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1 Introduction 

This is an introduction to how R can be used to perform a wide variety of multilevel analyses.  

“Multilevel analysis” is a term used to describe a set of analyses also referred to as random 

coefficient models or mixed-effects models (see Bryk & Raudenbush, 1992; Kreft & De leeuw, 

1998; Snijders & Bosker, 1999).  Random coefficient models (RCM) are well-suited to 

multilevel analyses; nonetheless, a number of multilevel analytic techniques existed before RCM 

emerged as the tool of choice and it is valuable to understand how these techniques are both 

similar to and different from RCM.  In addition, RCM analyses are often augmented by work in 

related areas such as work in within-group agreement and group-mean reliability.  Consequently, 

this document covers a wide range of inter-related topics related to multilevel analyses including: 

• Within-group agreement and reliability 

• Contextual OLS models 

• Covariance theorem decomposition 

• Random Coefficient Models or Mixed Effects Models  

• Random Group Resampling 

Because of the wide variety of topics covered in this definition of multilevel analyses, it is 

necessary to use several “packages” written for R.  The first of these packages is the “base” 

package that comes with R.  This package is automatically loaded and provides the basic 

structure of R along with routines to estimate ANOVA and regression models important in 

contextual OLS models. 

In addition to the base package, the manuscript relies heavily on a package that I developed 

conducting multilevel analyses – the multilevel package.  This package provides tools to 

estimate a wide variety of within-group agreement and reliability measures, and also provides 

data manipulation functions to facilitate multilevel and longitudinal analyses. 

Finally, the text makes considerable use of the non-linear and linear mixed-effects (nlme) 

model package, (Pinheiro & Bates, 2000).  This package is a powerful set of programs that can 

be used to estimate a variety of random coefficient models.  The programs in the nlme package 

have remarkable flexibility, allowing excellent control over statistical models.  

This document begins with a brief introduction to R.  The material in the introduction is in 

many cases lifted word-for-word from the document entitled “An Introduction to R” (see the 

copyright notice on page 2).  This brief introduction is intended to give readers a feel for R, and 

readers familiar with R should feel free to skip this material.  Following the introduction to R, 

the manuscript focuses on using R to conduct multilevel analyses. 

2 An Introduction to R 

2.1 Overview 

R is an integrated suite of software facilities for data manipulation, calculation and graphical 

display. Among other things it has:  
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• an effective data handling and storage facility,  

• a suite of operators for calculations on arrays, in particular matrices,  

• a large, integrated collection of tools for data analysis, 

• graphical facilities for data analysis and display either directly at the computer or on 

hardcopy, and  

• a well-developed and effective programming language.  

2.1.1 Related software and documentation  

R can be regarded as a re-implementation of the S language developed at AT&T by Rick 

Becker, John Chambers and Allan Wilks. A number of the books and manuals about S bear some 

relevance to R.  

The basic reference is The New S Language: A Programming Environment for Data Analysis 

and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The features of the 

1991 release of S (S version 3) are covered in Statistical Models in S edited by John M. 

Chambers and Trevor J. Hastie.  Both of these texts would be highly useful to users of R. 

 

2.1.2 R and statistics  

The developers of R think of it as an environment within which many classical and modern 

statistical techniques have been implemented. Some of these are built into the base R 

environment, but many are supplied as packages.  There are a number of packages supplied with 

R (called "standard" packages) and many more are available through the CRAN family of 

Internet sites (via http://cran.r-project.org).  

There is an important difference in philosophy between R and the other main statistical 

systems. In R a statistical analysis is normally done as a series of steps with intermediate results 

stored in objects. Thus, whereas SAS and SPSS provide detailed output files from an analysis, R 

provides minimal output and stores the results in a fit object for subsequent calls by functions 

such as summary. 

2.1.3 Obtaining R and the multilevel package 

The CRAN websites and mirrors (http: //cran.r-project.org) provide binary files for installing 

R in Windows (and other) computing environments.  The base program and a number of default 

packages can be downloaded and installed using a single executable file (*.exe). 

The base program is augmented by numerous packages.  As of the writing of this manuscript, 

the nlme package is included with the base distribution; however, the multilevel package 

needs to be obtained using the "packages" GUI option in R.  Other programs such as the 

foreign package (for importing SPSS and other types of data) and the lattice package (for 

graphics) are included as part of the base distribution.  
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2.1.4 Data permanency and removing objects 

In R, one works in an area called the “workspace.”  The workspace is a working environment 

where objects are created and manipulated.  Objects that are commonly kept in the workspace 

are (a) entire data sets (i.e. dataframes) and (b) the output of statistical analyses.  It is also 

relatively common to keep programs (i.e., functions) that do special project-related tasks within 

the workspace. 

The R commands 

> objects() 

or 

> ls() 

display the names of the objects in the workspace.  As given above, the objects() command 

lists the objects in search position 1 corresponding to the workspace (or technically the 

“.GlobalEnv” ).  The open and closed parentheses containing no content are a shortcut for (1).  

It will later become apparent that it is often useful to list objects in other search positions. 

Within the workspace, one removes objects using the rm function: 

> rm(x, y, ink, temp, foo) 

It is important to keep in mind that there are functionally two states to the objects listed in the 

workspace.  The first is permanently stored in the “.Rdata” file in the working directory and 

represents a previous save of the workspace.  The second object state is anything created during 

the current session.  These latter objects reside entirely in memory unless explicitly saved to the 

workspace “.Rdata” file.  In other words, if you fail to save the workspace after adding or 

modifying objects you create in the current session, they will NOT be there next time you start R 

and load the specific workspace. 

There are two ways to save current objects, both of which use the save.image function.  

First, one can use the “Save Workspace” option from the File menu to specify where to save the 

workspace.  This option is GUI based, and allows the user to use a mouse to specify a location.  

The other option is to call the save.image function directly from the command line, as in: 

> save.image("F:/Temp/Project 1.RData") 

In this case, the save.image function writes the objects in memory to the “Project 1.Rdata” 

file in the TEMP subdirectory on the F: Drive.  If calling save.image directly, it is advisable 

to end the file name with ".RData" so that R recognizes the file as an R workspace. 

2.1.5 Running R for Different Projects 

As one develops proficiency with R, the program will inevitably end up being used for 

multiple projects.  It will become necessary, therefore, to keep separate workspaces.  Each 

workspace will likely contain one or more related datasets, model results and programs written 

for specific projects. 
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For instance, I use R to analyze data files for manuscripts that are being written, revised and 

(theoretically) eventually published.   Often because of the length of the review process it may be 

several months before returning to a specific project.  Consequently, I have found it helpful to 

store the R Workspace and analysis script in the same location as the manuscript so the data and 

statistical models supporting the manuscript are immediately at hand.  To save workspaces, 

follow these steps: 

 

1. Keep your initial workspace empty – no objects 

2. Import the raw data (more on this later) and perform the analyses. 

3. From the File menu, select “Save Workspace” and save the workspace in a project folder 

with a name of your choosing (but with an extension of .RData). 

 

By working keeping separate workspaces, all data objects and analysis objects will be 

available for subsequent analyses and there will be no need to import the data more than once. 

 

2.1.6 Recall and correction of previous commands 

Under Windows, R provides a mechanism for recalling and re-executing previous commands. 

The vertical arrow keys on the keyboard can be used to scroll forward and backward through a 

command history. Once a command is located in this way, the cursor can be moved within the 

command using the horizontal arrow keys, and characters can be removed with the DEL key or 

added with the other keys. 

2.1.7 Getting help with functions and features 

R has a built in help facility. To get more information on any specific named function, for 

example solve, the command is 

> help(solve) 

An alternative is 

> ?solve 

For a feature specified by special characters, the argument must be enclosed in double or 

single quotes, making it a "character string": 

> help("[[") 

Either form of quote mark may be used to escape the other, as in the string "It's important". 

Our convention is to use double quote marks for preference. 

Searches of help files can be conducted using the help.search function.  For instance, to 

find functions related to regression one would type: 

> help.search("regression") 
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2.1.8 R commands, case sensitivity, etc. 

Technically R is an expression language with a very simple syntax. It is case sensitive, so “A” 

and “a” are different symbols and would refer to different variables. 

Elementary commands consist of either expressions or assignments. If an expression is given 

as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an 

expression and passes the value to a variable but the result is not automatically printed. 

Commands are separated either by a semi-colon (‘;’), or by a new line. Elementary commands 

can be grouped together into one compound expression by braces (‘{’ .. ‘}’).  Comments can be 

put almost anywhere, starting with a hashmark (‘#’), everything to the end of the line is a 

comment. 

If a command is not complete at the end of a line, R will give a different prompt, by default 

+ 

on second and subsequent lines and continue to read input until the command is syntactically 

complete. In providing examples, this document will generally omit the continuation prompt and 

indicate continuation by simple indenting. 

2.2 Simple manipulations; numbers and vectors 

2.2.1 Vectors and assignment 

R operates on named data structures. The simplest such structure is the numeric vector, which 

is a single entity consisting of an ordered collection of numbers. To set up a vector named x, say, 

consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command 

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

This is an assignment statement using the function c() which in this context can take n 

arbitrary number of vector arguments and whose value is a vector gotten by concatenating its 

arguments end to end. 

A number occurring by itself in an expression is taken as a vector of length one. Notice that 

the assignment operator (‘<-‘) consists of the two characters ‘<’ (“less than”) and ‘-’(“minus”) 

occurring strictly side-by-side and it ‘points’ to the object receiving the value of the expression.  

In current versions of R, assignments can also be made using the = sign. 

> x=c(10.4, 5.6, 3.1, 6.4, 21.7) 

Assignments can also be made in the other direction, using the obvious change in the 

assignment operator. So the same assignment could be made using 

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

If an expression is used as a complete command, the value is printed and lost. So now if we 

were to issue the command 

> 1/x 
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the reciprocals of the five values would be printed at the screen (and the value of x, of course, 

unchanged). 

The further assignment 

> y <- c(x, 0, x) 

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle 

place. 

2.2.2 Missing values 

In some cases the components of a vector may not be completely known. When an element or 

value is “not available” or a “missing value” in the statistical sense, a place within a vector may 

be reserved for it by assigning it the special value NA. In general, any operation on an NA 

becomes an NA. The motivation for this rule is simply that if the specification of an operation is 

incomplete, the result cannot be known and hence is not available. 

Many of the functions in R have options for handling missing values such as 

na.action=na.omit or na.rm=T (both of which remove or omit the missing values and 

run the analyses on the non-missing data).  Details on how to handle missing values are in the 

help files associated with specific functions. 

Most of the functions in the multilevel package (that we will discuss in detail later) require 

data that have no missing values.  To create such data, one may make use of the na.exclude 

function.  The object returned from na.exclude is a new dataframe that has listwise deletion 

of missing values.  So 

> TDATA<-na.exclude(DATA) 

will produce a dataframe TDATA that contains no missing values.  The TDATA dataframe can 

then be used subsequent analyses.  Practically speaking, it rarely makes sense to use 

na.exclude on an entire dataframe; rather, one typically selects a subset of variables upon 

which to apply na.exclude such as na.exclude(DATA[,c("var1","var2")]).  We 

discuss dataframes and how to select parts of a dataframe in more detail in the next section. 

2.3 Dataframes 

2.3.1 Introduction to dataframes 

A dataframe is an object that stores data.  Dataframes have multiple columns representing 

different variables and multiple rows representing different observations.  The columns can be 

numeric vectors or non-numeric vectors, however each column must have the same number of 

observations.  Thus, for all practical purposes one can consider dataframes to be spreadsheets 

with the limitation that each column must have the same number of observations. 

Dataframes may be displayed in matrix form, and its rows and columns extracted using matrix 

indexing conventions.  This means, for example, that one can access specific rows and columns 

of a dataframe using brackets [rows, columns].  For example to access rows 1-3 and all columns 

of a dataframe object named TDAT 

> TDAT[1:3,] 
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To access rows 1:3 and columns 1,5 and 8 

> TDAT[1:3,c(1,5,8)] 

We will consider matrix bracket manipulations in more detail with a specific example in section 

2.5. 

2.3.2 Making dataframes 

Dataframes can be created using the data.frame function.  The following example makes 

a dataframe object called accountants. 

 
> accountants<-data.frame(home=c("MD","CA","TX"),income=c(45000, 

+ 55000,60000),car=c("honda","acura","toyota")) 

> accountants 

  home income    car 

1   MD  45000  honda 

2   CA  55000  acura 

3   TX  60000 toyota 

In practice, however, one will generally make dataframes from existing files using data 

importing functions such as read.table, read.csv or read.spss.  These functions 

read data sets from external files and create dataframes.  We discuss these types of functions in 

section 2.4. 

2.3.3 Using attach() and detach() 

The $ operator can be used to access specific components of dataframes.  For instance, 

accountants$car returns the car column within the dataframe accountants.  

Sometimes it is useful to make the components of a list or dataframe temporarily visible as 

variables under their component name, without the need to quote the list name explicitly each 

time. 

The attach() function, as well as having a directory name as its argument, may also have a 

dataframe. Thus  

> attach(accountants) 

places the dataframe in the search path at position 2.  In this case if there are no variables home, 

income or car in position 1, then the dataframe accountants is searched and home, 

income or car are available as variables in their own right.  In general, I do not recommend 

attaching specific dataframes just so that one can use short names such as "car" instead of the 

longer names "accountants$car".  While it is theoretically a time saving option, my 

experience shows that it can lead to unanticipated consequences when one has fairly complex 

workspaces with several objects having similar names.  Though a little more time consuming, it 

is better to be explicit about where specific objects are located using the $ notation. 

To detach a dataframe, use  

> detach() 
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More precisely, this statement detaches from the search path the entity currently at position 2. 

Entities at positions greater than 2 on the search path can be detached by giving their number to 

detach, but it is much safer to always use a name, for example by detach(accountants). 

To make a permanent change to the dataframe itself, the simplest way is to resort once 

again to the $ notation: 
 

> accountants$income2<-accountants$income+100 

> accountants 

  home income    car income2 

1   MD  45000  honda   45100 

2   CA  55000  acura   55100 

3   TX  60000 toyota   60100 

2.3.4 Managing the search path 

The function search shows the current search path and so is a useful way to keep track of 

what has been attached.  Initially, it gives the global environment in search position 1 followed 

by various packages that are automatically loaded (actual results may vary depending upon the 

specific version of R). 
 

> search() 

[1] ".GlobalEnv"       "package:methods"  "package:stats"    

[4] "package:graphics" "package:utils"    "Autoloads"        

[7] "package:base" 

where .GlobalEnv is the workspace.   Basically, the search path means that if you type in an 

object such as car the program will look for something named car first in the workspace, then 

in the package methods, then in the package stats, etc.  Because car does not exist in any 

of these places, the following error message will be returned: 

 
> car 

Error: Object "car" not found 

If one attaches the dataframe accountants; however, the search path changes as follows: 
 

> attach(accountants) 

> search() 

[1] ".GlobalEnv"       "accountants"      "package:methods"  

[4] "package:stats"    "package:graphics" "package:utils"    

[7] "Autoloads"        "package:base" 

In this case, typing car at the command prompt returns: 
> car 

[1] honda  acura  toyota 

Levels: acura honda toyota 

It is often useful to see what objects exist within various components of the search path.  The 

function objects() with the search position of interest in the parentheses can be used to 

examine the contents of any object in the search path.  For instance to see the contexts of search 

position 2 one types: 
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> objects(2) 

[1] "car"     "home"    "income"  "income2" 

Finally, we detach the dataframe and confirm it has been removed from the search path. 

> detach("accountants") 

> search() 

[1] ".GlobalEnv"       "package:methods"  "package:stats"    

[4] "package:graphics" "package:utils"    "Autoloads"        

[7] "package:base" 

 

2.4 Reading data from files 

In R sessions, large data objects will almost always be read from external files and stored as 

dataframes.  There are several options available to read external files. 

If variables are stored in spreadsheets such as EXCEL, entire dataframes can be read directly 

using the function read.table() and variants such as read.csv() and read.delim().  

The help file for read.table() discusses the variants of read.table() in detail. 

If variables are stored in other statistical packages such as SPSS or SAS, then the foreign 

package provides useful programs for importing the data.  This document will illustrate 

importing spreadsheet data and SPSS data. 

2.4.1 Reading Spreadsheet (EXCEL) data 

External spreadsheets normally have this form. 

•  The first line of the file has a name for each variable. 

•  Each additional line of the file has values for each variable. 

So the first few lines of a spreadsheet data might look as follows. 

 
UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1044B 1ST 4 5 5 5 5 

1044B 1ST 3 NA 5 5 5 

1044B 1ST 2 3 3 3 3 

1044B 2ND 3 4 3 4 4 

1044B 2ND 4 4 3 4 4 

1044B 2ND 3 3 2 2 1 

1044C 1ST 3 3 3 3 3 

1044C 1ST 3 1 4 3 4 

1044C 2ND 3 3 3 3 3 

1044C 2ND 2 2 2 3 2 

1044C 2ND 1 1 1 3 3 
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One of the most reliable ways to import any type of data into R is to use EXCEL to process 

the data file into a comma delimited (*.csv) format. Note that most statistical packages (SAS, 

SPSS) can save data as an EXCEL file.  Users who use SPSS and export data to EXCEL may 

encounter the error type value marker "#NULL!" for missing values.  This value must be 

changed to NA as under the second entry under COH02 in the example above to avoid problems 

in R.  In addition, all blank spaces and any other missing value markers should be replaced with 

NA to facilitate dataframe creation. 

Once the comma delimited file is created using the “Save As” feature in EXCEL one can 

import it into R using either the read.table() or the read.csv() function.  For instance, 

if the file above is saved as “cohesion.csv” in the root directory of C: (C:\) the function 

read.table() can be used to read the dataframe directly 

>cohesion<-read.table("c:\\cohesion.csv", "header=T", sep=",") 

Alternatively, one can use read.csv() 

>cohesion<-read.csv("c:\\cohesion.csv","header=T") 

Note that subdirectories are designated using the double slash instead of a single slash, also 

recall that R is case sensitive. 

Typing in the name of the cohesion object displays all of the data: 

 
> cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

 

2.4.2 The extremely useful "clipboard" option  

In R, users can directly read and write data to a Windows clipboard.  This can be a 

tremendous time saving feature for it allows users to export and import data into EXCEL and 

other programs without saving intermediate files. 

For instance, to read cohesion into R directly from EXCEL, one would: 

1.  Open the cohesion.xls file in EXCEL 

2.  Select and copy the relevant cells in Windows (Ctrl-C) 

3.  Issue the R command: 

 
> cohesion<-read.table(file="clipboard",sep="\t",header=T) 
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The file "clipboard" instructs read.table to read the file from the Windows 

clipboard, and the separator option of "\t" notifies read.table that elements are separated 

by tabs. 

Because the "clipboard" option also works with write.table, (see section 2.4.7) it can 

be a useful way to export the results of data analyses to EXCEL or other programs.  For instance, 

if we create a correlation matrix from the cohesion data set, we can export this correlation table 

directly to EXCEL. 

 
> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs") 

> CORMAT 

          COH01     COH02     COH03     COH04     COH05 

COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426 

COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316 

COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837 

COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961 

COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000 

 

> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA) 

 

Going to EXCEL and issuing the "paste" command will put the matrix into the EXCEL 

worksheet.  Note the somewhat counter-intuitive use of col.names=NA in this example.  This 

command does not mean omit the column names (that would be achieved by col.names=F), 

instead the command puts an extra blank in the first row of the column names to line up the 

column names with the correct columns.  Alternatively, one can use the option row.names=F 

to omit the row numbers. 

