
Generic Data Structures
Σέργιος - Ανέστης Κεφαλίδης

Κωνσταντίνος Νικολέτος
Κώστας Πλας

One issue remains…

● We have studied and implemented a bunch of different data structures.
● All of our implementations have the same problem, the data type is

hardcoded.
○ We use typedef to be able to quickly change the hardcoded type, but it is still hardcoded.

● In the real world we want the ability to create instances of a data structure that
contain different types, so we must get rid of the hardcoded data type.

○ For example, a List that holds Integers and a List that holds Floats in the same program.
● This is the last issue that we are going to tackle, so let’s have some fun ;-)

Let’s examine the problem with an example

● Consider that a University needs to save information about students in the
form a record. Let’s assume that this record is called Student.

● Record Student:
○ id(String)
○ gradeAverage(Double)
○ fullName(String)
○ yearOfEntry(Int)

● To maintain an efficient searching time for every student the university uses a
hash table, to store the records based on their id(of type String).

● We implement a hash table that stores Students and hashes Strings
● So far everything is great!

Let’s examine the problem with an example

.

.

.

Hashtable

Records:

(“1240529”, 8.3, ”Panos Cosmatos”, 2018)
(“1240572”, 9.1, ”Gaspar Noe”, 2016)
.
.
.

Stored Records(Students)
Hashing based on id(String)

Let’s examine the problem with an example

● Let’s assume that the University wants to utilize a similar system for
professors.

● Record Professor:
○ id(Int)
○ fullName(String)
○ course(String)

● We want to store the Professors on a different hashtable and hash their id
which is now an Integer. However, our hashtable cannot store records of type
Professor.

● What can we do???

Let’s examine the problem with an example

.

.

.

Student Hashtable
Student Records:

(“1240529”, 8.3, ”Panos Cosmatos”, 2018)
(“1240572”, 9.1, ”Gaspar Noe”, 2016)
.
.
.Stored Records(Students)

Hashing based on id(String)

Prof. Hashtable

Prof. Records:

(0, ” John Smith”, “Data Structures”)
(1, ”Jane Doe”, “Discrete Mathematics”)
.
.
.

Stored Records(Professors)
Hashing based on id(int)

Proposed solutions

● There are two schools of thought for dealing with this problem.
a. Use pointers to handle data. This approach essentially bypasses the type

system.
b. Create multiple implementations of the data structure, one for each type

that we want to use the data structure with (code generation approach).

Outline

1. Using void* to create generic data structures.
○ Presentation.
○ Live Coding: Implementing a generic Linked List using void*.

2. Using code generation methods to create generic data structures.
○ C Macros

i. Presentation.
ii. Live Coding: Implementing a generic Linked List using Macros.

○ C with Templates (a mix of C and C++)
i. Presentation.
ii. LIve Coding: Implementing a generic Linked List using Templates.

3. Comparison and discussion.

Using void* to create generic data structures

● The basic idea is to use void * to create a data structure that can store every
type (custom or not), instead of creating different data structures to deal with
different data types.

● Let’s assume we have implemented a linked list that uses integers as keys. It
is easy to convert the basic struct definition using void *

typedef struct list{
 int data;
 struct list *next;
}List;

typedef struct list{
 void *data;
 struct list *next;
}List;

Using void* to create generic data structures

● Inserting elements is straight forward, using void * . Remember that we need
to use casts!

● How can we search or delete elements, since we do not know what type of
data was inserted in the list?

Using void* to create generic data structures

● Remember that we can create pointer types for functions in c!
○ E.g. typedef void (*Visitor)(Node *);

● Using custom functions types we can provide data comparison and deletion
functions to the data structure, to handle different data types.

typedef int (*Compare)(void *, void *);

int CompareInteger(void *a,void *b){
 int *ia = (int*)a;
 int *ib = (int*)b;

 if(*ia == *ib) return 0;
 else if(*ia > *ib) return 1;
 else return -1;
}

int CompareString(void *a,void *b){
 char *sa = (char *)a;
 char *sb = (char *)b;
 return strcmp(sa,sb);
}

Using void* to create generic data structures

● The aforementioned functions can either be passed into the definition to the
structure:

typedef struct list{
 void *data;
 struct list *next;
 Compare compare;
}List;

● Or in function definition. In this case the comparison function must be
passed in every call of the function:

int list_search(List *l, void *key, Compare compare);

Using void* to create generic data structures

● Combining the above we can create a generic data structure with general
ease.

● For insertion: data insertion is up to the struct. All we need to do is cast the
element when calling the function:

List *list_insert(List *l, void *key);

char *s = strdup("Hello World!");
l = list_insert(l,(void *)s);

Using void* to create generic data structures

● For search ,deletion, etc: the main operations are up to the struct again. We
now use comparison and deletion functions. (Function in function definition)

int list_search(List *l, void *key, Compare compare){
...
 if(compare(l->data,key) == 0){
 return 1;
 }
...
}

Using void* to create generic data structures

● For search ,deletion, etc: the main operations are up to the struct again. We
now use comparison and deletion functions. (Function in struct definition)

int list_search(List *l, void *key){
...
 if(l->compare(l->data,key) == 0){
 return 1;
 }
...
}

Using void* to create generic data structures

● Using custom function types combined with void *, we can create flexible data
structures able to handle different data types, without rewriting vast amounts
of code.

