
Nomad Bridge Hack
Sergios - Anestis Kefalidis

cs32200036

Outline

● Blockchain Bridges

● Blockchain Bridge Hack

● Nomad Bridge
○ Nomad Bridge Optimistic Verification

○ Fraud Detection

○ Lifecycle of a message

● The Nomad Bridge Hack

● Aftermath

Blockchain Bridges

● Each blockchain is an independent, siloed environment.

● Bridges enable connectivity and interoperability between blockchains.
○ Transfer of assets and/or data.

○ Centralized/Trusted - Decentralized/Trustless.

■ speed/cost vs security

○ Wrapped assets - Liquidity pools

● High volume of funds.
○ Lucrative targets for bad-faith actors.

○ Over $2.5 billion have been stolen from cross-chain bridges.

Blockchain Bridges

Blockchain Bridge Hacks

Target Money stolen Hackers

Ronin Bridge $625,000,000 1

PolyBridge $610,000,000 1

Wormhole $320,000,000 1

Nomad Bridge $186,000,000 >300

Horizon Bridge $100,000,000 1

Nomad Bridge
● Cross-chain communication between:

○ Ethereum (only one affected by the hack)

○ Avalanche

○ Evmos

○ Milkomeda C1

○ Moonbeam

● Lock & Mint transfer of tokens.
○ Minted tokens are burned to unlock original tokens.

Nomad Bridge
● To push data we must rely on someone to verify and relay the data.

○ Goal: Minimize the trust assumptions in the verification process.
● Nomad uses an optimistic mechanism. It consists of the following actors:

○ Home contract.
■ Send messages.
■ Data Structures:

● A Merkle Tree that holds all messages. New messages are stored as leafs.
● A Queue of Roots that contains all roots of the Merkle Tree. Used to prove fraud.

■ Updates to the Merkle Tree are signed (Updater) and relayed to Replicas deployed to destination chains.
○ Replica contract.

■ Receive messages from a specific Home contract.
■ Data Structures:

● A Queue of Pending Updates used to identify fraud.
■ Signed updates are accepted after a timeout (optimistic dispute window).

○ Updater (off-chain).
■ Signs new roots and publishes them to the home chain.

● Listens to Home Dispatch events, baches them and signs updates by calling Update on the Home
contract.

○ Watcher (off-chain).
■ Observes Home and Replicas to detect fraud.

Nomad Bridge: Optimistic Verification

Nomad Bridge: Fraud Detection
● Updaters can attempt to commit fraud.

○ When an Updater signs an attestation to a merkle root that did not actually exist on the Home

chain. This would mean that malicious messages would be authenticated and executed.

● To detect fraud Watchers are used. At least 1 agent is required to act

honestly to detect fraud.
○ We only need to check that the state in the Replicas is equal to the Home.

● Optimistic Timeout Period: A time window during which Watchers can

submit fraud proofs.
○ 30 minutes, it is prohibitively expensive for an attacker to buy the blockspace for 30 minutes

● If a fraud attempt by an Updater is detected, the Updater is slashed.

Nomad Bridge: Lifecycle of a message
1. User initiates action on chain A.

2. Business logic is executed on chain A.

3. The message is enqueued on the Home contract.

4. Nomad’s work begins.
a. New Merkle Tree root on the Home contract.

b. The Updater signs the new root.

c. The update is relayed to the Replica on chain B.

d. The dispute window elapses.

e. The message can now be proven on chain B.

5. Business logic is executed on chain B.

The Nomad Bridge Hack

● Vulnerable Replica contract upgrade on June 21st, 2022.
○ An implementation bug caused the Replica contract to fail to authenticate messages properly.
○ This issue allowed any message to be forged as long as it had not already been processed.
○ Only Ethereum was affected.

● First malicious transaction: August 1st, 2022, 21:32:31.
● After the initial vulnerability was discovered a lot of people copied it.

○ Decentralized Finance means that anyone can join :-)

● $186M stolen by over 300 hackers.
○ 960 transactions
○ In a few hours only $1,794 dollars were left

The Nomad Bridge Hack
● For a message to be accepted the following conditions must apply:

○ It exists in the Merkle Tree (Merkle proof).
○ The Optimistic Timeout Period has elapsed.

function process(bytes memory _message) public returns (bool _success) {
 // ...
 require(acceptableRoot(messages[_messageHash]), "!proven");
 // ...
}

function acceptableRoot(bytes32 _root) public view returns (bool) {
 // ...
 uint256 _time = confirmAt[_root];
 if (_time == 0) {
 return false;
 }
 return block.timestamp >= _time;
}

The Nomad Bridge Hack
● When a Replica is deployed after its associated Home contract, the Replica

contract is initialized with a specific state.
○ This way deployments don’t have to replay all past updates.
○ The deployer may pass a committedRoot at which the message tree’s history begins receiving

Updates by setting:
■ confirmAt[_committedRoot] = 1

● Deploying both Home and Replica contracts at the same time means that
there are no messages.

○ In the Nomad implementation this means a Merkle Tree with a root of bytes32(0).
○ confirmAt[bytes32(0)] = 1

● If a message hash doesn’t exist in the messages mapping it will return a value
of bytes32(0).

○ This will be passed to acceptableRoot which will return true.
○ Vulnerability!

The Nomad Bridge Hack
● Why did the Watchers not take action here?

○ Respond to compromises of the Updater key.

○ Unable to detect suspicious activity arising from smart contract bugs.

○ This exploit didn’t require a fraudulent Updater signature.

● Anyone who knew how to encode a message for Nomad could just send it to

the Replica contract (by calling its vulnerable process function) and it would

not be checked for its authenticity.

● Attack Example

https://gist.github.com/gists-immunefi/2bdffe6f9683c9b3ab810e1fb7fe4aff#file-nomad-hack-analysis-5-sol

Aftermath

● Recovered Funds
○ 20% in 6 days

○ 21% as of 6/11/2022

● Radio silence after December 2022.

● The last Nomad Bridge blog post is about ongoing work on relaunching the

bridge.