In certain cases, written objects may be too large for the default memory limit of the 

Window’s clipboard (32K).  For instance, if one moves the bh1996 dataset from the 

multilevel package with the intent of writing it to EXCEL, the following error (truncated) is 

returned: 

 
> library(multilevel) 

> data(b1996)  #Bring data from the library to the workspace 

> write.table(bh1996,file="clipboard",sep="\t",col.names=NA) 

Warning message: 

In write.table(x, file, nrow(x),... as.integer(quote),  : 

  clipboard buffer is full and output lost 

   

To increase the size of the clipboard to 1.5MG (or any other arbitrary size), the 

"clipboard" option can be modified as follows:  "clipboard-1500".  Note that the 

options surrounding the use of the clipboard are specific to various operating systems and 

may change with different versions of R so it will be worth periodically referring to the help 

files.  

2.4.3 The foreign package and SPSS files 

Included in current versions of R is the foreign package.  This package contains functions 

to import SPSS, SAS, Stata and minitab files. 
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> library(foreign) 

> search() 

 [1] ".GlobalEnv"         "package:foreign"    "package:multilevel" 

 [4] "package:methods"    "package:stats"      "package:graphics"   

 [7] "package:grDevices"  "package:utils"      "package:datasets"   

[10] "Autoloads"          "package:base" 

    

> objects(2) 

 [1] "data.restore"  "lookup.xport"  "read.dbf"      "read.dta"      

 [5] "read.epiinfo"  "read.mtp"      "read.octave"   "read.S"        

 [9] "read.spss"     "read.ssd"      "read.systat"   "read.xport"    

[13] "write.dbf"     "write.dta"     "write.foreign" 

For example, if the data in cohesion is stored in an SPSS sav file in a TEMP directory, then 

one could issue the following command to read in the data (text following the # mark is a 

comment): 
 

> help(read.spss)     #look at the documentation on read.spss 

> cohesion2<-read.spss("c:\\temp\\cohesion.sav")   

> cohesion2       #look at the cohesion object 
$UNIT 

 [1] "1044B" "1044B" "1044B" "1044B" "1044B" "1044B" "1044C" "1044C" "1044C" 

[10] "1044C" "1044C" 

$PLATOON 

 [1] "1ST" "1ST" "1ST" "2ND" "2ND" "2ND" "1ST" "1ST" "2ND" "2ND" "2ND" 

$COH01 

 [1] 4 3 2 3 4 3 3 3 3 2 1 

$COH02 

 [1]  5 NA  3  4  4  3  3  1  3  2  1 

$COH03 

 [1] 5 5 3 3 3 2 3 4 3 2 1 

$COH04 

 [1] 5 5 3 4 4 2 3 3 3 3 3 

$COH05 

 [1] 5 5 3 4 4 1 3 4 3 2 3 

attr(,"label.table") 

attr(,"label.table")$UNIT 

NULL 

attr(,"label.table")$PLATOON 

NULL 

attr(,"label.table")$COH01 

NULL 

attr(,"label.table")$COH02 

NULL 

attr(,"label.table")$COH03 

NULL 

attr(,"label.table")$COH04 

NULL 

attr(,"label.table")$COH05 

NULL 

The cohesion2 object is stored as a list rather than a dataframe.  With the default options, 

read.spss function imports the file as a list and reads information about data labels.  In 

almost every case, users will want to convert the list object into a dataframe for manipulation in 

R.  This can be done using the data.frame command. 
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> cohesion2<-data.frame(cohesion2) 

> cohesion2 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

Alternatively, users can change the default options in read.spss to read the data directly 

into a dataframe.  Note the use of use.value.labels=F and to.data.frame=T below: 

 
> cohesion2<-read.spss("c:\\temp\\cohesion.sav", 

use.value.labels=F, to.data.frame=T) 

> cohesion2 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

 

The cohesion dataframe (made using the EXCEL and csv files) and cohesion2 

(imported from SPSS) are now identical. 

2.4.4 Using file.choose to bring up a GUI to read data 

One limitation with using command lines to specify where files are located is that in complex 

directory structures it can be hard to specify the correct location of the data.  For instance, if data 

are embedded several layers deep in subdirectories, it may be difficult to specify the path.  In 

these cases, the file.choose function is a useful way to identify the file.  The 

file.choose function opens a Graphical User Interface (GUI) dialogue box allowing one to 

select files using the mouse.  The choose.files function can be embedded within any 

function where one has to specifically identify a file.  So, for instance, one can use 

file.choose with read.spss: 
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> cohesion2<-read.spss(file.choose(), 

+ use.value.labels=F, to.data.frame=T) 

 

Notice how "file.choose()" replaces "c:\\temp\\cohesion.sav" used in the 

final example in section 2.4.3.  With the use of file.choose a GUI dialogue box opens 

allowing one to select a specific SPSS sav file. 

2.4.5 Checking your dataframes with str , summary, and head 

With small data sets it is easy to verify that the data has been read in correctly.  Often, 

however, one will be working with large data sets that are difficult to visual verify.  

Consequently, functions such as str (structure), summary and head provide easy ways to 

examine dataframes. 
 
> str(cohesion) 

`data.frame':   11 obs. of  7 variables: 

$ UNIT   : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ... 

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ... 

 $ COH01  : int  4 3 2 3 4 3 3 3 3 2 ... 

 $ COH02  : int  5 NA 3 4 4 3 3 1 3 2 ... 

 $ COH03  : int  5 5 3 3 3 2 3 4 3 2 ... 

 $ COH04  : int  5 5 3 4 4 2 3 3 3 3 ... 

 $ COH05  : int  5 5 3 4 4 1 3 4 3 2 ... 

 

> summary(cohesion) 

    UNIT   PLATOON     COH01           COH02          COH03       

 1044B:6   1ST:5   Min.   :1.000   Min.   :1.00   Min.   :1.000   

 1044C:5   2ND:6   1st Qu.:2.500   1st Qu.:2.25   1st Qu.:2.500   

                   Median :3.000   Median :3.00   Median :3.000   

                   Mean   :2.818   Mean   :2.90   Mean   :3.091   

                   3rd Qu.:3.000   3rd Qu.:3.75   3rd Qu.:3.500   

                   Max.   :4.000   Max.   :5.00   Max.   :5.000   

                                   NA's   :1.00                   

     COH04           COH05       

 Min.   :2.000   Min.   :1.000   

 1st Qu.:3.000   1st Qu.:3.000   

 Median :3.000   Median :3.000   

 Mean   :3.455   Mean   :3.364   

 3rd Qu.:4.000   3rd Qu.:4.000   

 Max.   :5.000   Max.   :5.000 

 

> head(cohesion)  #list the first six rows of data in a dataframe 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

2 1044B     1ST     3    NA     5     5     5 

3 1044B     1ST     2     3     3     3     3 

4 1044B     2ND     3     4     3     4     4 

5 1044B     2ND     4     4     3     4     4 

6 1044B     2ND     3     3     2     2     1  
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2.4.6 Loading data from packages 

One of the useful attributes of R is that the data used in the examples are almost always 

available to the user.  These data are associated with specific packages.  For instance, the 

multilevel package uses a variety of data files to illustrate specific functions.  To gain access to 

these data, one uses the data command:   

>data(package="multilevel") 

This command lists the data sets associated with the multilevel package, and the command 

>data(bh1996, package="multilevel") 

copies the bh1996 data set to the workspace making it possible to work with the bhr2000 

dataframe. 

If a package has been attached by library, its datasets are automatically included in the search, 

so that  

>library(multilevel) 

attaches the multilevel package; 

>data() 

lists all of available data sets in the multilevel package and in other packages, and  

>data(bh1996) 

copies the data from the package to the workspace without requiring explicit specification of the 

package.  

2.4.7 Exporting data to spreadsheets using write() and write.table() 

There are likely to be occasions when it is useful to export data from R to spreadsheets.  There 

are two functions that are useful for exporting data -- the write function and the 

write.table function.  The write function is useful when one wants to export a vector 

while the write.table function is useful for exporting dataframes or matrices.  Below both 

will be illustrated. 

Let us assume that we were interested in calculating the average hours worked for the 99 

companies in the bh1996 data set, and then exporting these 99 group means to a spreadsheet.  

To calculate the vector of 99 group means and write them out to a file we can issue the following 

commands: 

> HRSMEANS<-tapply(bh1996$HRS,bh1996$GRP,mean) 

> write(HRSMEANS,file="c:\\temp\\ghours.txt",ncolumns=1)  

The tapply command subdivides HRS by GRP, and then performs the function mean on 

the HRS data for each group.  This command is similar to the aggregate function that will be 

discussed in more detail in section 3.2.2.  The write function takes the 99 group means stored 
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in the object HRSMEANS, and writes them to a file in the "c:\temp" subdirectory called 

ghours.txt.  It is important to use the ncolumns=1 option or else the write function will 

default to five columns.  The ghours.txt file can be read into any spreadsheet as a vector of 99 

values. 

The write.table function is similar to the write function, except that one must specify 

the character value that will be used to separate columns.  Common choices include tabs 

(designated as \t) and commas.  Of these two common choices, commas are likely to be most 

useful in exporting dataframes or matrices to spreadsheets because programs like Microsoft 

EXCEL automatically read in comma delimited or csv files.  Below I export the entire bh1996 

dataframe to a comma delimited file that can be read directly into Microsoft EXCEL. 

> write.table(bh1996,file="c:\\temp\\bhdat.csv",sep=",", 

row.names=F) 

Notice the use of the sep="," option and also the row.names=F option.  The 

row.names=F stops the program from writing an additional column of row names typically 

stored as a vector from 1 to the number of rows.   Omitting this column is important because it 

ensures that the column names match up with the correct columns.  Recall from section 2.4.2 that 

one can use the "file=clipboard" option to directly write to Window's clipboard. 

2.5 More on using matrix brackets on dataframes 

At this point, it may be useful to reconsider the utility of using matrix brackets to access 

various parts of cohesion (see also section 2.3.1).  While this may initially appear 

cumbersome, mastering the use of matrix brackets provides considerable control over ones' 

dataframe. 

Recall that one accesses various parts of the dataframe via [rows, columns].  So, for instance, 

we can access rows 1,5,and 8 and columns 3 and 4 of the cohesion dataframe as follows: 

 
> cohesion[c(1,5,8),3:4] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 

Alternatively, we can specify the column names (this helps avoid picking the wrong columns) 

 
> cohesion[c(1,5,8),c("COH01","COH02")] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 

It is often useful to pick specific rows that meet some criteria.  So, for example, we might want 

to pick rows that are from the 1ST PLATOON 
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> cohesion[cohesion$PLATOON=="1ST",] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

2 1044B     1ST     3    NA     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

Upon inspection, we might want to further refine our choice and exclude missing values.  We do 

this by adding another condition using AND operator "&" 

 
> cohesion[cohesion$PLATOON=="1ST"&is.na(cohesion$COH02)==F,] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

By using matrix brackets, one can easily and quickly specify particular portions of a dataframe 

that are of interest. 

 

2.6 Identifying Statistical models in R 

This section presumes the reader has some familiarity with statistical methodology, in 

particular with regression analysis and the analysis of variance.  Almost all statistical models 

from ANOVA to regression to random coefficient models are specified in a common format.  

The format is DV ~ IV1+IV2+IV3.  In a regression model this dictates that the dependent 

variable (DV) will be regressed on three independent variables.  By using + between the IV's, the 

model is requesting only main effects.  If the IVs were separated by the * sign, it would 

designate both main effects and interactions (all two and three-way interactions in this case). 

2.6.1 Examples 

A few examples may be useful in illustrating some other aspects of model specification.  

Suppose y,  x, x0, x1 and x2 are numeric variables, and A, B, and C are factors or 

categorical variables. The following formulae on the left side below specify statistical models as 

described on the right. 
 

y ~ x   

y ~ 1 + x Both imply the same simple linear regression model of y on x. The first has an implicit 

intercept term, and the second an explicit one. 

 

y ~ A  Single classification analysis of variance model of y, with classes determined by A. 

Basically a one-way analysis of variance. 

 

y ~ A + x  Single classification analysis of covariance model of y, with classes determined by A, 

and with covariate x.  Basically an analysis of covariance. 
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2.6.2 Linear models 

The basic function for fitting ordinary multiple regression models is lm(), and a streamlined 

version of the call is as follows: 

> fitted.model <- lm(formula, data = data.frame) 

For example 

> fm2 <- lm(y ~ x1 + x2, data = production) 

would fit a multiple regression model of y on x1 and x2 (with implicit intercept term).  The 

important but technically optional parameter data = production specifies that any 

variables needed to construct the model should come first from the production dataframe.  This is 

the case regardless of whether the dataframe production has or has not been attached on the 

search (see section 2.3.3). 

2.6.3 Generic functions for extracting model information 

The object created by lm() is a fitted model object; technically a list of results of class "lm". 

Information about the fitted model can then be displayed, extracted, plotted and so on by using 

generic functions that orient themselves to objects of class "lm". These include: 

add1   coef     effects  kappa   predict  residuals 

alias  deviance family   labels  print    step 

anova  drop1    formula  plot    proj     summary 

A brief description of the most commonly used ones is given below. 

 
coefficients(object) 

Extract the regression coefficients. 

Short form: coef(object). 

 

plot(object) 

Produce four plots, showing residuals, fitted values and some diagnostics. 

 

predict(object, newdata=data.frame) 

The dataframe supplied must have variables specified with the same labels as 

the original. The value is a vector or matrix of predicted values corresponding 

to the determining variable values in data.frame. 

 

print(object) 

Print a concise version of the object. Most often used implicitly. 

 

residuals(object) 

Extract the (matrix of) residuals, weighted as appropriate. 

Short form: resid(object). 
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summary(object) 

Print a comprehensive summary of the results of the regression analysis.  The summary 

function is widely used to extract more information from objects whether the objects 

are dataframes or products of statistical functions. 

2.7 Graphical procedures 

Graphical facilities are an important and extremely versatile component of the R environment. 

It is possible to use the facilities to display a wide variety of statistical graphs and also to build 

entirely new types of graphs.  The graphics facilities can be used in both interactive and batch 

modes, but in most cases, interactive use is more productive. Interactive use is also easy because 

at startup time R initiates a graphics device driver that opens a special graphics window for the 

display of interactive graphics. Although this is done automatically, it is useful to know that the 

command used is windows() under Windows. Once the device driver is running, R plotting 

commands can be used to produce a variety of graphical displays and to create entirely new 

kinds of display. 

 

2.7.1 The plot() function 

One of the most frequently used plotting functions in R is the plot() function. This is a 

generic function: the type of plot produced is dependent on the type or class of the first 

argument. 
 

plot(x, y) If x and y are vectors, plot(x, y) produces a scatterplot of y against x.  

 

plot(df) 

plot(~ a+b+c, data=df) 

plot(y ~ a+b+c, data=df) 

where df is a dataframe. The first example produces scatter plots of all of the 

variables in a dataframe.  The second produces scatter plots for just the three named 

variables (a, b and c). The third example plots y against a, b and c. 

 

2.7.2 Displaying multivariate data 

R provides two very useful functions for representing multivariate data. If X is a numeric 

matrix or dataframe, the command 

> pairs(X) 

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is, every 

column of X is plotted against every other column of X and the resulting n(n - 1) plots are 

arranged in a matrix with plot scales constant over the rows and columns of the matrix. 

When three or four variables are involved a coplot may be more enlightening. If a and b are 

numeric vectors and c is a numeric vector or factor object (all of the same length), then the 

command 

> coplot(a ~ b | c) 
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produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply 

means that a is plotted against b for every level of c. When c is numeric, it is divided into a 

number of conditioning intervals and for each interval a is plotted against b for values of c within 

the interval. The number and position of intervals can be controlled with given.values= 

argument to coplot() -- the function co.intervals() is useful for selecting intervals. 

You can also use two given variables with a command like 

> coplot(a ~ b | c + d) 

which produces scatterplots of a against b for every joint conditioning interval of c and d. The 

coplot() and pairs() function both take an argument panel= which can be used to 

customize the type of plot which appears in each panel. The default is points() to produce a 

scatterplot but by supplying some other low-level graphics function of two vectors x and y as the 

value of panel= you can produce any type of plot you wish. An example panel function useful 

for coplots is panel.smooth(). 

 

2.7.3 Advanced Graphics and the lattice package 

An advanced graphics package called lattice is included with the base program.  The 

lattice package is an implementation of trellis graphics designed specifically for R that 

provides presentation quality graphics.  Below is an example involving creating a histogram of 

1000 random numbers.   

> library(lattice) 

> histogram(rnorm(1000),nint=30,xlab="1000 Random Numbers", 

 col="sky blue") 
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Another example taken from Bliese and Halverson (2002) provides an even better 

demonstration of the graphics capabilities of R and the lattice package.  This example 

illustrates a two-way interaction on a three dimensional surface. 

 
> library(multilevel) 

> data(lq2002) 

> TDAT<-lq2002[!duplicated(lq2002$COMPID),] 

> tmod<-lm(GHOSTILE~GLEAD*GTSIG,data=TDAT) 

> TTM<-seq(min(TDAT$GLEAD),max(TDAT$GLEAD),length=25) 

> TTV<-seq(min(TDAT$GTSIG),max(TDAT$GTSIG),length=25) 

> TDAT2<-list(GLEAD=TTM,GTSIG=TTV) 

> grid<-expand.grid(TDAT2) 

> fit<-predict(tmod,grid) 

> wireframe(fit~GLEAD*GTSIG, data=grid,col="steelblue4", 

  screen = list(z = -30, x = -60), 

  xlab=list("Leadership \n Climate", 

  cex=1.5),ylab=list("   Task \n    Significance",cex=1.5), 

  zlab=list("Hostility  ",cex=1.5),scales=list(arrows=F), 

  shade=T,colorkey=F) #or use drape=T instead of shade=T 
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3 Multilevel Analyses 

The remainder of this document illustrates how R can be used in multilevel modeling 

beginning with several R functions particularly useful for preparing data for subsequent analyses.  

Following data preparation, the manuscript covers: 

• Within-group agreement and reliability 

• Contextual OLS models 

• Covariance theorem decomposition 

• Random coefficient modeling or mixed effects models 

The discussion of within-group agreement and the covariance theorem decomposition also 

includes sections on Random Group Resampling (or RGR).  RGR is a resampling technique that 

is useful in contrasting actual group results to pseudo-group results (see Bliese & Halverson, 

2002; Bliese, Halverson & Rothberg, 2000). 

3.1 Attaching the multilevel and nlme packages 

Many of the features in the following sections assume that the multilevel and nlme 

packages are accessible in R.  Recall that multilevel package is not distributed with the base 

installation and needs to be retrieved using the "packages" GUI option in R.  Also recall that 

once retrieved, the package is attached in R using the library command: 

> library(multilevel) 

By default, the nlme  and MASS packages are loaded when the multilevel package is 

loaded as several of the functions in the multilevel package depend on nlme and MASS.   

3.2 Helpful multilevel data manipulation functions 

3.2.1 The merge Function 

One of the key data manipulation tasks that must be accomplished prior to estimating several 

of the multilevel models (specifically contextual models and random coefficient models) is that 

group-level variables must be “assigned down” to the individual.  To make a dataframe 

containing both individual and group-level variables, one typically begins with two separate 

dataframes.  One dataframe contains individual-level data, and the other dataframe contains 

group-level data.  By combining these two dataframes using a group identifying variable 

common to both, one is able to create a single data set containing both individual and group data.  

In R, combining dataframes is accomplished using the merge function. 

  For instance, let us consider the cohesion data introduced when showing how to read data 

from external files.  The cohesion data is included as a multilevel data set, so we can use it 

without having to use read.csv or read.table (see section 2.4.1). 

 
> data(package="multilevel") 

Data sets in package `multilevel': 

bhr2000                 Bliese Halverson and Rothberg (2000) 
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  agreement data 

bh1996                  Bliese and Halversion (1996) data 

cohesion                Platoon Cohesion file 

klein2000               Klein et al. (2000) simulation data 

univbct                 Univariate form data for growth modeling 

                        examples 

To copy the cohesion dataframe from the multilevel library in the immediate working 

environment, use the data() command: 

 
>data(cohesion) 

 >cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

Now assume that we have another dataframe with platoon sizes.  We can create this dataframe 

as follows: 

 
> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"), 

PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3)) 

> group.size  #look at the group.size dataframe 

   UNIT PLATOON PSIZE 

1 1044B     1ST     3 

2 1044B     2ND     3 

3 1044C     1ST     2 

4 1044C     2ND     3 

To create a single file (new.cohesion) that contains both individual and platoon 

information, use the merge command. 

 
> new.cohesion<-merge(cohesion,group.size, 

  by=c("UNIT","PLATOON")) 

> new.cohesion 

     UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE 

1  1044B     1ST     4     5     5     5     5     3 

2  1044B     1ST     3    NA     5     5     5     3 

3  1044B     1ST     2     3     3     3     3     3 

4  1044B     2ND     3     4     3     4     4     3 

5  1044B     2ND     4     4     3     4     4     3 
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6  1044B     2ND     3     3     2     2     1     3 

7  1044C     1ST     3     3     3     3     3     2 

8  1044C     1ST     3     1     4     3     4     2 

9  1044C     2ND     3     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2     3 

11 1044C     2ND     1     1     1     3     3     3 

Notice that every individual now has a value for PSIZE – a value that reflects the number of 

individuals in the platoon. 

In situations where there is a unique group identifier, the by option can be simplified to 

include just one variable.  For instance, if the group-level data had reflected values for each 

UNIT instead of PLATOON nested in unit, the by option would simply read by="UNIT".  

3.2.2 The aggregate function 

In many cases in multilevel analyses, one will be interested in creating a group-level variable 

from individual responses.  For example, one might be interested in calculating the group mean 

and reassigning it back to the individual.   In these cases, the aggregate function in 

combination with the merge function is particularly useful.  In our cohesion example, for 

instance, we want to have the platoon means for variables COH01 and COH02 reassigned back 

to the individuals. 

The first step in this process is to create a group-level file.  Creating this file is where one uses 

the aggregate function.  The aggregate function has three key arguments.  The first 

argument is a vector or matrix of variables that one wants to convert to group-level variables.  

Second is the grouping variable(s) included as a list, and third is the function (mean, var, 

length, etc.) executed on the variables.  To calculate the means of COH01 and COH02 

(columns 3 and 4 of the cohesion dataframe) issue the command:  

 
>TEMP<-aggregate(cohesion[,3:4], 

list(cohesion$UNIT,cohesion$PLATOON),mean) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000       NA 

2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

Notice that COH02 has an “NA” value for the mean.  This is because there was a missing 

value in the individual-level file.  If we decide to base the group mean on the non-missing group 

values we can add the parameter na.rm=T, to designate that NA values should be removed 

prior to calculating the group mean. 

 
> TEMP<-aggregate(cohesion[,3:4], 

list(cohesion$UNIT,cohesion$PLATOON),mean,na.rm=T) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000 4.000000 
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2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

To merge the TEMP dataframe with the new.cohesion dataframe, we must change the 

names of the group identifiers in the TEMP frame to match the group identifiers in the 

new.cohesion dataframe. We also want to change the names of COH01 and COH02 to 

reflect the fact that they are group means.  We will use “G.” to designate group mean. 

> names(TEMP)<-c("UNIT","PLATOON","G.COH01","G.COH02") 

Finally, we merge TEMP up with new.cohesion to get the complete data set. 
 

> final.cohesion<-merge(new.cohesion,TEMP, 

by=c("UNIT","PLATOON")) 
> final.cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE  G.COH01  G.COH02 

1  1044B     1ST     4     5     5     5     5     3 3.000000 4.000000 

2  1044B     1ST     3    NA     5     5     5     3 3.000000 4.000000 

3  1044B     1ST     2     3     3     3     3     3 3.000000 4.000000 

4  1044B     2ND     3     4     3     4     4     3 3.333333 3.666667 

5  1044B     2ND     4     4     3     4     4     3 3.333333 3.666667 

6  1044B     2ND     3     3     2     2     1     3 3.333333 3.666667 

7  1044C     1ST     3     3     3     3     3     2 3.000000 2.000000 

8  1044C     1ST     3     1     4     3     4     2 3.000000 2.000000 

9  1044C     2ND     3     3     3     3     3     3 2.000000 2.000000 

10 1044C     2ND     2     2     2     3     2     3 2.000000 2.000000 

11 1044C     2ND     1     1     1     3     3     3 2.000000 2.000000 

With the aggregate and merge functions, one has the tools necessary to manipulate data 

and prepare it for subsequent multilevel analyses (excluding growth modeling which I consider 

later).  Note that I have illustrated a relatively complex situation where there are two levels of 

nesting (Unit and Platoon).  In cases where there is only one grouping variable (for example, 

UNIT) the commands for aggregate and merge contain the name of a single grouping 

variable.  For instance, 

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T) 

3.3 Within-Group Agreement and Reliability 

The data used in this section are taken from Bliese, Halverson & Rothberg (2000).  The 

examples are based upon the bhr2000 data set from the multilevel package.  Thus, the first step 

is to examine the bhr2000 data set and make it available for analysis. 

 
> help(bhr2000) 

> data(bhr2000,package="multilevel")#puts data in working environment 

> names(bhr2000) 

 [1] "GRP"   "AF06"  "AF07"  "AP12"  "AP17"  "AP33"  "AP34"  

 "AS14"  "AS15" "AS16"  "AS17"  "AS28"  "HRS"   "RELIG" 

> nrow(bhr2000) 

[1] 5400 
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The names function tells us that there are 14 variables.  The first one, GRP, is the group 

identifier. The variables in columns 2 through 12 are individual responses on 11 items that make 

up a leadership scale.  HRS represents individuals’ reports of work hours, and RELIG represents 

individuals’ reports of the degree to which religion is a useful coping mechanism.  The nrow 

command indicates that there are 5400 observations.  To find out how many groups there are we 

can use the length command in conjunction with the unique command 

> length(unique(bhr2000$GRP)) 

[1] 99 

There are several functions in the multilevel library that are useful for calculating and 

interpreting agreement indices.  These functions are rwg, rwg.j, rwg.sim, rwg.j.sim, 

rwg.j.lindell, awg, ad.m, ad.m.sim and rgr.agree.   The rwg function calculates 

the James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function calculates 

the James et al. (1984) rwg(j) for multi-item scales.  The rwg.j.lindell function calculates 

r*wg(j) (Lindell,  & Brandt, 1997; 1999).  The awg function calculates the awg agreement index 

proposed by Brown and Hauenstein (2005).  The ad.m function calculates average deviation 

(AD) values for the mean or median (Burke, Finkelstein & Dusig, 1999).  A series of functions 

with “sim” in the name (rwg.sim, rwg.j.sim and ad.m.sim) allow one to simulate 

agreement values from a random uniform distribution to test for statistical significance 

agreement.  The simulation functions are based on work by Dunlap, Burke and Smith-Crowe 

(2003); Cohen, Doveh and Eich (2001) and Cohen, Doveh and Nuham-Shani (2009).  Finally, 

the rgr.agree function performs a Random Group Resampling (RGR) agreement test (see 

Bliese, et al., 2000). 

In addition to the agreement measures, there are two multilevel reliability measures, ICC1 

and ICC2 than can be used on ANOVA models.  As Bliese (2000) and others (e.g., Kozlowski 

& Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1) 

and ICC(2) are fundamentally different from agreement measures; nonetheless, they often 

provide complementary information to agreement measures, so this section illustrates the use of 

each of these functions with the dataframe bhr2000.  

3.3.1 Agreement: rwg, rwg(j), and r*wg(j) 

Both the rwg and rwg.j functions are based upon the formulations described in James et al. 

(1984).  Both functions require the user to specify three pieces of information.  The first piece of 

information is the variable of interest (x), the second is the grouping variable (grpid), and third 

is the estimate of the expected random variance (ranvar).  The default estimate of ranvar is 

2, which is the expected random variance based upon the rectangular distribution for a 5-point 

item (i.e., EU
2

) calculated using the formula ranvar=(A^2-1)/12 where A represents the number 

of response options associated with the scale anchors. See help(rwg), James et al., (1984), or 

Bliese et al., (2000) for details on selecting appropriate ranvar values. 

To use the rwg function to calculate agreement for the comfort from religion item (RELIG in 

the bhr2000 dataframe) one would issue the following commands. 
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> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2) 

> RWG.RELIG[1:10,]  #examine first 10 rows of data 

   grpid        rwg gsize 

1      1 0.11046172    59 

2      2 0.26363636    45 

3      3 0.21818983    83 

4      4 0.31923077    26 

5      5 0.22064137    82 

6      6 0.41875000    16 

7      7 0.05882353    18 

8      8 0.38333333    21 

9      9 0.14838710    31 

10    10 0.13865546    35 

This returns a dataframe with three columns.  The first column contains the group names 

(grpid), the second column contains the 99 rwg values – one for each group.  The third column 

contains the group size.  To calculate the mean rwg value use the summary command: 

 
> summary(RWG.RELIG) 

     grpid             rwg             gsize        

 1      : 1       Min.   :0.0000   Min.   :  8.00   

 10     : 1       1st Qu.:0.1046   1st Qu.: 29.50   

 11     : 1       Median :0.1899   Median : 45.00   

 12     : 1       Mean   :0.1864   Mean   : 54.55   

 13     : 1       3rd Qu.:0.2630   3rd Qu.: 72.50   

 14     : 1       Max.   :0.4328   Max.   :188.00   

 (Other):93  

The summary command informs us that the average rwg value is .186 and the range is from 0 

to 0.433.  By convention, values at or above 0.70 are considered good agreement, so there 

appears to be low agreement among individuals with regard to religion.  The summary 

command also provides information about the group sizes. 

 Other useful options might include sorting the values or examining the values in a histogram.  

Recall that the notation [,2] selects all rows and the second column of the RWG.RELIG object 

– the column with the rwg results. 

> sort(RWG.RELIG[,2]) 

> hist(RWG.RELIG[,2])   

To calculate rwg for work hours, the expected random variance (EV) needs to be changed from 

its default value of 2.  Work hours was asked using an 11-point item, so EV based on the 

rectangular distribution (EU
2

) is 10.00 (EU
2

=(11
2
-1)/12) – see the rwg help file for details).  

 
> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00) 

> mean(RWG.HRS[,2]) 

[1] 0.7353417 
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There is apparently much higher agreement about work hours than there was about whether 

group members received comfort from religion in this sample.  By convention, this mean value 

would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide 

evidence of agreement. 

The use of the rwg.j function is nearly identical to the use of the rwg function except that 

the first argument to rwg.j is a matrix instead of a vector.  In the matrix, each column 

represents one item in the multi-item scale, and each row represents an individual response.  For 

instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale.  The 

items were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the 

expected random variance is 2. 

 
> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2) 

> summary(RWGJ.LEAD) 

     grpid            rwg.j            gsize        

 1      : 1       Min.   :0.7859   Min.   :  8.00   

 10     : 1       1st Qu.:0.8708   1st Qu.: 29.50   

 11     : 1       Median :0.8925   Median : 45.00   

 12     : 1       Mean   :0.8876   Mean   : 54.55   

 13     : 1       3rd Qu.:0.9088   3rd Qu.: 72.50   

 14     : 1       Max.   :0.9440   Max.   :188.00   

 (Other):93                                                                             

 

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt & 

Whitney, 1999) have raised concerns about the mathematical underpinnings of the rwg(j) formula.  

Specifically, they note that this formula is based upon the Spearman-Brown reliability estimator.  

Generalizability theory provides a basis to believe that reliability should increase as the number 

of measurements increase, so the Spearman-Brown formula is defensible for measures of 

reliability.  There may be no theoretical grounds, however, to believe that generalizability theory 

applies to measures of agreement.  That is, there may be no reason to believe that agreement 

should increase as the number of measurements increase (but also see LeBreton, James & 

Lindell, 2005). 

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the 

r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into 

the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group 

Variance/Expected Random Variance).  Note that Lindell and colleagues also recommend 

against truncating the Observed Group Variance value so that it matches the Expected Random 

Variance value in cases where the observed variance is larger than the expected variance.  This 

results in a case where r*wg(j) values can take on negative values.  We can use the function 

rwg.j.lindell to estimate the r*wg(j) values for leadership. 

 
> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12], 

bhr2000$GRP,ranvar=2) 
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> summary(RWGJ.LEAD.LIN) 

     grpid         rwg.lindell         gsize        

 1      : 1       Min.   :0.2502   Min.   :  8.00   

 10     : 1       1st Qu.:0.3799   1st Qu.: 29.50   

 11     : 1       Median :0.4300   Median : 45.00   

 12     : 1       Mean   :0.4289   Mean   : 54.55   

 13     : 1       3rd Qu.:0.4753   3rd Qu.: 72.50   

 14     : 1       Max.   :0.6049   Max.   :188.00   

 (Other):93  

 

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed 

earlier. 

3.3.2 The awg Index 

Brown and Hauenstein (2005) argue that the rwg family of agreement indices have three major 

limitations:  (1) the magnitude of the measures are dependent on sample size, (2) the scale used 

to assess the construct influences the magnitude of the measure, and (3) the use of the uniform 

null distribution is an invalid comparison upon which to base an estimate of agreement.  To 

overcome these limitations, Brown and Hauenstein proposed the awg index as a multi-rater 

agreement measure analogous to Cohen’s kappa.  The awg index is calculated using the awg 

function. 

The awg function has three arguments: x, grpid, and range.  The x argument represents 

the item or scale upon which to calculate awg values.  The awg function determines whether x is 

a vector (single item) or multiple item matrix (representing the items in a scale), and performs 

the awg calculation appropriate for the type of variable.  The second function, grpid, is a vector 

containing the group ids associated with the x argument.  The third argument, range, represents 

the upper and lower limits of the response options.  The range defaults to c(1,5) which 

represents a 5-point scale from (for instance) strongly disagree (1) to strongly agree (5). 

The code below illustrates the use of the awg function for the multi-item leadership scale. 
 

> AWG.LEAD<-awg(bhr2000[,2:12],bhr2000$GRP) 

> summary(AWG.LEAD) 

     grpid         a.wg            nitems      nraters        avg.grp.var     

 1      : 1   Min.   :0.2223   Min.   :11   Min.   :  8.00   Min.   :0.2787   

 10     : 1   1st Qu.:0.3654   1st Qu.:11   1st Qu.: 29.50   1st Qu.:0.4348   

 11     : 1   Median :0.4193   Median :11   Median : 45.00   Median :0.5166   

 12     : 1   Mean   :0.4125   Mean   :11   Mean   : 54.55   Mean   :0.5157   

 13     : 1   3rd Qu.:0.4635   3rd Qu.:11   3rd Qu.: 72.50   3rd Qu.:0.5692   

 14     : 1   Max.   :0.5781   Max.   :11   Max.   :188.00   Max.   :0.9144   

 (Other):93                                                                 

Notice that ratings of the a.wg tend to more similar in magnitude to the r*wg(j)  which likely 

reflects the facts that (a) large variances can result in negative ratings reflecting disagreement, 

and (b) the denominator for the measure is fundamentally based upon the idea of maximum 

possible variance (similarly to the r*wg(j)) rather than a uniform distribution. 
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One final note is that Brown and Hauenstein (2005) contend that the class of rwg agreement 

indices should not be estimated in cases where group size (or number of raters) is less than the 

number of response options (scale anchors) associated with the items (A).  In this example, A is 

5 representing the scale anchors from strongly disagree to strongly agree.  In contrast, however, 

Brown and Hauenstein (2005) state that it is appropriate to estimate awg on the number of 

anchors minus 1.  The reason why awg can be estimated on smaller groups is that awg (unlike rwg) 

uses a sample-based variance estimate in the denominator whereas rwg uses a population-based 

variance estimate (recall that the formula for the rectangular variance distribution is 

ranvar=(A^2-1)/12 which represents a population-based value (EU
2

)). In the example there is no 

issue with group size given that the smallest group has eight members.   

3.3.3 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim 

As noted in section 3.3.1, rwg and rwg(j) values at or above .70 are conventionally considered 

providing evidence of within-group agreement.  A series of studies by Charnes and Schriesheim 

(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen, 

Doveh and Nahum-Shani (2009) lay the groundwork for establishing tests of statistical 

significance for rwg and rwg(j).  The basic idea behind these simulations is to draw observations 

from a known distribution (generally a uniform random null), and repeatedly estimate rwg or 

rwg(j).  Because the observations are drawn from a uniform random null, rwg or rwg(j) estimates will 

frequently be zero.  Occasionally, however, the rwg or rwg(j) values will be larger than zero 

reflecting variations in the pattern of random numbers drawn.  Repeatedly drawing random 

numbers and estimating rwg and rwg(j) provides a way to calculate expected values and confidence 

intervals. 

The simulations conducted by Cohen et al., (2001) varied a number of parameters, but the two 

found to be most important for the expected value of the rwg(j) were (a) group size and (b) the 

number of items.  Indeed, Cohen et al., (2001) found that expected rwg(j) values vary considerably 

as a function of group size and number of items.  This implies that the conventional value of .70 

may be a reasonable cut-off value for significance with some configurations of group sizes and 

items, but may not be reasonable for others.  Thus, they recommended researchers simulate 

parameters based on the specific characteristics of the researchers' samples when determining 

whether rwg(j) values are significant. 

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg 

using the idea of simulating null distributions.  Their work showed that the 95% confidence 

interval for the single item measure varied as a function of (a) group size and (b) the number of 

response options.  In the case of 5 response options (e.g., strongly disagree, disagree, neither, 

agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3 

to 0.12 for a group of 150.  That is, one would need an rwg estimate of 1.00 with groups of size 

three to be 95% certain the groups agreed more than chance levels, but with groups of size 150 

any value equal to or greater than 0.12 would represent significant agreement. 

The function rwg.sim provides a way to replicate the results presented by Dunlap and 

colleagues.  For instance, to estimate the 95% confidence interval for a group of size 10 on an 

item with 5 response options one would provide the following parameters to the rwg.sim 

function: 
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> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000) 

> summary(RWG.OUT) 

$rwg 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.0000  0.0000  0.0000  0.1221  0.2167  0.8667  

 

$gsize 

[1] 10 

$nresp 

[1] 5 

$nitems 

[1] 1 

$rwg.95 

[1] 0.5277778 

The results in the preceding example are based on 10,000 simulation runs.  In contrast, 

Dunlap et al., (2003) used 100,000 simulation runs.  Nonetheless, both Table 2 from Dunlap et 

al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a 

group of size 10 with five response options.  Note that a replication of these results may produce 

slightly different values. 

Because the estimation of  rwg in the simulations produces a limited number of possible 

responses, the typical methods for establishing confidence intervals (e.g., the generic function 

quantile) cannot be used.  Thus, the multilevel package provides a quantile method for 

the objects of class agree.sim created using rwg.sim.  To obtain 90%, 95% and 99% 

confidence interval estimates (or any other values) one would issue the following command: 

 
> quantile(RWG.OUT,c(.90,.95,.99)) 

  quantile.values confint.estimate 

1            0.90        0.4222222 

2            0.95        0.5277778 

3            0.99        0.6666667 

 

Cohen et al. (2009) expanded upon the work of Dunlap et al., (2003) and the early work by 

Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to 

multiple item scales in the case of rwg(j) values.  The function rwg.j.sim is based upon the 

work of Cohen et al., (2009) and simulates rwg(j) values from a uniform null distribution for user 

supplied values of (a) group size, (b) number of items in the scale, and (c) number of response 

options on the items.  The user also provides the number of simulation runs (repetitions) upon 

which to base the estimates.  In most cases, the number of simulation runs will be 10,000 or 

more although the examples illustrated here will be limited to 1,000.  The final optional 

argument to rwg.j.sim is itemcors.   If this argument is omitted, the simulated items used 

to comprise the scale are assumed to be independent (non-correlated).  If the argument is 

provided, the items comprising the scale are simulated to reflect a given correlational structure.   

Cohen et al., (2001) showed that results based on independent (non-correlated) items were 

similar to results based on correlated items; nonetheless, the model with correlated items is more 
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realistic and thereby preferable (see Cohen et al., 2009).  Estimating models with a correlational 

structure requires the MASS package in addition to the multilevel package. 

For an example of using rwg.j.sim with non-correlated items, consider a case where a 

researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where 

group size was 15 using a 7-item scale with 5 response options for the items (A=5).   The call to 

rwg.j.sim would be: 

 
> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000) 

 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.009447 0.161800 0.333900 0.713700  

$gsize 

[1] 15 

$nresp 

[1] 5 

$nitems 

[1] 7 

$rwg.j.95 

[1] 0.5559117 

In this example, the upper expected 95% confidence interval is 0.56.  This is lower than 0.70, 

and suggests that in this case the value of 0.70 might be too stringent.  Based on this simulation, 

one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).    

Note that if one replicates this example one will get slightly different results because each run is 

based on slightly different combinations of randomly generated numbers. Using the simulation, 

one can show that as group size increases and the number of items increase, the criteria for what 

constitutes significant agreement decreases. 

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will 

examine whether group members agreed about three questions specific to mission importance in 

the lq2002 data set.  This data set was also analyzed in Cohen et al., 2009.  We first begin by 

estimating the mean rwg(j) for the 49 groups in the sample.  Notice that the mean estimate for rwg(j) 

is .58.  This value is below the .70 conventional criteria and suggests a lack of agreement.   

 
> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")], 

  lq2002$COMPID,ranvar=2) 

> summary(RWG.J) 

     grpid        rwg.j            gsize       

 10     : 1   Min.   :0.0000   Min.   :10.00   

 13     : 1   1st Qu.:0.5099   1st Qu.:18.00   

 14     : 1   Median :0.6066   Median :30.00   

 15     : 1   Mean   :0.5847   Mean   :41.67   

 16     : 1   3rd Qu.:0.7091   3rd Qu.:68.00   

 17     : 1   Max.   :0.8195   Max.   :99.00   
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 (Other):43  

To determine whether the value of .58 is significant, one can use the rwg.j.sim function 

using item correlations and average group size (41.67 rounded to 42).  In this case, notice the 

simulation suggests that a value of .35 is significant suggesting significant agreement.  For 

illustrations of how the simulations might be used in a group-by-group basis see Cohen et al., 

(2009). 

 
> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5, 

   itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]), 

   nrep=1000) 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.007224 0.088520 0.162500 0.548600  

$gsize 

[1] 42 

$nresp 

[1] 5 

$nitems 

[1] 3 

$rwg.j.95 

[1] 0.346875  

3.3.4 Average Deviation (AD) Agreement using ad.m 

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as 

measures of within-group agreement.  Cohen et al., (2009) note that AD indices are also referred 

to as Mean or Median Average Deviation or MAD.  AD indices are calculated by first computing 

the absolute deviation of each observation from the mean or median.  Second, these absolute 

deviations are averaged to produce a single AD estimate for each group.  The formula for AD 

calculation on a single item is: 

AD = Σ|xij - Xj|/N 

where xij represents an individual observation (i) in group j; Xj represents the group mean or 

median, and N represents the group size.  When AD is calculated on a scale, the AD formula 

above is estimated for each item on the scale, and each item's AD value is averaged to compute 

the scale AD score. 

AD values are considered practically significant when the values are less than A/6 where A 

represents the number of response options on the item.  For instance, A is 5 when items are asked 

on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format. 

The function ad.m is used to compute the average deviation of the mean or median.  The 

function requires the two arguments, x and grpid.  The x argument represents the item or scale 

upon which one wants to estimate the AD value.  The ad.m function determines whether x is a 

vector (single item) or multiple item matrix (multiple items representing a scale), and performs 

the AD calculation appropriate for the nature of the input variable.  The second function, grpid, 
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is a vector containing the group ids of the x argument.  The third argument is optional.  The 

default value is to compute the Average Deviation of the mean.  The other option is to change 

the type argument to "median" and compute the Average Deviation of the median. 

  For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a 

leadership scale.  The items were assessed using 5-point response options (Strongly Disagree to 

Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.833.  The AD 

estimates for the first five groups and the mean of the overall sample are provided below: 

 
> data(bhr2000) 

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP) 

> AD.VAL[1:5,] 

  grpid      AD.M gsize 

1     1 0.8481366    59 

2     2 0.8261279    45 

3     3 0.8809829    83 

4     4 0.8227542    26 

5     5 0.8341355    82 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8690723 54.5454545 

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about 

ratings of leadership.  The overall AD estimate is 0.87, which is also higher than 0.83 and 

suggests a general lack of agreement. 

The AD value estimated using the median instead of the mean, in contrast, suggests 

practically significant agreement for the sample as a whole. 

 
> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median") 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8297882 54.5454545 

To use the ad.m function for single item variables such as the work hours (HRS) variable in 

the bhr2000 data set it is only necessary to provide a vector instead of a matrix as the first 

argument to the ad.m function.  Recall the work hours variable is asked on an 11-point response 

format scale so practical significance is 11/6 or 1.83.  The average observed value of 1.25 

suggests agreement about work hours. 

 
> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP) 

> mean(AD.VAL.HRS[,2:3]) 

     AD.M     gsize  

 1.249275 54.545455 
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3.3.5 Significance testing of AD using ad.m.sim 

The function ad.m.sim is used to simulate AD values and test for significance of various 

combinations of group size, number of response options and number of items in multiple-item 

scales.  The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to 

test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg, 

the ad.m.sim function works with both single items and multiple-item scales. 

The ad.m.sim function is based upon the work of Cohen et al. (2009) and of Dunlap et al., 

(2003).  The function simulates AD values from a uniform null distribution for user supplied 

values of (a) group size, (b) number of items in the scale, and (c) number of response options on 

the items.  Based on Cohen et al. (2009), the final optional parameter allows one to include 

correlations among items when simulating multiple-item scales.  The user also provides the 

number of simulation runs (repetitions) upon which to base the estimates.  Again in practice, the 

number of simulation runs will typically be 10,000 or more although the examples illustrated 

here will be limited to 1,000.   

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000 

dataframe.  Recall the AD value based on the mean suggested that groups failed to agree about 

leadership.  In contrast, the AD value based on the median suggested that groups agreed.  To 

determine whether the overall AD value based on the mean is statistically significant, one can 

simulate data matching the characteristics of the bhr2000 sample: 
 

> AD.SIM<-ad.m.sim(gsize=55,nresp=5, 

itemcors=cor(bhr2000[,2:12]),type="mean",nrep=1000) 

> summary(AD.SIM) 

$ad.m 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.087   1.182   1.208   1.209   1.236   1.340  

 

$gsize 

[1] 55 

 

$nresp 

[1] 5 

 

$nitems 

[1] 11 

 

$ad.m.05 

[1] 1.138212 

 

$pract.sig 

[1] 0.8333333 
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The simulation suggests that any AD mean value less than or equal to 1.14 is statistically 

significant.  Thus, while the AD value for the leadership items (0.87) may not meet the criteria 

for practical significance, it does for statistical significance.   As with the rwg simulation 

functions, the ad.m.sim function has a specifically associated quantile function to identify 

different cut-off points.  The example below illustrates how to identify values corresponding to 

the .90 (.10), .95 (.05) and .99 (.01) significance levels.  That is, to be 99% certain that a value 

was significant, it would need to be smaller than or equal to 1.114.  

 
> quantile(AD.SIM,c(.10,.05,.01)) 

  quantile.values confint.estimate 

1            0.10         1.155763 

2            0.05         1.138212 

3            0.01         1.114170 

3.3.6 Agreement:  Random Group Resampling 

The final agreement related function in the multilevel library is rgr.agree.  In some ways 

this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to 

draw inferences about agreement.  The difference is that the rgr.agree function uses the 

actual group data, while the rwg.j.sim function simulates from an expected distribution (the 

uniform null). 

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and 

calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of 

significance to determine whether actual group and pseudo group variances differ.  To use 

rgr.agree, one must provide three variables.  The first is a vector representing the variable 

upon which one wishes to estimate agreement.  The second is group membership (grpid).  The 

third parameter is the number of pseudo groups that one wants to create. 

The third parameter requires a little explanation, because in many cases the number of pseudo 

groups returned in the output will not exactly match the third parameter.  For instance, in our 

example, we will request 1000 pseudo groups, but the output will return only 990.  This is 

because the rgr.agree algorithm creates pseudo groups that are identical in size 

characteristics to the actual groups.  In so doing, however, the algorithm creates sets of pseudo 

groups in “chunks.”   The size of each chunk is based upon the size of the number of actual 

groups.  So, for instance, if there are 99 actual groups, then the total number of pseudo groups 

must be evenly divisible by 99.  Nine-hundred-and-ninety is evenly divisible by 99, while 1000 

is not.   Rather than have the user determine what is evenly divisible by the number of groups, 

rgr.agree will do this automatically.  Below is an example of using rgr.agree on the 

work hours variable. 

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000) 

The first step is to create an RGR Agreement object named RGR.HRS.   The object contains a 

number of components.  In most cases, however, users will be interested in the estimated z-value 

indicating whether the within-group variances from the actual groups are smaller than the 

variances from the pseudo groups.  A useful way to get this information is to use the summary 
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command.  When summary is applied to the RGR agreement object it provides standard 

deviations, variance estimates, an estimate of the z-value, and upper and lower confidence 

intervals. 

 
> summary(RGR.HRS) 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990      3.322772      0.762333       2.646583 -8.82554 

 

$"Lower Confidence Intervals (one-tailed)" 

    0.5%       1%     2.5%       5%      10%  

1.648162 1.795134 1.974839 2.168830 2.407337  

 

$"Upper Confidence Intervals (one-Tailed)" 

     90%      95%    97.5%      99%    99.5%  

4.251676 4.545078 4.832813 5.642410 5.845143 

 

The first section of the summary provides key statistics for contrasting within-group variances 

from real group with within-group variances from random groups.  The second and third sections 

provide lower and upper confidence intervals. Keep in mind that if one replicates this example 

one is likely to get slightly different results.  This is because the rgr.agree function uses a 

random number generator to create pseudo groups; thus, the results are partially a product of the 

specific numbers used in the random number generator.  While the exact numbers may differ, the 

conclusions drawn should be the same. 

Notice in the first section that although we requested 1000 random groups, we got 990 (for 

reasons described previously).   The first section also reveals that the average within-group 

variance for the random groups was 3.32 with a Standard Deviation of 0.76.  In contrast, the 

average within-group variance for the real groups was considerably smaller at 2.65.  The 

estimated z-value suggests that, overall, the within-group variances in ratings of work hours from 

real groups were significantly smaller than the within-group variances from the random groups.  

This suggests that group members agree about work hours.  Recall that a z-value greater than or 

less than 1.96 signifies significance at p<.05, two-tailed. 

The upper and lower confidence interval information allows one to estimate whether specific 

groups do or do not display agreement.   For instance, only 5% of the pseudo groups had a 

variance less than 2.17.  Thus, if we observed a real group with a variance smaller than 2.17, we 

could be 95% confident this group variance was smaller than the variances from the pseudo 

groups.   Likewise, if we want to be 90% confident we were selecting groups showing 

agreement, we could identify real groups with variances less than 2.41.   

To see which groups meet this criterion, use the tapply function in conjunction with the 

sort function.   The tapply function partitions the first variable by the level of the second 

variable performs the specified function much like the aggregate function (see section 3.2.2).  

Thus, tapply(HRS,GRP,var) partitions HRS into separate Groups (GRP), and calculates 

the variance for each group (var).  Using sort in front of this command simply makes the 

output easier to read.   
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> sort(tapply(bhr2000$HRS,bhr2000$GRP,var)) 

       33        43        38        19         6        39        69        17  

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282  

       20        99        98        44         4        53        61        63  

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430  

       66        14        76        71        21        18        59        50  

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667  

       48        60        83         8        22         2        75        11  

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947  

       96        23        54        47        55        26        74        57  

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858  

       45        97        64        35        32        41         1        24  

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678  

       82        37        81        68        42        73        34        25  

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000  

       93        62        92        12        40        88         5        29  

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616  

       85        70        77        51         3        13        79        87  

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569  

        7        95        78        84        46        27        36        15  

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287  

       89        16        58        49         9        31        90        72  

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714  

       91        80        86        10        94        28        30        56  

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707  

       65        52        67  

4.7537594 5.2252964 5.3168148  

If we starting counting from group 33 (the group with the lowest variance of 0.82) we find 46 

groups with variances smaller than 2.41.  That is, we find 46 groups that have smaller than 

expected variance using the 90% confidence estimate. 

It may also be interesting to see what a “large” variance is when defined in terms of pseudo 

group variances.  This information is found in the third part of the summary of the RGR.HRS 

object.  A variance of 4.55 is in the upper 95% of all random group variances.  Given this 

criterion, we have five groups that meet or exceed this standard.  In an applied setting, one might 

be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.  

That is, one might be interested in determining what drives certain groups to have very large 

differences in how individuals perceive work hours. 

Finally, for confidence intervals not given in the summary, one can use the quantile 

function with the random variances (RGRVARS) in the RGR.HRS object.  For instance to get the 

lower .20 confidence interval: 



Multilevel Models in R  43 

 
> quantile(RGR.HRS$RGRVARS, c(.20)) 

     20%  

2.695619 

Note that rgr.agree only works on vectors.  Consequently, to use rgr.agree with the 

leadership scale we would need to create a leadership scale score.  We can do this using the 

rowMeans function.  We will create a leadership scale (LEAD) and put it in the bhr2000 

dataframe, so the specific command we issue is: 

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12]) 

Now that we have created a leadership scale score, we can perform the RGR agreement 

analysis on the variable. 

 
> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000)) 

 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990     0.6011976     0.1317229      0.5156757 -6.46002 

 

$"Lower Confidence Intervals (one-tailed)" 

     0.5%        1%      2.5%        5%       10%  

0.2701002 0.3081618 0.3605966 0.3939504 0.4432335  

 

$"Upper Confidence Intervals (one-Tailed)" 

      90%       95%     97.5%       99%     99.5%  

0.7727185 0.8284755 0.8969857 0.9651415 1.0331922 

 

The results indicate that the variance in actual groups about leadership ratings is significantly 

smaller than the variance in randomly created groups (i.e., individuals agree about leadership).  

For interesting cases examining situations where group members do not agree see Bliese & 

Halverson (1998a) and Bliese and Britt (2001). 

Ongoing research continues to examine the nature of RGR based agreement indices relative to 

ICC(1), ICC(2) and other measures of agreement such as the rwg (e.g., Lüdtke & Robitzsch, 

2009).  This work indicates that measures of RGR agreement are strongly related to the 

magnitude of the ICC values. 

3.3.7 Reliability:  ICC(1) and ICC(2) 

The multilevel package also contains the reliability functions, ICC1 and ICC2.  These two 

functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as 

described by Bartko, (1976), James (1982), and Bliese (2000).  To use these functions, one first 

performs a one-way analysis of variance on the variable of interest.  For instance, to calculate a 

one-way analysis of variance on work hours, we issue the aov (ANOVA) function from the R 

base package.  Note that in using the aov function, we use the as.factor function on GRP.  

The as.factor function tells aov that GRP (which is numeric in this dataframe) is to be 

treated as a categorical variable; consequently, R creates N-1 dummy codes in the model matrix 
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(the exact form of the effects coding can be controlled, but will not be discussed in detail here).  

In the present example, there are 99 groups, so the as.factor function results in the creation 

of 98 dummy coded categories (98 df).  Interested readers who estimate the model without the 

as.factor option will see that GRP erroneously only accounts for 1 df if the as.factor 

command is omitted. 
 

> data(bhr2000) 

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000) 

> summary(hrs.mod) 

                 Df  Sum Sq Mean Sq F value    Pr(>F)     

as.factor(GRP)   98  3371.4    34.4  12.498 < 2.2e-16 *** 

Residuals      5301 14591.4     2.8                       

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

 

The ICC1 and ICC2 functions are then applied to the aov object. 

> ICC1(hrs.mod) 

[1] 0.1741008 

> ICC2(hrs.mod) 

[1] 0.9199889 

Bliese (2000) provides a thorough interpretation of these values, but briefly, the ICC(1) value 

of .17 indicates that 17% of the variance in individual perceptions of work hours can be 

“explained” by group membership.  The ICC(2) value of .92 indicates that groups can be reliably 

differentiated in terms of average work hours. 

3.3.8 Visualizing an ICC(1) with graph.ran.mean 

It is often valuable to visually examine the group-level properties of data to see the exact form 

of the group-level effects.  For instance, Levine (1967) notes that a high ICC(1) value can be the 

product of one or two highly aberrant groups rather than indicating generally shared group 

properties among the entire sample. 

One way to examine the group-level properties of the data is to contrast the observed group 

means with group means that are the result of randomly assigning individuals to pseudo groups.  

If the actual group means and the pseudo-group means are identical, there is no evidence of 

group effects.  If one or two groups are clearly different from the pseudo-group distribution it 

suggests the ICC(1) value is simply caused by a few aberrant observations.  If a number of 

groups have higher than expected means, and a number have lower than expected means, it 

suggests fairly well-distributed group-level properties. 

The graph.ran.mean function allows one to visually contrast actual group means with 

pseudo group means.  The function requires three parameters.  The first is the variable on which 

one is interested in examining.  The second is the group designator, and the third is a smoothing 

parameter (nreps) determining how many sets of pseudo groups should be created to create the 

pseudo group curve.  Low numbers (<10) for this last parameter create a choppy line while high 
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numbers (>25) create smooth lines.  In cases where the parameter bootci is TRUE (see 

optional parameters), nreps should equal 1000 or more. 

  Three optional parameters control the y axis limits (limits); whether a plot is created 

(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence 

intervals are estimated and plotted (bootci=TRUE).  The default for limits is to use the 

lower 10% and upper 90% values of the raw data.  The default for graph is to produce a plot, 

but returning a dataframe can be useful for exporting results to other graphing software.  Finally, 

the default for bootci is to return a plot or a dataframe without bootstrap confidence interval 

estimates. 

In the following example, we plot the observed and pseudo group distribution of the work 

hours variable from the data set bhr2000.  Recall, the ICC(1) value for this variable was .17 (see 

section 3.3.7). 
> data(bhr2000) 

> graph.ran.mean(bhr2000$HRS, bhr2000$GRP, nreps=1000, 

limits=c(8,14),bootci=TRUE) 

The command produced the resulting plot where the bar chart represents each groups' average 

rating of work hours sorted from highest to lowest, and the line represents a random distribution 

where 99 pseudo groups (with exact size characteristics of the actual groups) were created 100 

times and the sorted values were averaged across the 1000 iterations.  The dotted lines represent 

the upper and lower 95% confidence interval estimates.  In short, the line represents the expected 

distribution if there were no group-level properties associated with these data.  The graph 

suggests fairly evenly distributed group-level properties associated with the data.  That is, the 

ICC(1) value of .17 does not seem to be caused by one or two aberrant groups. 
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3.4 Regression and Contextual OLS Models 

Prior to the introduction of multilevel random coefficient models, OLS regression models 

were widely used to detect contextual effects.  Firebaugh (1978) provides a good methodological 

discussion of these types of contextual models as does Kreft and De Leeuw (1998) and James 

and Williams (2000). 

The basic logic behind these models is that an aggregated group mean can explain unique 

variance over and above an individual variable of the same name.  So, for instance, Bliese (2002) 

found that average group work hours explained unique variance in individual well-being over-

and-above individual reports of work hours.  This occurs because there is no mathematical 

reason why the group-level relationship between means must be the same as the individual-level 

relationship between raw variables.  When the slope of the group-mean relationship differs from 

the slope of the individual-level relationship, a contextual effect is present (Firebaugh, 1978). 

To estimate contextual regression models in R, one uses the OLS regression function lm  to 

simultaneously test the significance of the individual and group mean variable.  If the group-

mean variable is significant it indicates the individual-level and group-level slopes are 

significantly different, and one has evidence of a contextual effect (Firebaugh, 1978; Snijders & 

Bosker, 1999).  As discussed in the next section, there is an important caveat.  Specifically, the 

standard error associated with the group-level effect is almost always too small producing tests 
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that are too liberal.  For this reason random coefficient models (RCM) are a preferred way to 

identify contextual effects. 

3.4.1 Contextual Effect Example 

  In this example we use the bh1996 dataframe to illustrate the estimation of a contextual 

model.  The bh1996 dataframe has group mean variables included; however, we will pretend 

that it does not so we can illustrate the use of the aggregate and merge functions. 
 
> data(bh1996) 

> names(bh1996) 

 [1] "GRP"      "COHES"    "G.COHES"  "W.COHES"  "LEAD"     "G.LEAD"   

 [7] "W.LEAD"   "HRS"      "G.HRS"    "W.HRS"    "WBEING"   "G.WBEING" 

[13] "W.WBEING" 

> TDAT<-bh1996[,c(1,8,11)]  # a dataframe with GRP, HRS and WBEING 

> names(TDAT) 

[1] "GRP"    "HRS"    "WBEING" 

> TEMP<-aggregate(TDAT$HRS,list(TDAT$GRP),mean,na.rm=T)  

> names(TEMP) 

[1] "Group.1" "x"       

> names(TEMP)<-c("GRP","G.HRS") 

> TBH1996<-merge(TDAT,TEMP,by="GRP")  #merge group and individual data 

> names(TBH1996) 

[1] "GRP"    "HRS"    "WBEING" "G.HRS"  

> tmod<-lm(WBEING~HRS+G.HRS,data=TBH1996) #estimate the linear model 

> summary(tmod,cor=F) 

Call: 

lm(formula = WBEING ~ HRS + G.HRS, data = TBH1996) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-2.87657 -0.57737  0.03755  0.64453  2.37267  

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  4.783105   0.136395  35.068   <2e-16 *** 

HRS         -0.046461   0.004927  -9.431   <2e-16 *** 

G.HRS       -0.130836   0.013006 -10.060   <2e-16 *** 

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

Residual standard error: 0.8902 on 7379 degrees of freedom 

Multiple R-Squared: 0.0398,     Adjusted R-squared: 0.03954  

F-statistic: 152.9 on 2 and 7379 DF,  p-value:     0  

Notice that G.HRS is significant with a t-value of –10.060.  This provides evidence of 

significant contextual effects.  If we want to examine the form of the relationship, we can plot 

the regression slopes for the two models using the following commands: 
 

> plot(TBH1996$HRS,TBH1996$WBEING,xlab="Work Hours",ylab="Well-

Being",type="n") #type = n omits the points which is important since 

we have 7,382 observations 

> abline(lm(WBEING~HRS,data=TBH1996)) # plots the individual-

level slope 

> abline(lm(WBEING~G.HRS,data=TBH1996),lty=2) #group-level slope 
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This produces the plot provided below.  Notice that the group-mean slope (the dotted line) is 

considerably steeper than the individual slope (the solid line). 
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While contextual models are valuable, a major limitation with them is that they do not 

account for the fact that individuals are nested within groups.  In essence, the models are based 

on the assumption that individual observations are independent instead of acknowledging that 

responses from individuals in the same group might be more similar than would be expected by 

chance.  For instance, individual responses on well-being are somewhat influenced by group 

membership (as we will show later).  This has the effect of biasing the standard errors, and 

making one a little too likely to detect contextual effects.  Specifically, it is likely that the 

standard error of 0.013 associated with G.HRS is too small.  This in turn makes the t-value too 

large.  Better models, such as random coefficient models, account for this non-independence.  

We will illustrate the estimation of these in section 3.6.  For more details on the effects of non-

independence see Bliese (2002); Bliese and Hanges (2004); Kenny and Judd, (1986) and Snijders 

and Bosker, (1999). 

3.5 Correlation Decomposition and the Covariance Theorem 

OLS contextual models provide a way of determining whether or not regression slopes based 

on group means differ from regression slopes of individual-level variables.  The covariance 

theorem provides a way of doing a similar thing for correlations nested in a two-level structure.   

Essentially, the covariance theorem allows one to break down a raw correlation into two separate 

components – the portion of the raw correlation attributable to within-group (individual) 

processes, and the portion of the correlation attributable to between-group (group-level) 

processes. 

Robinson (1950) was one of the first researchers to propose the covariance theorem, but 

Dansereau and colleagues increased the visibility of the theorem by incorporating it into an 
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analysis system they labeled WABA for Within-And-Between-Analyses (Dansereau, Alutto  & 

Yammarino, 1984).  WABA is actually two integrated procedures, WABA I and WABA II.   

WABA I uses a set of decision tools based on eta values to inform decisions about the individual 

or group-level nature of the data.  Eta values, however, are highly influenced by group size, but 

WABA I makes no group size adjustments; consequently, there is little value in WABA I unless 

one is working with dyads (see Bliese, 2000; Bliese & Halverson, 1998b).  Arguably a more 

useful way of drawing inferences from eta-values is to contrast eta-values from actual groups to 

eta-values from pseudo groups.  We will illustrate this in a Random Group Resampling extension 

of the covariance theorem decomposition (see section 3.5.2). 

3.5.1 The waba and cordif functions 

Dansereau et al.’s (1984) WABA II revolves around the estimation of the covariance theorem 

components, and the waba function in the multilevel library provides the covariance theorem 

components for the relationship between two variables.  For example, to decompose the 

correlation between work hours and well-being into the between-group and within-group 

component we would issue the following command.  Note that for comparative purposes we use 

the same data as we did in OLS contextual model example (section 3.4.1). 
 
> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP) 

$Cov.Theorem 

     RawCorr     EtaBX     EtaBY      CorrB     EtaWX     EtaWY      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

$n.obs 

[1] 7382 

$n.grps 

[1] 99 

The waba function returns a list with three elements.  The first element is the covariance 

theorem with all its components.  The second element is the number of observations used in the 

estimate of the covariance theorem.  The third element is the number of groups.  The latter two 

elements should routinely be examined because the waba function, by default, performs listwise 

deletion of missing values. 

This formula shows that the raw correlation of -.163=(EtaBX*EtaBY*CorrB) + 

(EtaWX*EtaWY*CorrW) or (.379*.236*-.712)+(.925*.972*-.111).  Everything in the first set of 

parentheses represents the between-group component of the correlation, and everything in the 

second set of parentheses represents the within-group component of the correlation. 

The group-mean correlation of -.71 definitely looks larger than the within-group correlation of 

-.11.  Furthermore, since these two correlations are independent, we can contrast them using the 

cordif function.  This function performs an r to z' transformation of the two correlations (see 

also the rtoz function) and then tests for differences between the two z' values using the 

formula provided in Cohen and Cohen (1983, p. 54).  There are four arguments that must be 

provided to cordif.  These are (1) the first correlation of interest, (2) the second correlation of 

interest, (3) the N on which the first correlation is based, and (4) the N on which the second 

correlation is based.  In our example, we already have the two correlations of interest (-.13 and -

.66); to get the N for the between-group correlation, we need to know the number of groups.  We 

can get this N by determining how many unique elements there are in GRP. 
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> length(unique(bh1996$GRP)) 

[1] 99 

The N for the within-group correlation is slightly more complicated.  It is calculated as the 

total N minus the number of groups (see Dansereau, et al., 1984).  In our example, we already 

know that the total N is 7,382 from the waba function output.  We also know that the number of 

groups is 99.  Thus, the N for the within-group correlation is 7,382-99 or 7,283.  For illustrative 

purposes, however, we will use the nrow function to get the number of observations. 

> nrow(bh1996)-99 

[1] 7283 

With this information, we have all the necessary components for the cordif function. 

> cordif(-.1107,-.7122,7283,99) 

$"z value" 

[1] 7.597172 

The z-value is larger than 1.96, so we conclude that the two correlations are significantly 

different for each other.  That is, the between-group correlation is significantly larger than the 

within-group correlation.  This finding mirrors what we found in our contextual analysis.  Note 

that the within-group correlation is based on X and Y deviation scores.  These deviation scores 

are estimated by subtracting the group mean of X from X, and the group mean of Y from Y.  In 

random coefficient modeling, these deviation scores are also called group-mean centered scores.   

3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba) 

As noted above, it may be interesting to see how the eta-between, eta-within, between group 

and within-group correlations vary as a function of the group-level properties of the data.  To do 

this, one can use the rgr.waba function.  Essentially, the rgr.waba function allows one to 

answer questions such as "is my eta-between value for x larger than would be expected by 

chance?"  The rgr.waba routine randomly assigns individuals into pseudo groups having the 

exact size characteristics as the actual groups, and then calculates the covariance theorem 

parameters. By repeatedly assigning individuals to pseudo groups and re-estimating the 

covariance theorem components, one can create sampling distributions of the covariance theorem 

components to see if actual group results differ from pseudo group results (see Bliese & 

Halverson, 2002).    Below I illustrate the use of rgr.waba.  Note that this is a very 

computationally intensive routine, so it may take some time to complete.  For comparative 

purposes, I begin by re-estimating the covariance theorem components using the first 1000 

observations.   
 

> TDAT<-bh1996[1:1000,c(1,8,11)] 

> waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP) #Model for first 1000 obs 

     RawCorr     EtaBX    EtaBY      CorrB     EtaWX     EtaWY      CorrW 

1 -0.1500598 0.4136304 0.192642 -0.6302504 0.9104449 0.9812691 -0.1117537 
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> RGR.WABA<-rgr.waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP,1000) 

> round(summary(RGR.WABA),dig=4) 
       RawCorr     EtaBX     EtaBY     CorrB     EtaWX    EtaWY     CorrW 

NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1.00e+03 1000.0000 

Mean   -0.1501    0.1236    0.1241   -0.1409    0.9921 9.92e-01   -0.1501 

SD      0.0000    0.0209    0.0217    0.2463    0.0026 2.80e-03    0.0040 

The summary of the rgr.waba object produces a table giving the number of random 

repetitions, the means and the standard deviations from analysis.  Notice the raw correlation has 

a standard deviation of zero because it does not change.  In contrast, the between-group 

correlation has the highest standard deviation (.25) indicating that it varied across pseudo group 

runs.  It is apparent that all of covariance theorem components in the actual groups significantly 

vary from their counterparts in the pseudo group analysis.  This is obvious because most actual 

group components are close to two standard deviations different from the pseudo group means.  

To test for significant differences in this resampling design, however, one can simply look at the 

sampling distribution of the random runs, and use the 2.5% and 97.5% sorted values to 

approximate 95% confidence intervals.  Any values outside of this range would be considered 

significantly different from their pseudo group counterparts.  To estimate the 95% confidence 

intervals we can use the quantile function. 

 

> quantile(RGR.WABA,c(.025,.975)) 

           EtaBX      EtaBY      CorrB     EtaWX     EtaWY      CorrW 

2.5%  0.08340649 0.08288485 -0.6048007 0.9861588 0.9857920 -0.1585368 

97.5% 0.16580367 0.16797054  0.3613034 0.9965156 0.9965591 -0.1417005 

  Notice that all of the covariance theorem values based on the actual groups are outside of the 

95% confidence interval estimates.  That is, all of the actual group results are significantly 

different than would be expected by chance (p<.05).  If we estimate the 99% confidence intervals 

we find that the between-group correlation is no longer outside of the 99% confidence interval, 

but the other values are. 

 
> quantile(RGR.WABA,c(.005,.995)) 

           EtaBX      EtaBY      CorrB     EtaWX     EtaWY      CorrW 

0.5%  0.07280037 0.07128845 -0.7216473 0.9843644 0.9831655 -0.1608020 

99.5% 0.17614418 0.18271719  0.4825655 0.9973465 0.9974557 -0.1386436 

Keep in mind in estimating the rgr.waba models that one's results are likely to differ 

slightly from those presented here because of the random generation process underlying random 

group sampling. 

3.6 Multilevel Random Coefficient modeling  

This section illustrates the estimation of multilevel random coefficient (MRC) models using 

the nlme package (Pinhiero & Bates, 2000).  Most of the examples described in this section are 

taken from Bliese (2002) and use the Bliese and Halverson (1996) data set (bh1996) included 

in the multilevel library.   Model notation is based on Bryk and Raudenbush’s (1992) book on 

Hierarchical Linear Models or HLM. 

A complete description of MRC modeling is beyond the scope of this document; nonetheless, 

a short overview is presented to help facilitate the illustration of the methods.  For more detailed 
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discussions see Bliese, (2002); Bryk and Raudenbush, (1992); Hofmann, (1997); Hox (2002); 

Kreft and De Leeuw, (1998) and Snidjers and Bosker (1999). 

One can think of MRC models as ordinary regression models that have additional variance 

terms for handling non-independence due to group membership.  The key to understanding MRC 

models is to understand how group membership can produce additional sources of variance in 

data. 

The first variance term that distinguishes a MRC model from a regression model is a term that 

reflects the degree to which group differ in their mean values (intercepts) on the dependent 

variable (DV).  A significant variance term (00) indicates that groups differ on the DV and 

allows one to include variables that predict why some groups have high average DV values while 

other groups have low average DV values.  One predicts group-mean differences with group-

level variables.  Group-level variables (or level-2 variables) differ across groups, but are 

consistent within-groups.  For example, a cohesion measure that was the same across all 

members of the same group would be a level-2 variable that could potentially be used to predict 

the group-level variance (00) in well-being. 

The second variance term that distinguishes a MRC model from a typical regression reflects 

the degree to which slopes between independent and dependent variables vary across groups 

(11).  Single-level regression models generally assume that the relationship between the IV and 

DV is constant across groups.  In contrast, MRC models permit one to test whether the slope 

varies from one group to another.  If slopes significantly vary, one can attempt to explain the 

variation as a function of group differences – again, one uses level-2 variables such as cohesion 

to explain why the slope between IV and DV in some groups is stronger than the slopes in other 

groups.  

A third variance term is common to both MRC and regression models.  This variance term, 


2
, reflects the degree to which an individual score differs from its predicted value within a 

specific group.  One can think of 
2
 as an estimate of within-group variance.  One uses 

individual-level or level-1 variables to predict within-group variance, 
2
.  Level-1 variables 

differ among members of the same group.  For instance, a level-1 variable such as participant age 

would vary among members of the same group. 

In summary, in a complete MRC analysis, one examines (1) level-1 factors related to the 

within-group variance 
2
; (2) group-level factors related to the between-group variation in 

intercepts 00; and (3) group-level factors related to within-group slope differences, 11.  The next 

sections re-analyze portions of the Bliese and Halverson data set to illustrate a typical sequence 

of steps used in multilevel modeling.  

3.6.1 Steps in multilevel modeling 

Step 1.  Because multilevel modeling involves predicting variance at different levels, one 

typically begins a multilevel analysis by determining the levels at which significant variation 

exists.  In the case of the two-level model (the only models that I will consider here), one 

generally assumes that there is significant variation in 
2
 – that is, one assumes that within-group 

variation is present.  One does not necessarily assume, however, that there will be significant 

intercept variation (00) or between-group slope variation (11).  Therefore, one begins by 

examining intercept variability (see Bryk & Raudenbush, 1992; Hofmann, 1997).  If 00 does not 
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differ by more than chance levels, there may be little reason to use random coefficient modeling 

since simpler OLS modeling will suffice.  Note that if slopes randomly vary even if intercepts do 

not, there may still be reason to estimate random coefficient models (see Snijders & Bosker, 

1999). 

In Step 1 of a MRCM analysis, one explores the group-level properties of the outcome 

variable to determine three things:  First, what is the ICC(1) (commonly referred to simply as the 

ICC in random coefficient models) associated with the outcome variable.  That is, how much of 

the variance in the outcome can be explained by group membership.  Second, one examines 

whether the group means of the outcome variable are reliable.  By convention, one would like 

the group mean reliability to be around .70 because this indicates that groups can be reliably 

differentiated (see Bliese, 2000).  Third, one wants to know whether the variance of the intercept 

(00) is significantly larger than zero. 

These three aspects of the outcome variable are examined by estimating an unconditional 

means model.  An unconditional means model does not contain any predictors, but includes a 

random intercept variance term for groups.  This model essentially estimates how much 

variability there is in mean Y values (i.e., how much variability there is in the intercept) relative 

to the total variability.  In the two stage HLM notation, the model is: 

Yij = 0j+rij        

0j = 00 + u0j        

In combined form, the model is:  Yij =00 + u0j+rij.  This model states that the dependent 

variable is a function of a common intercept 00, and two error terms: the between-group error 

term, u0j, and the within-group error term, rij.  The model essentially states that any Y value can 

be described in terms of an overall mean plus some error associated with group membership and 

some individual error.  The null model provides two estimates of variance; 00 associated with u0j 

reflecting the variance in how much each groups’ intercept varies from the overall intercept (00), 

and 
2
 associated with rij reflecting how much each individuals’ score differs from the group 

mean.  Bryk and Raudenbush (1992) note that this model is directly equivalent to a one-way 

random effects ANOVA – an ANOVA model where one predicts the dependent variable as a 

function of group membership. 

The unconditional means model and all other random coefficient models that we will consider 

are estimated using the lme (for linear mixed effects) function in the nlme package (see 

Pinheiro & Bates, 2000).  There are two formulas that must be specified in any lme call:  a fixed 

effects formula and a random effects formula. 

  In the unconditional means model, the fixed portion of the model is 00 (an intercept term) 

and the random component is u0j+rij.  The random portion of the model states that intercepts will 

be allowed to vary among groups.  We begin the analysis by attaching the multilevel package 

(which also loads the nlme package) and making the bh1996 data set in the multilevel package 

available for analysis. 

 
> library(multilevel) 

> data(bh1996) 

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996,  
     control=list(opt="optim")) 
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In the model, the fixed formula is WBEING~1.  This states that the only predictor of well-being 

is an intercept term.  One can think of this model as stating that in the absence of any predictors, 

the best estimate of any specific outcome value is the mean value on the outcome.  The random 

formula is random=~1|GRP.  This specifies that the intercept can vary as a function of group 

membership.  This is the simplest random formula that one will encounter, and in many 

situations a random intercept model may be all that is required to adequately account for the 

nested nature of the grouped data.  The option control=list(opt="optim") in the call to 

lme instructs the program to use R’s general purpose optimization routine.  Versions of lme 

after 2.2 default to a different optimizing routine.  The other routine, nlmimb, has several 

advantages including much better diagnostics when optimization fails.  In practice, however, it 

tends to converge less often than the general purpose optimization routine.  Furthermore, the 

examples in this document were estimated under "optim", so for consistency we will revert 

back to the original optimizer.  In practice, users should use the default "nlmimb" optimizer; 

however, if models fail to converge it may be useful to revert back to "optim".   

Estimating ICC.  The unconditional means model provides between-group and within-group 

variance estimates in the form of 00 and 
2
, respectively.  As with the ANOVA model, it is often 

valuable to determine how much of the total variance is between-group variance.  This can be 

accomplished by calculating the Intraclass Correlation Coefficient (ICC) using the formula:  ICC 

= 00/(00 + 
2
) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes 

that the ICC is equivalent to Bartko’s ICC(1) formula  (Bartko, 1976)  and to Shrout and Fleiss’s 

ICC(1,1) formula (Shrout & Fleiss, 1979).  To get the estimates of variance for an lme object, 

one uses the VarCorr function. 

 

> VarCorr(Null.Model) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.03580079 0.1892110 

Residual    0.78949727 0.8885366 

> 0.03580079/(0.03580079+0.78949727) #Calculate ICC  

[1] 0.04337922 

The estimate of 00 (between-group variance or Intercept) is 0.036, and the estimate of 
2
 

(within-group variance or Residual) is 0.789.  The ICC estimate (00/(00 + 
2
)) is .04. 

To verify that the ICC results from the random coefficient modeling are similar to those from 

an ANOVA model and the ICC1 function (see section 0) one can perform an ANOVA analysis 

on the same data. 

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC1(tmod) 

[1] 0.04336905 

The ICC value from the random coefficient model and the ICC(1) from the ANOVA model are 

basically identical.  

Estimating Group-Mean Reliability. When exploring the properties of the outcome variable, it 

can also be of interest to examine the reliability of the group mean.  The reliability of group 
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means often affects one’s ability to detect emergent phenomena.  In other words, a prerequisite 

for detecting emergent relationships at the aggregate level is to have reliable group means (Bliese 

1998).  By convention, estimates around .70 are considered reliable.  Group mean reliability 

estimates are a function of the ICC and group size (see Bliese, 2000; Bryk & Raudenbush, 1992).  

The GmeanRel function from the multilevel package calculates the ICC, the group size, and the 

group mean reliability for each group. 

When we apply the GmeanRel function to our Null.Model based on the 99 groups in the 

bh1996 data set, we are interested in two things.  First, we are interested in the average 

reliability of the 99 groups.  Second, we are interested in determining whether or not there are 

specific groups that have particularly low reliability. 

 
> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996, 

  control=list(opt="optim")) 

> GREL.DAT<-GmeanRel(Null.Model) 

> names(GREL.DAT) 

[1] "ICC"      "Group"    "GrpSize"  "MeanRel" 

> GREL.DAT$ICC  #ICC estimate 

[1] 0.04337922 

> GREL.DAT$MeanRel 

 [1] 0.7704119 0.7407189 0.8131975 0.6557120 0.8222325 

 [6] 0.5594125 0.5680426 0.6065741 0.6387944 0.7466758 

[11] 0.6387944 0.6201282 0.7996183 0.8099782 0.7860071 

[16] 0.6759486 0.8116016 0.7860071 0.6557120 0.7437319 

[21] 0.8066460 0.6661367 0.7839102 0.8131975 0.5920169 

[26] 0.7210397 0.8222325 0.6065741 0.7245244 0.6134699 

[31] 0.6557120 0.6852003 0.5843267 0.8178269 0.8066460 

[36] 0.7940029 0.6896308 0.7174657 0.6610045 0.8131975 

[41] 0.7376341 0.6610045 0.8193195 0.7061723 0.7727775 

[46] 0.8207878 0.6557120 0.7407189 0.7795906 0.5680426 

[51] 0.6201282 0.6265610 0.5994277 0.7407189 0.7137989 

[56] 0.7750949 0.8163095 0.7437319 0.7959093 0.8099782 

[61] 0.7022044 0.8207878 0.6939384 0.7022044 0.7704119 

[66] 0.7376341 0.8099782 0.6661367 0.5994277 0.8193195 

[71] 0.7860071 0.4048309 0.6502517 0.7604355 0.7279232 

[76] 0.7959093 0.6852003 0.7523651 0.7210397 0.6939384 

[81] 0.8964926 0.7210397 0.9110974 0.8795291 0.8788673 

[86] 0.9088937 0.8863580 0.7860071 0.8277854 0.9100090 

[91] 0.8083266 0.8379118 0.8886532 0.8330020 0.8250530 

[96] 0.6661367 0.7551150 0.4204716 0.5504306 

> mean(GREL.DAT$MeanRel)  #Average group-mean reliability 

[1] 0.7335212 

Notice that the overall group-mean reliability is acceptable at .73, but that several groups have 

quite low reliability estimates.  Specifically, group 72 and group 98 have reliability estimates 

below .50.   

We can show that the group-mean reliability from the random coefficient model is equivalent 

to the ICC(2) from the ANOVA model by using the bh1996 data to estimate the ICC(2) in an 

ANOVA framework (see section 0.). 
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> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC2(tmod) 

[1] 0.7717129 

In this case the ICC(2) estimate from the ANOVA model differs from the group-mean 

reliability estimate from the random coefficient model.  This occurs because group sizes are 

unequal.  If all the groups were the same size, then the two measures would be nearly identical. 

With reference to ICC(2) values and group-mean reliability, note that there are alternate ways 

of estimating group-mean reliability.  Snijders and Bosker (1999) show, for example, that one 

can estimate overall group-mean reliability by determining what percentage of the total group 

variance is made up by 00.   

Finally, keep in mind that the estimates of within-group and between-group variance from the 

random coefficient model will be nearly identical to those from the ANOVA model as long as 

restricted maximum likelihood estimation (REML) is used in the random coefficient modeling 

(this is the default in the lme routine of the nlme package).  If full maximum likelihood is used, 

the variance estimates may differ somewhat from the ANOVA estimates particularly in small 

sample situations.  In our running example, the use of REML versus full maximum likelihood 

makes little difference.  Notice the use of the method="ML" below: 
 

> mod.ml<-lme(WBEING~1,random=~1|GRP,data=bh1996,method="ML", 

  control=list(opt="optim")) 

> VarCorr(mod.ml) 

GRP = pdLogChol(1)  

            Variance   StdDev    

(Intercept) 0.03531699 0.1879282 

Residual    0.78949525 0.8885354 

The maximum likelihood estimate of the ICC is also 0.043 [0.0353/(0.0353+0.789)] which is 

identical to the REML estimate. 

Determining whether 00 is significant.  Returning to our original analysis involving well-

being from the bh1996 data set, we might be interested in knowing whether the intercept 

variance (i.e.,00) estimate of 0.036 is significantly different from zero.  To do this we compare –

2 log likelihood values between (1) a model with a random intercept, and (2) a model without a 

random intercept. 

A model without a random intercept is estimated using the gls function in the nlme 

package.  The –2 log likelihood values for an lme or gls object are obtained using the logLik 

function and multiplying this value by –2.  If the –2 log likelihood value for the model with 

random intercept is significantly larger than the model without the random intercept (based on a 

Chi-square distribution), then one concludes that the model with the random intercept fits the 

data significantly “better” than does the model without the random intercept.  In the nlme 

package, model contrasts via –2 log likelihood values are facilitated by using the anova 

function. 
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> Null.Model.2<-gls(WBEING~1,data=bh1996,  

  control=list(opt="optim")) 

> logLik(Null.Model.2)*-2 

`log Lik.' 19536.17 (df=2) 

> logLik(Null.Model)*-2 

`log Lik.' 19347.34 (df=3) 

> 19536.17-19347.34 

[1] 188.83 
> anova(Null.Model,Null.Model.2) 

             Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Null.Model       1  3 19353.34 19374.06 -9673.669                         

Null.Model.2     2  2 19540.17 19553.98 -9768.084 1 vs 2 188.8303  <.0001 

The –2 log likelihood value for the gls model without the random intercept is 19536.17.  The 

–2 log likelihood value for the model with the random intercept is 19347.34.  The difference of 

188.8 is significant on a Chi-Squared distribution with one degree of freedom (one model 

estimated a variance term associated with a random intercept, the other did not, and this results in 

the one df difference).  These results suggest that there is significant intercept variation. 

In summary, we would conclude that there is significant intercept variation in terms of general 

well-being scores across the 99 Army companies in our sample.  We also estimate that 4% of the 

variation in individuals’ well-being score is a function of the group to which he or she belongs.  

Thus, a model that allows for random variation in well-being among Army companies is better 

than a model that does not allow for this random variation. 

Step 2.  At this point in our example we have two sources of variation that we can attempt to 

explain in subsequent modeling – within-group variation (
2
) and between-group intercept (i.e., 

mean) variation (00). In many cases, these may be the only two sources of variation we are 

interested in explaining so let us begin by building a model that predicts these two sources of 

variation. 

To make things interesting, let us assume that individual well-being is related to individual 

reports of work hours.  We expect that individuals who report high work hours will report low 

well-being.  At the same time, however, let us assume that average work hours in an Army 

Company are related to the average well-being of the Company over-and-above the individual-

level work-hours and well-being relationship.  Using Hofmann and Gavin’s (1998) terminology, 

this means that we are testing an incremental model where the level-2 variable predicts unique 

variance after controlling for level-1 variables.  This is also directly equivalent to the contextual 

model that we estimated in section 3.4.1. 

The form of the model using Bryk and Raudenbush’s (1992) notation is: 

  WBEINGij = 0j + 1j(HRSij)+rij      

         0j = 00 + 01(G.HRSj) + u0j     

1j = 10       

Let us consider each row of the notation.  The first row states that individual well-being is a 

function of the groups’ intercept plus a component that reflects the linear effect of individual 

reports of work hours plus some random error.  The second line states that each groups’ intercept 

is a function of some common intercept (00) plus a component that reflects the linear effect of 

average group work hours plus some random between-group error.  The third line states that the 
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slope between individual work hours and well-being is fixed—it is not allowed to randomly vary 

across groups.  Stated another way, we assume that the relationship between work hours and 

well-being is identical in each group. 

When we combine the three rows into a single equation we get an equation that looks like a 

common regression equation with an extra error term (u0j).  This error term indicates that 

WBEING intercepts (i.e., means) can randomly differ across groups.  The combined model is: 

 WBEINGij = 00 + 10(HRSij) + 01(G.HRSj) + u0j + rij     

This model is specified in lme as: 

> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996, 

  control=list(opt="optim")) 

 

> summary(Model.1) 

Linear mixed-effects model fit by REML 

 Data: bh1996  

       AIC      BIC   logLik 

  19222.28 19256.81 -9606.14 

 

Random effects: 

 Formula: ~1 | GRP 

        (Intercept)  Residual 

StdDev:   0.1163900 0.8832353 

 

Fixed effects: WBEING ~ HRS + G.HRS  

                Value  Std.Error   DF   t-value p-value 

(Intercept)  4.740829 0.21368746 7282 22.185808  <.0001 

HRS         -0.046461 0.00488798 7282 -9.505056  <.0001 

G.HRS       -0.126926 0.01940357   97 -6.541368  <.0001 

 Correlation:  

      (Intr) HRS    

HRS    0.000        

G.HRS -0.965 -0.252 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-3.35320562 -0.65024982  0.03760797  0.71319835  2.70917777  

 

Number of Observations: 7382 

  Number of Groups: 99  

Notice that work hours are significantly negatively related to individual well-being.  

Furthermore after controlling the individual-level relationship, average work hours (G.HRS) are 

related to the average well-being in a group.  The interpretation of this model, like the 

interpretation of the contextual effect model (section 3.4.1) indicates that the slope at the group-

level significantly differs from the slope at the individual level.  Indeed, in this example, each 

hour increase at the group level is associated with a -.163 (-.046+-.127) decrease in average well-

being.  The coefficient of -.127 reflects the degree of difference between the two slopes. 



Multilevel Models in R  59 

At this point one can also estimate how much of the variance was explained by these two 

predictors.  Because individual work hours were significantly related to well-being, we expect 

that it will have “explained” some of the within-group variance 
2
.  Similarly, since average 

work hours were related to the group well-being intercept we expect that it will have “explained” 

some of intercept variance, 00.  Recall that in the null model, the variance estimate for the 

within-group residuals, 
2
, was 0.789; and the variance estimate for the intercept, 00, was 0.036. 

The VarCorr function on the Model.1 object reveals that each variance component has 

changed slightly. 
> VarCorr(Model.1) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.01354663 0.1163900 

  Residual    0.78010466 0.8832353 

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.   

That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the 

variance of the between-group intercepts decreased from 0.036 to 0.014.  We can calculate the 

percent of variance explained by using the following formula: 

 Variance Explained = 1 – (Var with Predictor/Var without Predictor) 

To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%) 

of the within-group variance in 
2
, and group-mean work hours explained 1 – (0.014/0.036) or 

0.611 (61%) of the between-group intercept variance 00.  While the logic behind variance 

estimates appears pretty straightforward (at least in models without random slopes), the variance 

estimates should be treated with some degree of caution because they are partially dependent 

upon how one specifies the models.  Interested readers are directed to Snijders and Bosker (1994; 

1999) for an in-depth discussion of variance estimates. 

Step 3.  Let us continue our analysis by trying to explain the third source of variation, namely, 

variation in our slopes (11, 12, etc.).  To do this, let us examine another variable from the Bliese 

and Halverson (1996) data set.  This variable represents Army Company members’ ratings of 

leadership consideration (LEAD).  Generally individual soldiers’ ratings of leadership are related 

to well-being.  In this analysis, however, we will consider the possibility that the strength of the 

relationship between individual ratings of leadership consideration and well-being varies among 

groups. 

We begin by examining slope variation among the first 25 groups.  Visually we can do this 

using xyplot from the lattice package. 

 
> library(lattice) 

> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,], 

  type=c("p","g","r"),col="dark blue",col.line="black", 

  xlab="Leadership Consideration", 

  ylab="Well-Being") 



Multilevel Models in R  60 

Leadership Consideration

W
e
ll-

B
e
in

g

1 2 3 4 5

0
1
2
3
4
5

1 2

1 2 3 4 5

3 4

1 2 3 4 5

5

6 7 8 9

0
1
2
3
4
5

10
0
1
2
3
4
5

11 12 13 14 15

16 17 18 19

0
1
2
3
4
5

20
0
1
2
3
4
5

21

1 2 3 4 5

22 23

1 2 3 4 5

24 25

 

 

From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some 

slope variation.  The plot, however, does not tell us whether or not this variation is significant.  

Thus, the first thing to do is to determine whether the slope variation differs by more than chance 

levels. 

Is slope variation significant? We begin our formal analysis of slope variability by adding 

leadership consideration to our model and testing whether or not there is significant variation in 

the leadership consideration and well-being slopes across groups.  The model that we test is: 

    WBEINGij =  0j + 1j(HRSij)+ 2j(LEADij) + rij     

                 0j = 00 + 01(G.HRSj) + u0j     

                     1j = 10 

                              2j = 20 + u2j 

The last line of the model includes the error term u2j.  This term indicates that the leadership 

consideration and well-being slope is permitted to randomly vary across groups.  The variance 

term associated with u2j is 12.  It is this variance term that interests us in the cross-level 

interaction hypothesis.  Note that we have not permitted the slope between individual work hours 

and individual well-being to randomly vary across groups. 

In combined form the model is:  WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +  

u0j + u2j * LEADij + rij.   In R this model is designated as: 
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> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996, 

  control=list(opt="optim")) 

> summary(Model.2) 

Linear mixed-effects model fit by REML 

 Data: bh1996  

       AIC      BIC   logLik 

  17838.58 17893.83 -8911.29 

 

Random effects: 

 Formula: ~LEAD | GRP 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev    Corr   

(Intercept) 0.3794891 (Intr) 

LEAD        0.1021935 -0.97  

Residual    0.8008079        

 

Fixed effects: WBEING ~ HRS + LEAD + G.HRS  

                 Value  Std.Error   DF   t-value p-value 

(Intercept)  2.4631348 0.20832607 7281 11.823459  <.0001 

HRS         -0.0284776 0.00446795 7281 -6.373764  <.0001 

LEAD         0.4946550 0.01680846 7281 29.428928  <.0001 

G.HRS       -0.0705047 0.01789284   97 -3.940387   2e-04 

... 

 

Number of Observations: 7382 

Number of Groups: 99  

In line with our expectations, leadership consideration is significantly related to well-being.  

What we are interested in from this model, however, is whether 12, the slope between leadership 

consideration and well-being significantly varies across groups.   To determine whether the slope 

is significant, we test the –2 log likelihood ratios between a model with and a model without a 

random slope for leadership consideration and well-being.  We have already estimated a model 

with a random slope.  To estimate a model without a random slope we use update on 

Model.2 and change the random statement so that it only includes a random intercept. 

> Model.2a<-update(Model.2,random=~1|GRP) 

> anova(Model.2,Model.2a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Model.2      1  8 17838.58 17893.83 -8911.290                         

Model.2a     2  6 17862.68 17904.12 -8925.341 1 vs 2 28.10254  <.0001 

The difference of 28.10 is significant on two degrees of freedom.  Note that there are two 

degrees of freedom because the model with the random slope also estimates a covariance term 

for the slope-intercept relationship.  The log likelihood results indicate the model with the 

random effect for the leadership consideration and well-being slope provides a significantly 

better fit than the model without this random effect.  This indicates significant slope variation. 

Given the significant variation in the leadership and well-being slope, we can attempt to see 

what group-level properties are related to this variation.  In this example, we hypothesize that 
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when groups are under a lot of strain from work requirements, the relationship between 

leadership consideration and well-being will be relatively strong.  In contrast, when groups are 

under little strain, we expect a relatively weak relationship between leadership consideration and 

well-being.  We expect these relationships because we believe that leadership is relatively 

unimportant in terms of individual well-being when groups are under little stress, but that the 

importance of leadership consideration increases when groups are under high stress.  We are, in 

essence, proposing a contextual effect in an occupational stress model (see Bliese & Jex, 2002). 

A proposition such as the one that we presented in the previous paragraph represents a cross-

level interaction.  Specifically, it proposes that the slope between leadership consideration and 

well-being within groups varies as a function of a level-2 variable, namely group work demands.  

In random coefficient modeling, we test this hypothesis by examining whether a level-2 variable 

explains a significant amount of the level-1 slope variation among groups. In our example, we 

will specifically be testing whether average work hours in the group “explains” group-by-group 

variation in the relationship between leadership consideration and well-being.  In Bryk and 

Raudenbush’s (1992) notation, the model that we are testing is: 

 

  WBEINGij = 0j + 1j(HRSij)+ 2j(LEADij) + rij      

           0j = 00 + 01(G.HRSj) + u0j     

                 1j = 10 

           2j = 20 +21(G.HRSj) + u2j     

In combined form the model is: 

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) + 21(LEADij * G.HRSj)  + u0j + u2j 

*LEADij + rij. 

In lme we specify the cross-level interaction by adding an interaction term between 

leadership (LEAD) and average group work hours (G.HRS).  Specifically, the model is: 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

> round(summary(Final.Model)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  3.654     0.726 7280   5.032   0.000 

HRS         -0.029     0.004 7280  -6.391   0.000 

LEAD         0.126     0.217 7280   0.578   0.564 

G.HRS       -0.175     0.064   97  -2.751   0.007 

LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

The tTable results from the final model indicate there is a significant cross-level interaction 

(the last row using a liberal p-value of less than .10).  This result indicates that average work 

hours “explained” a significant portion of the variation in 12 – the vertical cohesion and well-

being slope. 

We can examine the form of our interaction by predicting four points – high and low group 

work hours and high and low leadership consideration.   We start by selecting values for G.HRS 

and LEAD that are one standard deviation above the mean and one standard deviation below the 
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mean.  By using the Group Work Hours variable in the original data set, we have means and 

standard deviation values weighted by group size. 
 > mean(bh1996$G.HRS) 
[1] 11.2987 

> sd(bh1996$G.HRS) 

[1] 0.8608297 

> 11.30-.86; 11.30+.86 

[1] 10.44 

[1] 12.16 

 

> mean(bh1996$LEAD) 

[1] 2.890665 

> sd(bh1996$LEAD) 

[1] 0.771938 

> 2.89-.77; 2.89+.77 

[1] 2.12 

[1] 3.66 

Once we have the high and low values we create a small data set (TDAT) with high and low 

values for the interactive variables, and mean values for the non-interactive variables (individual 

work hours in this case).  We then use the predict function to get estimates of the outcome 

given the values of the variables. 
> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 

                 LEAD=c(2.12,2.12,3.66,3.66), 

                 G.HRS=c(10.44, 12.16, 10.44, 12.16), 

                 GRP=c(1,1,1,1)) 

> predict(Final.Model,TDAT,level=1) 

       1        1        1        1  

2.380610 2.198103 3.217337 3.120810 

The predicted values in this case are specifically for GRP 1.  Each group in the sample will 

have different predicted values because the slopes and intercepts randomly vary among groups.  

In many cases, one will not be specifically interested in the predicted values for specific groups, 

but interested in the patterns for the sample as a whole.  If one is interested in estimating overall 

values, one can change the level of prediction to level=0. 

> predict(Final.Model,TDAT,level=0) 
[1] 2.489508 2.307001 3.204766 3.108239 

attr(,"label") 

[1] "Predicted values" 

Notice that the values for the sample as a whole differ from those for GRP 1. 

When the values are plotted, the form of the interaction supports our proposition; however, to 

better illustrate the effect, the figure uses values of 7 and 12 to represent low and high average 

work hours.  Note this plot was generated in PowerPoint. 
> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 

                   LEAD=c(2.12,2.12,3.66,3.66), 

                   G.HRS=c(7, 12, 7, 12), 

                   GRP=c(1,1,1,1)) 
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> predict(Final.Model,TDAT,level=0) 

[1] 2.854523 2.323978 3.397820 3.117218 

attr(,"label") 

[1] "Predicted values" 
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Soldiers’ perceptions of leadership consideration are positively related to their well-being 

regardless of the number of hours that the group, on average, works; however, the relationship 

between leadership consideration and well-being is stronger (steeper slope) in groups with high 

work hours than in groups with low work hours.  Another way to think about the interaction is to 

note that well-being really drops (in relative terms) when one perceives that leadership is low in 

consideration and one is a member of a group with high work hours.  This supports our 

proposition that considerate leadership is relatively more important in a high work demand 

context. 

In this model one can also estimate how much of the variation in the slopes is “explained” by 

the group work hours.  The estimate of the between group slope variance, 12, in the model with 

a random slope for the relationship between leadership and well-being (Model.2) is 0.0104. 
> VarCorr(Model.2) 

GRP = pdLogChol(LEAD)  

            Variance   StdDev    Corr   

(Intercept) 0.14401197 0.3794891 (Intr) 

LEAD        0.01044352 0.1021935 -0.97  

Residual    0.64129330 0.8008079 

  The estimate after average work hours has “explained” some of the slope variance 

(Final.Model) is 0.0095. 
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> VarCorr(Final.Model) 

GRP = pdLogChol(LEAD)  

            Variance    StdDev     Corr   

(Intercept) 0.131260632 0.36229909 (Intr) 

LEAD        0.009545556 0.09770136 -0.965 

Residual    0.641404947 0.80087761  

  Thus, average group work hours accounts for 1 – (0.0095/0.0104) or 8.6% of the slope 

variance.  Once again, I emphasize that this is a rough estimate, and I direct readers to Snijders 

and Bosker (1994; 1999) for additional information on estimating effect sizes. 

3.6.2 Plotting an interaction with interaction.plot 

The previous example showed the form of the interaction plot by exporting predicted values 

into PowerPoint.  In many cases, however, users may simply want a way to quickly examine the 

form a two-way interaction within R.  This task can be accomplished using the 

interaction.plot function illustrated below. 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

  random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 

                     LEAD=c(2.12,2.12,3.66,3.66), 

                     G.HRS=c(7, 12, 7, 12), 

                     GRP=c(1,1,1,1)) 

> TDAT$WBEING<-predict(Final.Model,TDAT,level=1) 

> with(TDAT,interaction.plot(LEAD,G.HRS,WBEING)) 
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3.6.3 Some Notes on Centering 

In multilevel modeling, one will eventually have to contend with centering issues.  In our 

examples, we have simply used raw, untransformed variables as predictors.  In some cases, 

though, there may be good reasons to consider centering the variables.  Basically, there are two 

centering options with level-1 variables. 

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.  

Grand-mean centering is often worth considering because doing so helps reduce multicollinearity 

among predictors and random effect terms.  In cases where interactive terms are included, grand-

mean centering can be particularly helpful in reducing correlations between main-effect and 

interactive terms.  Hofmann and Gavin (1998) and others have shown that grand-mean centered 

and raw variable models are basically identical; however, grand-mean centered models may 

converge in situations where a model based on raw variables will not.  The computational 

efficiency of grand-mean centered models is due entirely to reductions in multicollinearity 

because the computer algorithms tend to have trouble converging when correlations among 

variables become too high. 

Grand-mean centering can be accomplished in one of two ways.  The explicit way is to 

subtract the overall mean from the raw variable.  The less obvious way is to use the scale 

function.  The scale function is typically used to standardize (mean=0, sd=1) variables, but can 

also be used to grand-mean center.  Below I create grand-mean centered variables for leadership 

both ways. 

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD) 

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=F) 

In the first example a single value (the mean of leadership) is recycled and subtracted from 

each element in the vector of leadership scores to create a new variable.  In the second example, 

the use of the option scale=F instructs scale to provide a grand-mean centered variable. 

Group-mean centering is another centering option with level-1 variables.  In group-mean 

centering, one subtracts the group mean from each individual score.  The new variable reflects 

how much an individual differs from his or her group average.  It is important to keep in mind 

that group-mean centering represents a completely different parameterization of the model than 

does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 2002; Snijders & 

Bosker, 1999).  Most authors recommend that one use group-mean centering only if there is a 

strong theoretical reason to believe that a respondent's relative position within the group is more 

important than the absolute rating (Hox, 2002; Snijders & Bosker, 1999).  For instance, one 

might use group-mean centering if one believed that the key predictive aspect of work hours was 

whether an individual worked more or less than his or her group members. 

There may also be value in using group-mean centering when testing a cross-level interaction. 

Bryk and Raudenbush (1992) and Hofmann and Gavin (1998) point out that group-mean 

centering provides the “purest” estimate of the within-group slope in these situations.  That is, 

slope estimates based on raw variables and grand-mean centered variables can be partially 

influenced by between-group factors.  In contrast, group-mean centered variables have any 

between-group effects removed.  Bryk and Raudenbush (1992) show that group-level 

interactions can some times pose as cross-level interactions, so a logical strategy is to use raw or 
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grand-mean centered variables to test for cross-level interactions, but verify the final results with 

group-mean centered variables. 

Group-mean centered variables are created by subtracting the group-mean from the raw 

variable.  Thus, they are identical to the within-group scores calculated in WABA (see section 

3.5.1).  To create group-mean centered variables in R, one needs two columns in the dataframe – 

the raw variable and the group-mean.  In section 3.2 the aggregate and merge functions 

were illustrated as ways of creating a group-mean variable (via aggregate) and merging the 

group means back with the raw data (via merge). Below these functions are used to help create 

a group-centered leadership variable.   

 
> TDAT<-bh1996[,c("GRP","LEAD")] 

> TEMP<-aggregate(TDAT$LEAD,list(TDAT$GRP),mean) 

> names(TEMP)<-c("GRP","G.LEAD") 

> TDAT<-merge(TDAT,TEMP,by="GRP") 

> names(TDAT) 

[1] "GRP"    "LEAD"   "G.LEAD" 

> TDAT$GRP.CENT.LEAD<-TDAT$LEAD-TDAT$G.LEAD 

> names(TDAT) 

[1] "GRP"           "LEAD"          "G.LEAD"        "GRP.CENT.LEAD"  

One would typically choose a shorter name for the group-mean centered variables, but this 

name was chosen to be explicit. 

The bh1996 dataframe has group-mean centered variables for all the predictors.  The group-

mean centered variables begin with a "W" for "within-group".  For comparison, the model below 

uses the group-mean centered leadership variable in lieu of the raw leadership variable used in 

the final model in the preceding section. 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

+ random=~LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS, 

+ random=~LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> round(summary(Final.Model.R)$tTable,dig=3) 

              Value Std.Error   DF t-value p-value 

(Intercept)   4.705     0.211 7280  22.250   0.000 

HRS          -0.028     0.004 7280  -6.264   0.000 

W.LEAD        0.044     0.222 7280   0.197   0.844 

G.HRS        -0.142     0.019   97  -7.421   0.000 

W.LEAD:G.HRS  0.040     0.019 7280   2.064   0.039 

Notice that the cross-level interaction is now significant with a t-value of 2.064.  In contrast, 

recall that the cross-level interaction in the model with the non-centered leadership variable had a 

t-value of 1.703 (p<.10).  Thus, there are some minor differences between the two model 

specifications. 
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4 Growth Modeling 

Growth models are an important variation of multilevel models (see section 3.6).  In growth 

modeling repeated observations from an individual represent the level-1 variables, and the 

attributes of the individual represent the level-2 variables.  The fact that the level-1 variables are 

repeated over time poses some additional analytic considerations; however, the steps used to 

analyze the basic growth model and the steps used to analyze a multilevel model share many key 

similarities. 

This chapter begins by briefly reviewing some of the methodological challenges associated 

with growth modeling.  Following this, the chapter illustrates how data must be configured in 

order to conduct growth modeling.  Finally, the chapter illustrates a complete growth modeling 

analysis using the nlme package.  Much of this material is taken from Bliese and Ployhart 

(2002). 

4.1 Methodological challenges 

In general, the methodological challenges associated with longitudinal analyses of any kind 

can be daunting.  For instance, since longitudinal data is collected from single entities (usually 

persons) over multiple times, it is likely that there will be some degree of non-independence in 

the responses.  Multiple responses from an individual will tend to be related by virtue of being 

provided by the same person, and this non-independence violates the statistical assumption of 

independence underlying many common data analytic techniques (Kenny & Judd, 1986).  The 

issue of non-independence should be familiar to individuals who have worked with multilevel 

modeling since non-independence due to group membership is key characteristic of multilevel 

models.  That is, multilevel models are fundamentally about modeling the non-independence that 

occurs when individual responses are affected by group membership. 

In longitudinal designs, however, there are additional complications associated with the level-

1 responses.  First, it is likely that responses temporally close to each other (e.g., responses 1 and 

2) will be more strongly related than responses temporally far apart (e.g., responses 1 and 4).  

This pattern is defined as a simplex pattern or lag 1 autocorrelation.  Second, it is likely that 

responses will tend to become either more variable over time or less variable over time.  For 

instance, individuals starting jobs may initially have a low degree of variability in performance, 

but over time the variance in job performance may increase.  In statistical terms, outcome 

variables in longitudinal data are likely to display heteroscedasticity.  To obtain correct standard 

errors and to draw the correct statistical inferences, autocorrelation and heteroscedasticity both 

need to be incorporated into the statistical model. 

The need to test for both autocorrelation and heteroscedasticity in growth models arises 

because the level-1 variables (repeated measures from an individual) are ordered by time.  One 

of the main difference between growth models and multilevel models revolves around 

understanding how to properly account for time in both the statistical models and in the data 

structures. 

In R, growth modeling is conducted using the nlme package (Pinhiero & Bates, 2000) and 

the lme function in particular.  These are, of course, the same functions used in multilevel 

modeling (see section 3.6).  It will become apparent, however, that the nlme package has a wide 

variety of options available for handling autocorrelation and heteroscedasticity in growth models. 
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Prior to conducting a growth modeling analysis, one has to create a data set that explicitly 

includes time as a variable.  This data transformation is referred to as changing a data set from 

multivariate to univariate form or “stacking” a data set.  In the next section, we show how to 

create a dataframe for growth modeling. 

4.2 Data Structure and the make.univ Function 

The first step in conducting a growth modeling analysis is to create a data set that is amenable 

to analysis.  Often data is stored in a format where each row represents observations from one 

individual.  For instance, an individual might provide three measures of job satisfaction in a 

longitudinal study, and the data might be arranged such that column 1 is the subject number; 

column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 4 is job 

satisfaction at time 3, etc. 

The univbct dataframe in the multilevel library allows us to illustrate this arrangement. 

This data set contains three measures taken six-months apart on three variables – job satisfaction, 

commitment, and readiness.  It also contains some stable individual characteristics such as 

respondent gender, marital status and age at the initial data collection time.  These latter 

variables are treated as level-2 predictors in subsequent modeling. 

For convenience, the univbct dataframe has already been converted into univariate or 

stacked form.  Thus, it is ready to be analyzed in a growth model; however, for the purposes of 

illustration, we will select a subset of the entire univbct dataframe and transform it back into 

multivariate form.  With this subset we will illustrate how to convert a typical multivariate 

dataframe into the format necessary for growth modeling. 

 
> library(multilevel) 

> data(univbct) 

> names(univbct) 

 [1] "BTN"     "COMPANY" "MARITAL" "GENDER"  "HOWLONG" "RANK"    "EDUCATE" 

 [8] "AGE"     "JOBSAT1" "COMMIT1" "READY1"  "JOBSAT2" "COMMIT2" "READY2"  

[15] "JOBSAT3" "COMMIT3" "READY3"  "TIME"    "JSAT"    "COMMIT"  "READY"   

[22] "SUBNUM"  

> nrow(univbct) 

[1] 1485 

> length(unique(univbct$SUBNUM)) 

[1] 495 

These commands indicate there are 1485 rows in the data set representing 495 individuals.  

Thus each individual provides three rows of data.  To create a multivariate data set out of the 

univbct dataframe, we can select every third row of the univbct dataframe.  In this 

illustration we restrict our analyses to the three job satisfaction scores and to respondent age at 

the initial data collection period. 

 

> GROWDAT<-univbct[3*(1:495),c(22,8,9,12,15)]  #selects every third row 
> GROWDAT[1:3,] 

  SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 

3      1  20 1.666667       1       3 
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6      2  24 3.666667       4       4 

9      3  24 4.000000       4       4 

The dataframe GROWDAT now contains data from 495 individuals.  The first individual was 

20 years old at the first data collection time.  At time 1, the first individual’s job satisfaction 

score was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0. 

Because of the nature of the univbct dataframe in the multilevel package, we have added 

additional steps by converting a univariate dataframe to a multivariate dataframe; nonetheless, 

from a practical standpoint the important issue is that the GROWDAT dataframe represents a 

typical multivariate data set containing repeated measures.  Specifically, the GROWDAT 

dataframe contains one row of information for each subject, and the repeated measures (job 

satisfaction) are represented by three different variables. 

From a growth modeling perspective, the key problem with multivariate dataframes like 

GROWDAT is that they do not contain a variable that indexes time.  That is, we know time is an 

attribute of this data because we have three different measures of job satisfaction; however, 

analytically we have no way of explicitly modeling time.  Thus, it is critical to create a new 

variable that explicitly indexes time.  Thus requires transforming the data to univariate or a 

stacked format. 

The make.univ function from the multilevel package provides a simple way to perform this 

transformation.  Two arguments are required (x and dvs), and two are optional (tname and 

outname).  The first required argument is the dataframe in multivariate or wide format.  The 

second required argument is a subset of the entire dataframe identifying the columns containing 

the repeated measures.  The second required argument must be time-sorted -- column 1 must be 

time 1, column 2 must be time 2, and so on.  The two optional arguments control the names of 

the two created variables:  tname defaults to "TIME" and outname defaults to "MULTDV". 

  For instance, to convert GROWDAT into univariate form we issue the following command: 

 
> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5]) 

> UNIV.GROW[1:9,] 

    SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 TIME   MULTDV 

X3       1  20 1.666667       1       3    0 1.666667 

X31      1  20 1.666667       1       3    1 1.000000 

X32      1  20 1.666667       1       3    2 3.000000 

X6       2  24 3.666667       4       4    0 3.666667 

X63      2  24 3.666667       4       4    1 4.000000 

X64      2  24 3.666667       4       4    2 4.000000 

X9       3  24 4.000000       4       4    0 4.000000 

X95      3  24 4.000000       4       4    1 4.000000 

X96      3  24 4.000000       4       4    2 4.000000   

Note that each individual now has three rows of data indexed by the variable “TIME”.   Time 

ranges from 0 to 2.  To facilitate model interpretation, the first time is coded as 0 instead of as 1.  

Doing so allows one to interpret the intercept in subsequent models as the level of job 

satisfaction at the initial data collection time. Second, notice that the make.univ function has 

created a variable called “MULTDV”.  This variable represents the multivariate dependent 
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variable.  The variable “TIME” and the variable “MULTDV” are two of the primary variables 

used in growth modeling.  Finally, notice that AGE, SUBNUM and the values for the three job 

satisfaction variables were repeated three times for each individual.  By repeating the individual 

variables, the make.univ function has essentially created a dataframe with level-2 variables in 

the proper format.  For instance, subject age can now be used as a level-2 predictor in subsequent 

modeling. 

4.3 Growth Modeling Illustration 

With the data in univariate form, we can begin to visually examine whether or not we see 

patterns between time and the outcome.  For instance, the commands below use the lattice 

package to produce a plot of the first 30 individuals: 

 
>library(lattice) 

> xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,], 
 type=c("p","r","g"),col="blue",col.line="black", 

 xlab="Time",ylab="Job Satisfaction") 
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From this plot, it appears as though there is considerable variability both in overall levels of 

job satisfaction and in how job satisfaction changes over time.  The goal in growth modeling is to 
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determine whether or not we can find consistent patterns in the relationship between time and job 

satisfaction.  Thus, we are now ready to illustrate growth modeling in a step-by-step approach.  

In this illustration, we follow the model comparison approach outlined by Bliese and Ployhart 

(2002) and in also discussed in Ployhart, Holtz and Bliese (2002). 

As an overview of the steps, the basic procedure is to start by examining the nature of the 

outcome.  Much as we did in multilevel modeling, we are interested in estimating the ICC and 

determining whether the outcome (job satisfaction) randomly varies among individuals.  Second, 

we are interested in examining the form of the relationship between time and the outcome.  In 

essence, we want to know whether the outcome generally increases, decreases, or shows some 

other type of relationship with time.  The plot of the first 30 individuals shows no clear pattern in 

how job satisfaction is changing over time, but the analysis might identify an overall trend 

among the 495 respondents.  Third, we attempt to determine whether the relationship between 

time and the outcome is constant among individuals or whether it varies on an individual-by-

individual basis.  Fourth, we model in more complicated error structures such as autocorrelation, 

and finally we add level-2 predictors of intercept and slope variances. 

4.3.1 Step 1:  Examine the DV 

  The first step in growth modeling is to examine the properties of the dependent variable.  As 

in multilevel modeling, one begins by estimating a null model and calculating the ICC. 

 
> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit, control=list(opt="optim")) 

> VarCorr(null.model) 

SUBNUM = pdLogChol(1)  

            Variance  StdDev    

(Intercept) 0.4337729 0.6586144 

Residual    0.4319055 0.6571952 

> 0.4337729/(0.4337729+0.4319055) 

[1] 0.5010786 

In our example using the UNIV.GROW dataframe, the ICC associated with job satisfaction is 

.50.  This indicates that 50% of the variance in any individual report of job satisfaction can be 

explained by the properties of the individual who provided the rating.  Another way to think 

about this is to note that individuals tend to remain fairly constant in ratings over time, and that 

there are differences among individuals.  This observation is reflected in the graph of the first 30 

respondents. 

4.3.2 Step 2: Model Time    

Step two involves modeling the fixed relationship between time and the dependent variable. 

In almost all cases, one will begin by modeling a linear relationship and progressively add more 

complicated relationships such as quadratic, cubic, etc.  To test whether there is a linear 

relationship between time and job satisfaction, we regress job satisfaction on time in a model 

with a random intercept. 

 
> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit,control=list(opt="optim")) 
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> summary(model.2)$tTable 

                 Value  Std.Error  DF   t-value    p-value 

(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000 

TIME        0.05176461 0.02168024 903  2.387640 0.01716169  

An examination of the fixed effects indicates that there is a significant linear relationship 

between time and job satisfaction such that job satisfaction increases by .05 each time period.  

Note that since the first time period was coded as 0, the intercept value in this model represents 

the average level of job satisfaction at the first time period.  Specifically, at the first time period 

the average job satisfaction was 3.22. 

More complicated time functions can be included in one of two ways – either through raising 

the time variable to various powers, or by converting time into power polynomials.  Below both 

techniques are illustrated. 

 
> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

> summary(model.2b)$tTable 

                  Value  Std.Error  DF    t-value   p-value 

(Intercept)  3.23308157 0.04262697 902 75.8459120 0.0000000 

TIME        -0.03373846 0.07816572 902 -0.4316273 0.6661154 

I(TIME^2)    0.04276425 0.03756137 902  1.1385167 0.2552071 

 

> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

> summary(model.2c)$tTable 

                   Value Std.Error  DF   t-value    p-value 

(Intercept)    3.2704416 0.0346156 902 94.478836 0.00000000 

poly(TIME, 2)1 1.5778835 0.6613714 902  2.385775 0.01724863 

poly(TIME, 2)2 0.7530736 0.6614515 902  1.138517 0.25520707  

Both models clearly show that there is no significant quadratic trend.  Note that a key 

advantage of the power polynomials is that the linear and quadratic effects are orthogonal.  Thus, 

in the second model the linear effect of time is still significant even with the quadratic effect in 

the model.  In either case, however, we conclude that time only has a linear relationship with job 

satisfaction. 

4.3.3 Step 3:  Model Slope Variability 

A potential limitation with model 2 is that it assumes that the relationship between time and 

job satisfaction is constant for all individuals.  Specifically, it assumes that each individual 

increases job satisfaction by .05 points at each time period.   An alternative model is one that 

allows slopes to randomly vary.  Given the degree of variability in the graph of the first 30 

respondents, a random slope model seems quite plausible with the current data.  The random 

slope model is tested by adding the linear effect for time as a random effect.  In the running 

example, we can simply update model.2 by adding a different random effect component and 

contrast model 2 and model 3. 

 
> model.3<-update(model.2,random=~TIME|SUBNUM) 

> anova(model.2,model.3) 
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        Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.2     1  4 3461.234 3482.194 -1726.617                         

model.3     2  6 3434.132 3465.571 -1711.066 1 vs 2 31.10262  <.0001 

The results clearly indicate that a model that allows the slope between time and job 

satisfaction to randomly vary fits the data better than a model that fixes the slope to a constant 

value for all individuals.  

In cases where higher-level trends were also significant, one would also be interested in 

determining whether allowing the slopes of the higher-level variables to randomly vary also 

improved model fit.   For instance, one might find that a quadratic relationship varied in strength 

among individuals. 

4.3.4 Step 4:  Modeling Error Structures 

The fourth step in developing the level-1 model involves assessing the error structure of the 

model.  It is important to carefully scrutinize the level-1 error structure because significance tests 

may be dramatically affected if error structures are not properly specified.  The goal of step 4 is 

to determine whether one’s model fit improves by incorporating (a) an autoregressive structure 

with serial correlations and (b) heterogeneity in the error structures. 

Tests for autoregressive structure (autocorrelation) are conducted by including the 

correlation option in lme.  For instance, we can update model.3 and include lag 1 

autocorrelation as follows: 

 
> model.4a<-update(model.3,correlation=corAR1()) 

> anova(model.3,model.4a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.3      1  6 3434.132 3465.571 -1711.066                         

model.4a     2  7 3429.771 3466.451 -1707.886 1 vs 2 6.360465  0.0117 

A model that allows for autocorrelation fits the data better than does a model that assumes no 

autocorrelation.  A summary of model 4a reveals that the autocorrelation estimate is .367 (see the 

Phi coefficient). 
 

> summary(model.4a) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW  

       AIC      BIC    logLik 

  3429.771 3466.451 -1707.886 

..... 

Correlation Structure: AR(1) 

 Formula: ~1 | SUBNUM  

 Parameter estimate(s): 

      Phi  

0.3676831  

It is important to note that the use of correlation=corAR1() in the default mode 

assumes data is structured such that time increases for each individual.  Stacked data created 

using make.univ has this structure.  If data are imported or otherwise manipulated so that this 

order is not maintained, it will be necessary either to re-order the dataframe or to specify the 
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structure to corAR1() with more detail (see help files).  For example, if the rows in 

GROW.UNIV are randomly ordered, the estimate for AR 1 changes: 

> UNIV.GROW2<-UNIV.GROW[order(rnorm(1485)),] 

> UNIV.GROW2[1:10,] 

       SUBNUM AGE  JOBSAT1  JOBSAT2  JOBSAT3 TIME   MULTDV 

6           2  24 3.666667 4.000000 4.000000    0 3.666667 

285.2      93  20 2.333333 3.000000 3.000000    2 3.000000 

339.2     109  33 3.666667 3.000000 3.333333    2 3.333333 

228        74  23 5.000000       NA 5.000000    0 5.000000 

894       294  37 4.000000 4.000000 4.000000    0 4.000000 

1029.1    339  20 3.000000 3.333333 3.000000    1 3.333333 

1416      468  20 3.333333 3.333333 3.666667    0 3.333333 

696.2     228  19 4.000000 2.666667 3.333333    2 3.333333 

735.1     241  25 3.666667 3.000000 3.000000    1 3.000000 

51         17  20 3.666667 3.000000 3.000000    0 3.666667 

> tmod<-lme(MULTDV~TIME,random=~1|TIME,na.action=na.omit, 

data=UNIV.GROW2,corAR1()) 

> summary(tmod) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW2  

       AIC      BIC    logLik 

  3766.914 3793.113 -1878.457 

... 

Correlation Structure: AR(1) 

 Formula: ~1 | TIME  

 Parameter estimate(s): 

       Phi  

0.05763463  

 

Notice how the estimate of the phi-coefficient has changed (replications will result in different 

estimates of the phi-coefficient because of different structures associated with the random sorting 

of the data).  To ensure the data is in the proper structure, use the order function as follows on 

any dataframe that is improperly structured: 

 

> UNIV.GROW3<-UNIV.GROW2[order(UNIV.GROW2$SUBNUM,UNIV.GROW2$TIME),] 

> UNIV.GROW3[1:10,] 
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    SUBNUM AGE  JOBSAT1  JOBSAT2 JOBSAT3 TIME   MULTDV 

3        1  20 1.666667 1.000000       3    0 1.666667 

3.1      1  20 1.666667 1.000000       3    1 1.000000 

3.2      1  20 1.666667 1.000000       3    2 3.000000 

6        2  24 3.666667 4.000000       4    0 3.666667 

6.1      2  24 3.666667 4.000000       4    1 4.000000 

6.2      2  24 3.666667 4.000000       4    2 4.000000 

9        3  24 4.000000 4.000000       4    0 4.000000 

9.1      3  24 4.000000 4.000000       4    1 4.000000 

9.2      3  24 4.000000 4.000000       4    2 4.000000 

12       4  23 3.333333 3.666667       3    0 3.333333 

Finally, we can examine the degree to which the variance of the responses changes over time.  

A simple preliminary test of variance homogeneity can be conducted by examining the variance 

of job satisfaction at each time point using the tapply command. 

 
> tapply(UNIV.GROW$MULTDV,UNIV.GROW$TIME,var,na.rm=T) 

        0         1         2  

0.9681912 0.8831397 0.7313358 

The analysis suggests the variance of job satisfaction is decreasing over time.  To model 

decreasing variance one can use the varExp option.  In cases where variance increases can use 

the varFixed option (see Pinheiro & Bates, 2000 for details). 

 
> model.4b<-update(model.4a,weights=varExp(form=~TIME)) 

> anova(model.4a,model.4b) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.4a     1  7 3429.771 3466.451 -1707.886                         

model.4b     2  8 3428.390 3470.309 -1706.195 1 vs 2 3.381686  0.0659 

The model that includes both autocorrelation and allows for decreases in variance fits the data 

marginally better (using a liberal p-value) than does the model that only includes autocorrelation.  

In subsequent analyses, however, model.4b ran into convergence problems.  Consequently, we 

elect to use model.4a as our final level-1 model. 

With the completion of step 4, we have exhaustively examined the form of the level-1 

relationship between time and job satisfaction.  This analysis has revealed that (a) individuals 

randomly vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not 

quadratic, relationship between time and job satisfaction, (c) the strength of the linear 

relationships randomly varies among individuals, and (d) there is significant autocorrelation in 

the data.  At this point, we are ready to add level-2 variables to try and explain the random 

variation in intercepts (i.e., mean job satisfaction) and in the time-job satisfaction slope. 
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4.3.5 Step 5:  Predicting Intercept Variation 

Step 5 in growth modeling is to examine factors that can potentially explain intercept 

variation.  Specifically, in our case we are interested in examining factors that explain why some 

individuals have high job satisfaction while other individuals have low job satisfaction.  In this 

example, we explore the idea that age is related to intercept variation. 

To model this relationship, the individual-level characteristic, age, is used as a predictor of the 

job satisfaction intercept. The model that we will test is represented below using the Bryk and 

Raudenbush (1992) notation.  

      Yij = 0j + 1j(Timeij) + rij       

       0j = 00 + 01(Agej) + u0j      

1j = 10 + u1j 

This equation states that respondent j’s mean level of job satisfaction (0j) can be modeled as a 

function of two things.  One is the mean level of job satisfaction (00) for all respondents.  The 

second is a coefficient associated with the individual’s age (01).  Note that the error term for the 

intercept (u0j) now represents the difference between an individuals’ mean job satisfaction and 

the overall job satisfaction after accounting for age.  In lme the model is specified as: 

 
> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

 

> round(summary(model.5)$tTable,dig=3) 

            Value Std.Error  DF t-value p-value 

(Intercept) 2.347     0.146 897  16.086   0.000 

TIME        0.053     0.024 897   2.205   0.028 

AGE         0.034     0.005 486   6.241   0.000 

Model 5 differs only from Model 4a in that Model 5 includes a new fixed effect, AGE.  

Notice that age is positively related to levels of job satisfaction.  Also notice that there are fewer 

degrees of freedom for age than for time since age is an individual (level-2) attribute. 

In interpreting the coefficients from model 5, we conclude that in cases where age is 0 and 

where time is 0, the expected level of job satisfaction is 2.347.  In some ways, this interpretation 

is strange because age will never actually be 0 in this population.  Consequently, it may be useful 

to reparameterize age by grand-mean centering the variable (see Singer, 1998).   Grand mean 

centering involves subtracting the overall mean from each observation (see section 3.6.3).   A 

model using a grand-mean centered version of age (AGE2) is presented below. 
 

> UNIV.GROW$AGE2<-UNIV.GROW$AGE-mean(UNIV.GROW$AGE,na.rm=T) 

> model.5b<-lme(MULTDV~TIME+AGE2,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

> round(summary(model.5b)$tTable,dig=3) 
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            Value Std.Error  DF t-value p-value 

(Intercept) 3.216     0.043 897  74.564   0.000 

TIME        0.053     0.024 897   2.205   0.028 

AGE2        0.034     0.005 486   6.241   0.000 

With age grand-mean centered, the intercept estimate of 3.216 now represents the initial job 

satisfaction value for a respondent of average age (25.7 years old).  Notice that the t-values for 

time and age did not change between this and the previous model.  While we will continue our 

analyses using the untransformed age variable, readers should keep in mind that grand-mean 

centering is often valuable in terms of enhancing the interpretability of models. 

4.3.6 Step 6:  Predicting Slope Variation 

The final aspect of growth modeling involves attempting to determine attributes of individual 

respondents that are related to slope variability.  In this section, we attempt to determine whether 

respondent age can explain some of the variation in the time-job satisfaction slope.  The model 

that we test is presented below: 

Yij = 0j + 1j(Timeij) + rij      

            0j = 00 + 01(Agej) + u0j       

            1j = 10 + 11(Agej) +  u1j      

This model is similar to the model specified in step 5 except that we now test the assumption 

that the slope between time and job satisfaction for an individual (1j) is a function of an overall 

slope (10), individual age (11), and an error term (u1j).  In lme, the model is specified as: 

 
> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

Note that the only difference between model 5 and model 6 is that we include an interaction 

term for time and age.  A summary of model 6 reveals that there is a significant interaction 

between time and age. 

 
> round(summary(model.6)$tTable,dig=3) 

             Value Std.Error  DF t-value p-value 

(Intercept)  2.098     0.186 896  11.264   0.000 

TIME         0.271     0.104 896   2.608   0.009 

AGE          0.043     0.007 486   6.180   0.000 

TIME:AGE    -0.008     0.004 896  -2.153   0.032 

In section 3.6.1 we illustrated how to use the predict command to generate points that could 

be used to plot out interactions.  An alternative approach is to use the overall coefficients from 

the final model in conjunction with high and low values for the predictors to generate points for 

plots.  Notice in the example that follows that the first row in the TDAT dataframe is a row of 1s 
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for the intercept, while the other rows contain high and low values for time, age and the time*age 

interaction. 

 
> TDAT<-data.frame(COEFS=(summary(model.6)$tTable)[,1], 

CASE1=c(1,0,21,0),CASE1=c(1,0,31,0), 

CASE3=c(1,2,21,42),CASE4=c(1,2,31,62)) 

> TDAT 

                   COEFS CASE1 CASE1 CASE3 CASE4 

(Intercept)  2.097720117     1     1     1     1 

TIME         0.271036716     0     0     2     2 

AGE          0.043449071    21    31    21    31 

TIME:AGE    -0.008432157     0     0    42    62 

> sum(TDAT[,1]*TDAT[,2]) 

[1] 3.010151 

> sum(TDAT[,1]*TDAT[,3]) 

[1] 3.444641 

> sum(TDAT[,1]*TDAT[,4]) 

[1] 3.198073 

> sum(TDAT[,1]*TDAT[,5]) 

[1] 3.463921 

These points are used in the plot of the interaction.  Notice that older individuals reported 

higher job satisfaction initially, and tended to show a very slight increase over time.  In contrast, 

younger respondents tended to report lower initial job satisfaction, but showed a more 

pronounced increase in job satisfaction over time. 
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5 Miscellaneous Functions 

The multilevel package has a number of other functions that have either been 

referenced in appendices of published papers, or are of basic utility to applied organizational 

researchers.  This section briefly describes these functions.  Complete help files are available in 

the multilevel package for each of the functions discussed. 

5.1 Scale reliability: cronbach and item.total 

Two functions that are can be particularly useful in estimating the reliability of multi-item 

scales are the cronbach and the item.total functions.  Both functions take a single 

argument, a dataframe with multiple columns where each column represents one item in a multi-

item scale. 

5.2 Random Group Resampling for OLS Regression Models 

The function rgr.OLS allows one to contrast a group-level hierarchical regression model 

with an identically specified model where group identifiers are randomly generated.  This type of 

model was estimated in Bliese and Halverson (2002). 

5.3 Estimate multiple ICC values:  mult.icc 

The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a 

given data set.  For instance, to estimate the ICC(1) and ICC(2) values for work hours, 

leadership, cohesion and well-being in the bh1996 data set one provides a dataframe with the 

variables of interest as the first argument in the mult.icc function, and a grouping variable as 

the second argument.  The mult.icc function is based upon lme from the nlme package. 

 
> mult.icc(bh1996[,c("HRS","LEAD","COHES","WBEING")],bh1996$GRP) 

  Variable       ICC1      ICC2 

1      HRS 0.12923696 0.9171286 

2     LEAD 0.14746131 0.9280442 

3    COHES 0.04804840 0.7900745 

4   WBEING 0.04337922 0.7717561  

5.4 Estimating bias in nested regression models:  simbias 

Bliese and Hanges (2004) showed that a failure to model the nested properties of data in 

ordinary least squares regression could lead to a loss of power in terms of detecting effects.  The 

article provided the simbias function to help estimate the degree of power loss in complex 

situations. 

5.5 Detecting mediation effects: sobel 

MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the 

mediation tests used in psychology tend to have low power.  One test that had reasonable power 

was Sobel's (1982) indirect test for mediation.  The sobel function provides a simple way to 

run Sobel's (1982) test for mediation.  Details on the use of the sobel function is available in 

the help files. 
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6 Conclusion 

This document has provided a non-technical overview of how R can be used in a wide variety 

of multilevel models.  It should be apparent that R is a powerful language that is well-suited to 

multilevel analyses.  Clearly, there is some degree of effort required to learn new programs such 

as R.  The benefits associated with learning R, however, will be well worth the effort for those 

whose work revolves around complex data analyses.  Hopefully, the examples in this document 

will help users apply R to their own multilevel problems. 
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