● Pros:
○ Only need to write comparison, deletion etc. functions to support new data types.
○ Easily reusable data structures, that do not need multiple definitions for multiple data types.

● Cons:
○ Ownership of data is passed to the structure. The structure is responsible for whatever

happens to these memory locations (Memory deallocation etc.)!!!
○ Some implementations may not be able to deal with data stored in the stack.
○ We need a lot of casts to deal with conversion of data types to void * .
○ Compiler will miss a lot of type errors, that could otherwise be avoided.
○ We Must be very careful when inserting data into the structure! No one can stop us from

inserting data of different types!!!

Playing with fire: Macros

hic sunt dracones

Using macros to create multiple implementations…

● We can create multiple implementations manually, by copying and pasting structs and functions:

typedef struct list_struct_int {
 int data;
 struct list_struct_int* next;
} List_int;

typedef struct list_struct_double {
 double data;
 struct list_struct_double* next;
} List_double;

● This is a lot of manual effort and is unmaintainable. Why?
● Automate this process by automating code generation. Which C facility allows us to modify our

source files before compilation?

Using macros to create multiple implementations…

● Macros give us the ability to modify our source files before they are passed to the
compiler.

○ The C preprocessor expands all macros before the code is compiled.
● We can define macros that generate code.

#define DEFINE_LIST(TYPE) \
typedef struct list_struct { \

TYPE data; \
struct list_struct* next; \

} List;

typedef struct list_struct {
int data;
struct list_struct* next;

} List;

...
DEFINE_LIST(int)
...

list.h list.c (before preprocessor pass) list.c (after preprocessor pass)

● What happens if we try to define multiple lists this way?

Using macros to create multiple implementations…

● What happens if we try to define multiple lists this way?
● The preprocessor modifies our source file.
● The compiler complains! Why?

#define DEFINE_LIST(TYPE) \
typedef struct list_struct { \

TYPE data; \
struct list_struct* next; \

} List;

typedef struct list_struct {
int data;
struct list_struct* next;

} List;
typedef struct list_struct {

double data;
struct list_struct* next;

} List;

...
DEFINE_LIST(int)
DEFINE_LIST(double)
...

list.h list.c (before preprocessor pass)

list.c (after preprocessor pass)

Compiler output:
 error: redefinition of ‘struct list_struct’
 error: conflicting types for ‘List’

Using macros to create multiple implementations…

● We can use macros to easily generate multiple implementations of a data
structure, but we need a way to differentiate them.

● We can use the token-pasting operator (##) to merge two tokens into one
while expanding macros. This allows us to assign different names to each of
our implementations.

#include <stdio.h>
#include <stdlib.h>
#define MERGE(A, B) A##B

int main(void)
{

printf("%d\n", MERGE(1,8));
return 0;

}

#include <stdio.h>
#include <stdlib.h>
#define MERGE(A, B) A##B

int main(void)
{

printf("%d\n", 18);
return 0;

}

Preprocessing

Using macros to create multiple implementations…

● Let’s try again!
● The Preprocessor expands our macros and the compiler has no reason to complain!

#define DEFINE_LIST(TYPE) \
typedef struct list_struct_##TYPE { \
 TYPE data; \
 struct list_struct_##TYPE* next; \
} List_##TYPE;

typedef struct list_struct_int {
int data;
struct list_struct_int* next;

} List_int;
typedef struct list_struct_double {

double data;
struct list_struct_double* next;

} List_double;

...
DEFINE_LIST(int)
DEFINE_LIST(double)
...

list.h
list.c (before preprocessor pass)

list.c (after preprocessor pass)

● There is an important limitation! Can you find it?
○ Hint: try using DEFINE_LIST with different types.

Using macros to create multiple implementations…

● Let’s try again!
● The Preprocessor expands our macros and the compiler has no reason to complain!

#define DEFINE_LIST(TYPE) \
typedef struct list_struct_##TYPE { \
 TYPE data; \
 struct list_struct_##TYPE* next; \
} List_##TYPE;

typedef struct list_struct_int {
int data;
struct list_struct_int* next;

} List_int;
typedef struct list_struct_double {

double data;
struct list_struct_double* next;

} List_double;

...
DEFINE_LIST(int)
DEFINE_LIST(double)
...

list.h
list.c (before preprocessor pass)

list.c (after preprocessor pass)

● There is an important limitation!
○ Structs and pointers are not supported! Luckily you can use typedef!

Using macros to create multiple implementations…

● Now that we are able to generate the structs required by our Data Structure
we will also generate its functions in similar fashion.

● Let’s see a more complete example…

Using macros to create multiple implementations…

#define DEFINE_LIST(TYPE) \
typedef struct list_##TYPE { \

TYPE data; \
struct list_##TYPE* next; \

} List_##TYPE; \
DEFINE_LIST_PREPEND(TYPE)

#define DEFINE_LIST_PREPEND(TYPE) \
List_##TYPE* list_##TYPE##_prepend(List_##TYPE* list, TYPE data) \
{ \

List_##TYPE* newList = malloc(sizeof(List_##TYPE)); \
newList->data = data; \
newList->next = list; \
return newList; \

}

Do note that the
DEFINE_LIST macro
creates both the required
node struct and calls the
macros that generate the
functions.

This is done for
convenience. You can
generate the functions
manually.

If you choose to generate
the functions manually, you
can bypass unused
functions, reducing the size
of the codebase.

Using macros to create multiple implementations…

● Pros:
○ Type safe

● Cons:
○ Increased code size.
○ Confusing to write. It is easy to make mistakes or forget syntactical edge cases.
○ Some limitations do exist.

A taste of C++: Templates

What is better: to be born good or to overcome your evil nature through great effort?

What is C++?

● General purpose, multi-paradigm programming language.
● Originally developed as an extension of C by Bjarne Stroustrup.

○ Has seen significant expansion and growth.
○ No longer a strict superset of C.

● Very big and complex language.
● You will learn more about it in the “Object-oriented Programming” course, next

semester.

With great power comes great responsibility

What is C++?

● A lot of C code is valid C++ code. This means that it can be compiled with a
C++ compiler.

● This is not always the case!
○ C++ has additional keywords like ‘delete’ and ‘new’.
○ C++ does not support Variable Length Arrays and Array Initializers.

■ There are other facilities to handle these usecases which we will not present.
○ C++ does not allow implicit pointer casts.

■ int* a = malloc(sizeof(int)); →int* a = (int*) malloc(sizeof(int));

● Makefiles must be modified to use:
○ CC=g++
○ CXXFLAGS instead of CFLAGS

Using templates to create multiple implementations…

● To create generic types C++ provides the Template feature. We want to use
this feature in our C code to create generic types.

○ This combination of C and C++ is known as ‘C with Templates’.
○ We will not use any other C++ feature.

● Templates work by generating code at compile time.
○ The end result of template generation is similar to what we saw in the previous section.
○ Templates are more powerful and better suited for generic types, compared to the simple text

processing done by macros.
○ Templates are easier to debug because compiler errors refer to the template instead of the

expanded version of the code.

Using templates to create multiple implementations…

template<typename T>
struct List {
 T data;
 List<T> *next;
};

#define DEFINE_LIST(TYPE) \
typedef struct list_struct_##TYPE { \
 TYPE data; \
 struct list_struct_##TYPE* next; \
} List_##TYPE;

● Every generic struct or function must be preceded by one of:
○ template<typename T> where T is the generic type that will be used (like TYPE in our macros).
○ template<> when we want to manually create an instance of our template (we will see the need for that in the live

coding segment).

list.h list.h

Note: notice the subtle difference in the definition of structs in C++.

Using templates to create multiple implementations…

template<typename T>
List<T>* list_prepend(List<T> *list, T data)
{
 List<T>* newList = (List<T>*)malloc(sizeof(List<T>*));
 newList->data = data;
 newList->next = list;
 return newList;
}

#define DEFINE_LIST_PREPEND(TYPE) \
List_##TYPE* list_##TYPE##_prepend(List_##TYPE* list, TYPE data) \
{ \

List_##TYPE* newList = malloc(sizeof(List_##TYPE)); \
newList->data = data; \
newList->next = list; \
return newList; \

}

● Every generic struct or function must be preceded by one of:
○ template<typename T> where T is the generic type that will be used (like TYPE in our macros).
○ template<> when we want to manually create an instance of our template (we will see the need for that in the live

coding segment).

list.h list.h

Using templates to create multiple implementations…

#include "list.h"

int main(void)
{
 List<int> myIntList = list_prepend(NULL, 1);
 ...
}

● There is no need to manually create the implementations for the different
types, the compiler takes care of that.

● The type of the data structure is denoted inside angled brackets <...>.

main.c

Using templates to create multiple implementations…

● Pros:
○ Type safe.
○ The compiler is able to help you write them.
○ Very powerful feature.

■ With great power comes…
● Cons:

○ Increased code size. Can lead to an exponential increase of compilation time.
○ As a C++ feature, templates require a C++ compiler. C++ is not fully compatible with C which means that you

are sacrificing some of C’s functionality (e.g., variable length arrays, array initializers) to use templates.
○ Very powerful feature.

■ … great responsibility.

Comparison

Comparison

● Using void*
○ Pros:

■ A single implementation works for all types.
○ Cons:

■ Bypasses the type system. The burden of handling types and casts falls on the programmer.
● Using Macros

○ Pros:
■ Type safe

○ Cons:
■ Increased code size.
■ Confusing to write. It is easy to make mistakes or forget syntactical edge cases.

● Using Templates
○ Pros:

■ Type safe.
■ Significantly easier to write compared to macros.

○ Cons:
■ Increased code size.
■ As a C++ feature, templates require a C++ compiler. C++ is not fully compatible with C which means that you are sacrificing

some of C’s functionality (e.g., variable length arrays, array initializers) to use templates.

Let’s discuss :-)

Σας ευχαριστούμε!

Καλή επιτυχία στην εξεταστική!

