</u>: y2geoo:OSI_County_Council, y2geoo:OSM_bay
 - <u>Relations</u>: geof:sfIntersects, geof:sfTouches
 - Properties: -

The GeoQA2 Pipeline: Query Generator (1)

• This module generates the formal query using handcrafted query patterns, templates, and the outputs of the previous modules.

Instance geo:hasGeometry ?zGeom. ?zGeom geo:asWKT ?zWKT.

FILTER(_Relation1(?xWKT, ?yWKT) && _Relation2(?yWKT, ?zWKT)

Selection

Tree

Traversal

The GeoQA2 Pipeline: Query Generator (2)

- To capture more complex questions, containing **superlatives**, **comparatives**, or **aggregates**, the query generator uses the **constituency parse tree**.
- **Example**: "Which civil parishes in Ireland have more than 10 townlands?".
 - Quantifier phrase: more than 10.
 - Modify the template to use COUNT, GROUP BY and HAVING.
- **Example**: "Which county of England has the most parks?"
 - Edge of the dependency parse tree which contains {RBS, JJS/DT} and no QP.
 - Modify the template to use COUNT, GROUP BY, ORDER BY and LIMIT.

- Which bays intersect with county councils that border with County Mayo?
 - Instances: yago:County_Mayo
 - <u>Concepts</u>: y2geoo:OSI_County_Council, y2geoo:OSM_bay
 - <u>Relations</u>: geof:sfIntersects, geof:sfTouches
 - Properties: -
- Generated Query:

select distinct ?x where { ?x rdf:type y2geoo:OSM_bay; geo:hasGeometry ?cGeom1. ?cGeom1 geo:asWKT ?cWKT1. ?y rdf:type y2geoo:OSI_County_Council; geo:hasGeometry ?cGeom2. ?cGeom2 geo:asWKT ?cWKT2. yago:County_Mayo geo:hasGeometry ?iGeom. ?iGeom geo:asWKT ?iWKT. FILTER(geof:sfIntersects(?cWKT1,?cWKT2)) FILTER(geof:sfTouches(?cWKT2,?iWKT))

Evaluation

- GeoQA2 was evaluated on the benchmark dataset GeoQuestions1089, the largest dataset containing triples of questions-queries-answers for geospatial QA.
- Answers are compared to the gold answer in the dataset and must match exactly to be counted as correct.

Category	Hamzei et al.			GeoQA2		
	Generated	Correct	Correct	Generated	Correct	Correct
	Queries	Answers	Answers*	Queries	Answers	Answers*
Type-A	89.71%	10.85%	12.10%	84%	47.42%	56.45%
Type-B	95.68%	53.23%	55.63%	76.25%	58.99%	77.35%
Type-C	97.75%	30.33%	31.03 %	79.21%	44.38%	56.02%
Type-D	100%	12%	12.00%	56%	12%	21.42%
Type-E	99.25%	7.40%	7.46%	80%	31.85%	39.81%
Type-F	79.16%	4.10%	5%	66.66%	16.66%	25%
Type-G	98.27%	11.49%	11.69%	74.13%	32.18%	43.41%
Type-H	97.18%	7.74%	7.97%	71.12%	26.05%	36.63%
Type-I	92%	0%	0.00%	84%	20%	23.80%
Total	95.77%	18.97%	19.81%	76.99%	38.54%	50.06%

* percentage of correct answers over the number of generated queries

Future Work

Our group is currently working on improving GeoQA by:

- Making GeoQA able to handle spatiotemporal questions.
- Utilizing Large Language Models to improve query generation and natural language understanding.
- Utilizing state-of-the-art Entity Linking systems.

Thank you!

Find us in our web page: <u>https://ai.di.uoa.gr/</u> Or follow us on twitter @AlTeamUoA

Aiteam NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS