

Multilevel Modeling in R (2.4)

 A Brief Introduction to R, the multilevel package and the nlme package

Paul Bliese (paul.bliese@us.army.mil)

April 10, 2012

Multilevel Models in R 2

Copyright © 2012, Paul Bliese. Permission is granted to make and distribute verbatim copies of

this document provided the copyright notice and this permission notice are preserved on all

copies. For other permissions, please contact Paul Bliese at paul.bliese@us.army.mil.

Chapters 1 and 2 of this document of this document borrow heavily from An Introduction to R

(see the copyright notice below)

An Introduction to R

Notes on R: A Programming Environment for Data Analysis and Graphics

Version 1.1.1 (2000 August 15)

R Development Core Team.

Copyright c 1990, 1992 W. Venables

Copyright c 1997, R. Gentleman & R. Ihaka

Copyright c 1997, 1998 M. M.Achler

Copyright c 1999, 2000 R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies. Permission is granted to

copy and distribute modified versions of this manual under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed under the terms of a permission

notice identical to this one. Permission is granted to copy and distribute translations of this

manual into another language, under the above conditions for modified versions, except that this

permission notice may be stated in a translation approved by the R Development Core Team

Multilevel Models in R 3

Table of Contents

1 Introduction .. 5
2 An Introduction to R .. 5

2.1 Overview ... 5
2.1.1 Related software and documentation .. 6
2.1.2 R and statistics .. 6

2.1.3 Obtaining R and the multilevel package ... 6

2.1.4 Data permanency and removing objects ... 7
2.1.5 Running R for Different Projects .. 7

2.1.6 Recall and correction of previous commands ... 8
2.1.7 Getting help with functions and features .. 8

2.1.8 R commands, case sensitivity, etc... 9

2.2 Simple manipulations; numbers and vectors ... 9
2.2.1 Vectors and assignment .. 9
2.2.2 Missing values .. 10

2.3 Dataframes ... 10

2.3.1 Introduction to dataframes .. 10
2.3.2 Making dataframes.. 11

2.3.3 Using attach() and detach() .. 11

2.3.4 Managing the search path ... 12
2.4 Reading data from files .. 13

2.4.1 Reading Spreadsheet (EXCEL) data ... 13

2.4.2 The extremely useful "clipboard" option ... 14

2.4.3 The foreign package and SPSS files .. 15

2.4.4 Using file.choose to bring up a GUI to read data .. 17

2.4.5 Checking your dataframes with str , summary, and head 18

2.4.6 Loading data from packages ... 19

2.4.7 Exporting data to spreadsheets using write() and write.table() 19

2.5 More on using matrix brackets on dataframes ... 20
2.6 Identifying Statistical models in R .. 21

2.6.1 Examples ... 21
2.6.2 Linear models.. 22
2.6.3 Generic functions for extracting model information .. 22

2.7 Graphical procedures ... 23

2.7.1 The plot() function ... 23

2.7.2 Displaying multivariate data ... 23

2.7.3 Advanced Graphics and the lattice package .. 24

3 Multilevel Analyses.. 26

3.1 Attaching the multilevel and nlme packages ... 26

3.2 Helpful multilevel data manipulation functions .. 26

3.2.1 The merge Function .. 26

3.2.2 The aggregate function ... 28

3.3 Within-Group Agreement and Reliability ... 29
3.3.1 Agreement: rwg, rwg(j), and r*wg(j) ... 30
3.3.2 The awg Index .. 33

Multilevel Models in R 4

3.3.3 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim 34

3.3.4 Average Deviation (AD) Agreement using ad.m .. 37

3.3.5 Significance testing of AD using ad.m.sim .. 39

3.3.6 Agreement: Random Group Resampling ... 40

3.3.7 Reliability: ICC(1) and ICC(2) .. 43

3.3.8 Visualizing an ICC(1) with graph.ran.mean .. 44

3.4 Regression and Contextual OLS Models ... 46
3.4.1 Contextual Effect Example ... 47

3.5 Correlation Decomposition and the Covariance Theorem .. 48

3.5.1 The waba and cordif functions .. 49

3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba) 50

3.6 Multilevel Random Coefficient modeling ... 51
3.6.1 Steps in multilevel modeling .. 52

3.6.2 Plotting an interaction with interaction.plot ... 65

3.6.3 Some Notes on Centering ... 66
4 Growth Modeling ... 68

4.1 Methodological challenges .. 68

4.2 Data Structure and the make.univ Function ... 69

4.3 Growth Modeling Illustration .. 71
4.3.1 Step 1: Examine the DV .. 72

4.3.2 Step 2: Model Time .. 72
4.3.3 Step 3: Model Slope Variability .. 73
4.3.4 Step 4: Modeling Error Structures ... 74

4.3.5 Step 5: Predicting Intercept Variation.. 77
4.3.6 Step 6: Predicting Slope Variation ... 78

5 Miscellaneous Functions .. 80

5.1 Scale reliability: cronbach and item.total ... 80

5.2 Random Group Resampling for OLS Regression Models .. 80

5.3 Estimate multiple ICC values: mult.icc .. 80

5.4 Estimating bias in nested regression models: simbias ... 80

5.5 Detecting mediation effects: sobel ... 80

6 Conclusion .. 81
7 References .. 81

Multilevel Models in R 5

1 Introduction

This is an introduction to how R can be used to perform a wide variety of multilevel analyses.

“Multilevel analysis” is a term used to describe a set of analyses also referred to as random

coefficient models or mixed-effects models (see Bryk & Raudenbush, 1992; Kreft & De leeuw,

1998; Snijders & Bosker, 1999). Random coefficient models (RCM) are well-suited to

multilevel analyses; nonetheless, a number of multilevel analytic techniques existed before RCM

emerged as the tool of choice and it is valuable to understand how these techniques are both

similar to and different from RCM. In addition, RCM analyses are often augmented by work in

related areas such as work in within-group agreement and group-mean reliability. Consequently,

this document covers a wide range of inter-related topics related to multilevel analyses including:

• Within-group agreement and reliability

• Contextual OLS models

• Covariance theorem decomposition

• Random Coefficient Models or Mixed Effects Models

• Random Group Resampling

Because of the wide variety of topics covered in this definition of multilevel analyses, it is

necessary to use several “packages” written for R. The first of these packages is the “base”

package that comes with R. This package is automatically loaded and provides the basic

structure of R along with routines to estimate ANOVA and regression models important in

contextual OLS models.

In addition to the base package, the manuscript relies heavily on a package that I developed

conducting multilevel analyses – the multilevel package. This package provides tools to

estimate a wide variety of within-group agreement and reliability measures, and also provides

data manipulation functions to facilitate multilevel and longitudinal analyses.

Finally, the text makes considerable use of the non-linear and linear mixed-effects (nlme)

model package, (Pinheiro & Bates, 2000). This package is a powerful set of programs that can

be used to estimate a variety of random coefficient models. The programs in the nlme package

have remarkable flexibility, allowing excellent control over statistical models.

This document begins with a brief introduction to R. The material in the introduction is in

many cases lifted word-for-word from the document entitled “An Introduction to R” (see the

copyright notice on page 2). This brief introduction is intended to give readers a feel for R, and

readers familiar with R should feel free to skip this material. Following the introduction to R,

the manuscript focuses on using R to conduct multilevel analyses.

2 An Introduction to R

2.1 Overview

R is an integrated suite of software facilities for data manipulation, calculation and graphical

display. Among other things it has:

Multilevel Models in R 6

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, integrated collection of tools for data analysis,

• graphical facilities for data analysis and display either directly at the computer or on

hardcopy, and

• a well-developed and effective programming language.

2.1.1 Related software and documentation

R can be regarded as a re-implementation of the S language developed at AT&T by Rick

Becker, John Chambers and Allan Wilks. A number of the books and manuals about S bear some

relevance to R.

The basic reference is The New S Language: A Programming Environment for Data Analysis

and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The features of the

1991 release of S (S version 3) are covered in Statistical Models in S edited by John M.

Chambers and Trevor J. Hastie. Both of these texts would be highly useful to users of R.

2.1.2 R and statistics

The developers of R think of it as an environment within which many classical and modern

statistical techniques have been implemented. Some of these are built into the base R

environment, but many are supplied as packages. There are a number of packages supplied with

R (called "standard" packages) and many more are available through the CRAN family of

Internet sites (via http://cran.r-project.org).

There is an important difference in philosophy between R and the other main statistical

systems. In R a statistical analysis is normally done as a series of steps with intermediate results

stored in objects. Thus, whereas SAS and SPSS provide detailed output files from an analysis, R

provides minimal output and stores the results in a fit object for subsequent calls by functions

such as summary.

2.1.3 Obtaining R and the multilevel package

The CRAN websites and mirrors (http: //cran.r-project.org) provide binary files for installing

R in Windows (and other) computing environments. The base program and a number of default

packages can be downloaded and installed using a single executable file (*.exe).

The base program is augmented by numerous packages. As of the writing of this manuscript,

the nlme package is included with the base distribution; however, the multilevel package

needs to be obtained using the "packages" GUI option in R. Other programs such as the

foreign package (for importing SPSS and other types of data) and the lattice package (for

graphics) are included as part of the base distribution.

Multilevel Models in R 7

2.1.4 Data permanency and removing objects

In R, one works in an area called the “workspace.” The workspace is a working environment

where objects are created and manipulated. Objects that are commonly kept in the workspace

are (a) entire data sets (i.e. dataframes) and (b) the output of statistical analyses. It is also

relatively common to keep programs (i.e., functions) that do special project-related tasks within

the workspace.

The R commands

> objects()

or

> ls()

display the names of the objects in the workspace. As given above, the objects() command

lists the objects in search position 1 corresponding to the workspace (or technically the

“.GlobalEnv”). The open and closed parentheses containing no content are a shortcut for (1).

It will later become apparent that it is often useful to list objects in other search positions.

Within the workspace, one removes objects using the rm function:

> rm(x, y, ink, temp, foo)

It is important to keep in mind that there are functionally two states to the objects listed in the

workspace. The first is permanently stored in the “.Rdata” file in the working directory and

represents a previous save of the workspace. The second object state is anything created during

the current session. These latter objects reside entirely in memory unless explicitly saved to the

workspace “.Rdata” file. In other words, if you fail to save the workspace after adding or

modifying objects you create in the current session, they will NOT be there next time you start R

and load the specific workspace.

There are two ways to save current objects, both of which use the save.image function.

First, one can use the “Save Workspace” option from the File menu to specify where to save the

workspace. This option is GUI based, and allows the user to use a mouse to specify a location.

The other option is to call the save.image function directly from the command line, as in:

> save.image("F:/Temp/Project 1.RData")

In this case, the save.image function writes the objects in memory to the “Project 1.Rdata”

file in the TEMP subdirectory on the F: Drive. If calling save.image directly, it is advisable

to end the file name with ".RData" so that R recognizes the file as an R workspace.

2.1.5 Running R for Different Projects

As one develops proficiency with R, the program will inevitably end up being used for

multiple projects. It will become necessary, therefore, to keep separate workspaces. Each

workspace will likely contain one or more related datasets, model results and programs written

for specific projects.

Multilevel Models in R 8

For instance, I use R to analyze data files for manuscripts that are being written, revised and

(theoretically) eventually published. Often because of the length of the review process it may be

several months before returning to a specific project. Consequently, I have found it helpful to

store the R Workspace and analysis script in the same location as the manuscript so the data and

statistical models supporting the manuscript are immediately at hand. To save workspaces,

follow these steps:

1. Keep your initial workspace empty – no objects

2. Import the raw data (more on this later) and perform the analyses.

3. From the File menu, select “Save Workspace” and save the workspace in a project folder

with a name of your choosing (but with an extension of .RData).

By working keeping separate workspaces, all data objects and analysis objects will be

available for subsequent analyses and there will be no need to import the data more than once.

2.1.6 Recall and correction of previous commands

Under Windows, R provides a mechanism for recalling and re-executing previous commands.

The vertical arrow keys on the keyboard can be used to scroll forward and backward through a

command history. Once a command is located in this way, the cursor can be moved within the

command using the horizontal arrow keys, and characters can be removed with the DEL key or

added with the other keys.

2.1.7 Getting help with functions and features

R has a built in help facility. To get more information on any specific named function, for

example solve, the command is

> help(solve)

An alternative is

> ?solve

For a feature specified by special characters, the argument must be enclosed in double or

single quotes, making it a "character string":

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It's important".

Our convention is to use double quote marks for preference.

Searches of help files can be conducted using the help.search function. For instance, to

find functions related to regression one would type:

> help.search("regression")

Multilevel Models in R 9

2.1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive, so “A”

and “a” are different symbols and would refer to different variables.

Elementary commands consist of either expressions or assignments. If an expression is given

as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an

expression and passes the value to a variable but the result is not automatically printed.

Commands are separated either by a semi-colon (‘;’), or by a new line. Elementary commands

can be grouped together into one compound expression by braces (‘{’ .. ‘}’). Comments can be

put almost anywhere, starting with a hashmark (‘#’), everything to the end of the line is a

comment.

If a command is not complete at the end of a line, R will give a different prompt, by default

+

on second and subsequent lines and continue to read input until the command is syntactically

complete. In providing examples, this document will generally omit the continuation prompt and

indicate continuation by simple indenting.

2.2 Simple manipulations; numbers and vectors

2.2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector, which

is a single entity consisting of an ordered collection of numbers. To set up a vector named x, say,

consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c() which in this context can take n

arbitrary number of vector arguments and whose value is a vector gotten by concatenating its

arguments end to end.

A number occurring by itself in an expression is taken as a vector of length one. Notice that

the assignment operator (‘<-‘) consists of the two characters ‘<’ (“less than”) and ‘-’(“minus”)

occurring strictly side-by-side and it ‘points’ to the object receiving the value of the expression.

In current versions of R, assignments can also be made using the = sign.

> x=c(10.4, 5.6, 3.1, 6.4, 21.7)

Assignments can also be made in the other direction, using the obvious change in the

assignment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed and lost. So now if we

were to issue the command

> 1/x

Multilevel Models in R 10

the reciprocals of the five values would be printed at the screen (and the value of x, of course,

unchanged).

The further assignment

> y <- c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle

place.

2.2.2 Missing values

In some cases the components of a vector may not be completely known. When an element or

value is “not available” or a “missing value” in the statistical sense, a place within a vector may

be reserved for it by assigning it the special value NA. In general, any operation on an NA

becomes an NA. The motivation for this rule is simply that if the specification of an operation is

incomplete, the result cannot be known and hence is not available.

Many of the functions in R have options for handling missing values such as

na.action=na.omit or na.rm=T (both of which remove or omit the missing values and

run the analyses on the non-missing data). Details on how to handle missing values are in the

help files associated with specific functions.

Most of the functions in the multilevel package (that we will discuss in detail later) require

data that have no missing values. To create such data, one may make use of the na.exclude

function. The object returned from na.exclude is a new dataframe that has listwise deletion

of missing values. So

> TDATA<-na.exclude(DATA)

will produce a dataframe TDATA that contains no missing values. The TDATA dataframe can

then be used subsequent analyses. Practically speaking, it rarely makes sense to use

na.exclude on an entire dataframe; rather, one typically selects a subset of variables upon

which to apply na.exclude such as na.exclude(DATA[,c("var1","var2")]). We

discuss dataframes and how to select parts of a dataframe in more detail in the next section.

2.3 Dataframes

2.3.1 Introduction to dataframes

A dataframe is an object that stores data. Dataframes have multiple columns representing

different variables and multiple rows representing different observations. The columns can be

numeric vectors or non-numeric vectors, however each column must have the same number of

observations. Thus, for all practical purposes one can consider dataframes to be spreadsheets

with the limitation that each column must have the same number of observations.

Dataframes may be displayed in matrix form, and its rows and columns extracted using matrix

indexing conventions. This means, for example, that one can access specific rows and columns

of a dataframe using brackets [rows, columns]. For example to access rows 1-3 and all columns

of a dataframe object named TDAT

> TDAT[1:3,]

Multilevel Models in R 11

To access rows 1:3 and columns 1,5 and 8

> TDAT[1:3,c(1,5,8)]

We will consider matrix bracket manipulations in more detail with a specific example in section

2.5.

2.3.2 Making dataframes

Dataframes can be created using the data.frame function. The following example makes

a dataframe object called accountants.

> accountants<-data.frame(home=c("MD","CA","TX"),income=c(45000,

+ 55000,60000),car=c("honda","acura","toyota"))

> accountants

 home income car

1 MD 45000 honda

2 CA 55000 acura

3 TX 60000 toyota

In practice, however, one will generally make dataframes from existing files using data

importing functions such as read.table, read.csv or read.spss. These functions

read data sets from external files and create dataframes. We discuss these types of functions in

section 2.4.

2.3.3 Using attach() and detach()

The $ operator can be used to access specific components of dataframes. For instance,

accountants$car returns the car column within the dataframe accountants.

Sometimes it is useful to make the components of a list or dataframe temporarily visible as

variables under their component name, without the need to quote the list name explicitly each

time.

The attach() function, as well as having a directory name as its argument, may also have a

dataframe. Thus

> attach(accountants)

places the dataframe in the search path at position 2. In this case if there are no variables home,

income or car in position 1, then the dataframe accountants is searched and home,

income or car are available as variables in their own right. In general, I do not recommend

attaching specific dataframes just so that one can use short names such as "car" instead of the

longer names "accountants$car". While it is theoretically a time saving option, my

experience shows that it can lead to unanticipated consequences when one has fairly complex

workspaces with several objects having similar names. Though a little more time consuming, it

is better to be explicit about where specific objects are located using the $ notation.

To detach a dataframe, use

> detach()

Multilevel Models in R 12

More precisely, this statement detaches from the search path the entity currently at position 2.

Entities at positions greater than 2 on the search path can be detached by giving their number to

detach, but it is much safer to always use a name, for example by detach(accountants).

To make a permanent change to the dataframe itself, the simplest way is to resort once

again to the $ notation:

> accountants$income2<-accountants$income+100

> accountants

 home income car income2

1 MD 45000 honda 45100

2 CA 55000 acura 55100

3 TX 60000 toyota 60100

2.3.4 Managing the search path

The function search shows the current search path and so is a useful way to keep track of

what has been attached. Initially, it gives the global environment in search position 1 followed

by various packages that are automatically loaded (actual results may vary depending upon the

specific version of R).

> search()

[1] ".GlobalEnv" "package:methods" "package:stats"

[4] "package:graphics" "package:utils" "Autoloads"

[7] "package:base"

where .GlobalEnv is the workspace. Basically, the search path means that if you type in an

object such as car the program will look for something named car first in the workspace, then

in the package methods, then in the package stats, etc. Because car does not exist in any

of these places, the following error message will be returned:

> car

Error: Object "car" not found

If one attaches the dataframe accountants; however, the search path changes as follows:

> attach(accountants)

> search()

[1] ".GlobalEnv" "accountants" "package:methods"

[4] "package:stats" "package:graphics" "package:utils"

[7] "Autoloads" "package:base"

In this case, typing car at the command prompt returns:
> car

[1] honda acura toyota

Levels: acura honda toyota

It is often useful to see what objects exist within various components of the search path. The

function objects() with the search position of interest in the parentheses can be used to

examine the contents of any object in the search path. For instance to see the contexts of search

position 2 one types:

Multilevel Models in R 13

> objects(2)

[1] "car" "home" "income" "income2"

Finally, we detach the dataframe and confirm it has been removed from the search path.

> detach("accountants")

> search()

[1] ".GlobalEnv" "package:methods" "package:stats"

[4] "package:graphics" "package:utils" "Autoloads"

[7] "package:base"

2.4 Reading data from files

In R sessions, large data objects will almost always be read from external files and stored as

dataframes. There are several options available to read external files.

If variables are stored in spreadsheets such as EXCEL, entire dataframes can be read directly

using the function read.table() and variants such as read.csv() and read.delim().

The help file for read.table() discusses the variants of read.table() in detail.

If variables are stored in other statistical packages such as SPSS or SAS, then the foreign

package provides useful programs for importing the data. This document will illustrate

importing spreadsheet data and SPSS data.

2.4.1 Reading Spreadsheet (EXCEL) data

External spreadsheets normally have this form.

• The first line of the file has a name for each variable.

• Each additional line of the file has values for each variable.

So the first few lines of a spreadsheet data might look as follows.

UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1044B 1ST 4 5 5 5 5

1044B 1ST 3 NA 5 5 5

1044B 1ST 2 3 3 3 3

1044B 2ND 3 4 3 4 4

1044B 2ND 4 4 3 4 4

1044B 2ND 3 3 2 2 1

1044C 1ST 3 3 3 3 3

1044C 1ST 3 1 4 3 4

1044C 2ND 3 3 3 3 3

1044C 2ND 2 2 2 3 2

1044C 2ND 1 1 1 3 3

Multilevel Models in R 14

One of the most reliable ways to import any type of data into R is to use EXCEL to process

the data file into a comma delimited (*.csv) format. Note that most statistical packages (SAS,

SPSS) can save data as an EXCEL file. Users who use SPSS and export data to EXCEL may

encounter the error type value marker "#NULL!" for missing values. This value must be

changed to NA as under the second entry under COH02 in the example above to avoid problems

in R. In addition, all blank spaces and any other missing value markers should be replaced with

NA to facilitate dataframe creation.

Once the comma delimited file is created using the “Save As” feature in EXCEL one can

import it into R using either the read.table() or the read.csv() function. For instance,

if the file above is saved as “cohesion.csv” in the root directory of C: (C:\) the function

read.table() can be used to read the dataframe directly

>cohesion<-read.table("c:\\cohesion.csv", "header=T", sep=",")

Alternatively, one can use read.csv()

>cohesion<-read.csv("c:\\cohesion.csv","header=T")

Note that subdirectories are designated using the double slash instead of a single slash, also

recall that R is case sensitive.

Typing in the name of the cohesion object displays all of the data:

> cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4

5 1044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

9 1044C 2ND 3 3 3 3 3

10 1044C 2ND 2 2 2 3 2

11 1044C 2ND 1 1 1 3 3

2.4.2 The extremely useful "clipboard" option

In R, users can directly read and write data to a Windows clipboard. This can be a

tremendous time saving feature for it allows users to export and import data into EXCEL and

other programs without saving intermediate files.

For instance, to read cohesion into R directly from EXCEL, one would:

1. Open the cohesion.xls file in EXCEL

2. Select and copy the relevant cells in Windows (Ctrl-C)

3. Issue the R command:

> cohesion<-read.table(file="clipboard",sep="\t",header=T)

Multilevel Models in R 15

The file "clipboard" instructs read.table to read the file from the Windows

clipboard, and the separator option of "\t" notifies read.table that elements are separated

by tabs.

Because the "clipboard" option also works with write.table, (see section 2.4.7) it can

be a useful way to export the results of data analyses to EXCEL or other programs. For instance,

if we create a correlation matrix from the cohesion data set, we can export this correlation table

directly to EXCEL.

> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs")

> CORMAT

 COH01 COH02 COH03 COH04 COH05

COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426

COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316

COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837

COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961

COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000

> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA)

Going to EXCEL and issuing the "paste" command will put the matrix into the EXCEL

worksheet. Note the somewhat counter-intuitive use of col.names=NA in this example. This

command does not mean omit the column names (that would be achieved by col.names=F),

instead the command puts an extra blank in the first row of the column names to line up the

column names with the correct columns. Alternatively, one can use the option row.names=F

to omit the row numbers.

In certain cases, written objects may be too large for the default memory limit of the

Window’s clipboard (32K). For instance, if one moves the bh1996 dataset from the

multilevel package with the intent of writing it to EXCEL, the following error (truncated) is

returned:

> library(multilevel)

> data(b1996) #Bring data from the library to the workspace

> write.table(bh1996,file="clipboard",sep="\t",col.names=NA)

Warning message:

In write.table(x, file, nrow(x),... as.integer(quote), :

 clipboard buffer is full and output lost

To increase the size of the clipboard to 1.5MG (or any other arbitrary size), the

"clipboard" option can be modified as follows: "clipboard-1500". Note that the

options surrounding the use of the clipboard are specific to various operating systems and

may change with different versions of R so it will be worth periodically referring to the help

files.

2.4.3 The foreign package and SPSS files

Included in current versions of R is the foreign package. This package contains functions

to import SPSS, SAS, Stata and minitab files.

Multilevel Models in R 16

> library(foreign)

> search()

 [1] ".GlobalEnv" "package:foreign" "package:multilevel"

 [4] "package:methods" "package:stats" "package:graphics"

 [7] "package:grDevices" "package:utils" "package:datasets"

[10] "Autoloads" "package:base"

> objects(2)

 [1] "data.restore" "lookup.xport" "read.dbf" "read.dta"

 [5] "read.epiinfo" "read.mtp" "read.octave" "read.S"

 [9] "read.spss" "read.ssd" "read.systat" "read.xport"

[13] "write.dbf" "write.dta" "write.foreign"

For example, if the data in cohesion is stored in an SPSS sav file in a TEMP directory, then

one could issue the following command to read in the data (text following the # mark is a

comment):

> help(read.spss) #look at the documentation on read.spss

> cohesion2<-read.spss("c:\\temp\\cohesion.sav")

> cohesion2 #look at the cohesion object
$UNIT

 [1] "1044B" "1044B" "1044B" "1044B" "1044B" "1044B" "1044C" "1044C" "1044C"

[10] "1044C" "1044C"

$PLATOON

 [1] "1ST" "1ST" "1ST" "2ND" "2ND" "2ND" "1ST" "1ST" "2ND" "2ND" "2ND"

$COH01

 [1] 4 3 2 3 4 3 3 3 3 2 1

$COH02

 [1] 5 NA 3 4 4 3 3 1 3 2 1

$COH03

 [1] 5 5 3 3 3 2 3 4 3 2 1

$COH04

 [1] 5 5 3 4 4 2 3 3 3 3 3

$COH05

 [1] 5 5 3 4 4 1 3 4 3 2 3

attr(,"label.table")

attr(,"label.table")$UNIT

NULL

attr(,"label.table")$PLATOON

NULL

attr(,"label.table")$COH01

NULL

attr(,"label.table")$COH02

NULL

attr(,"label.table")$COH03

NULL

attr(,"label.table")$COH04

NULL

attr(,"label.table")$COH05

NULL

The cohesion2 object is stored as a list rather than a dataframe. With the default options,

read.spss function imports the file as a list and reads information about data labels. In

almost every case, users will want to convert the list object into a dataframe for manipulation in

R. This can be done using the data.frame command.

Multilevel Models in R 17

> cohesion2<-data.frame(cohesion2)

> cohesion2

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4

5 1044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

9 1044C 2ND 3 3 3 3 3

10 1044C 2ND 2 2 2 3 2

11 1044C 2ND 1 1 1 3 3

Alternatively, users can change the default options in read.spss to read the data directly

into a dataframe. Note the use of use.value.labels=F and to.data.frame=T below:

> cohesion2<-read.spss("c:\\temp\\cohesion.sav",

use.value.labels=F, to.data.frame=T)

> cohesion2

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4

5 1044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

9 1044C 2ND 3 3 3 3 3

10 1044C 2ND 2 2 2 3 2

11 1044C 2ND 1 1 1 3 3

The cohesion dataframe (made using the EXCEL and csv files) and cohesion2

(imported from SPSS) are now identical.

2.4.4 Using file.choose to bring up a GUI to read data

One limitation with using command lines to specify where files are located is that in complex

directory structures it can be hard to specify the correct location of the data. For instance, if data

are embedded several layers deep in subdirectories, it may be difficult to specify the path. In

these cases, the file.choose function is a useful way to identify the file. The

file.choose function opens a Graphical User Interface (GUI) dialogue box allowing one to

select files using the mouse. The choose.files function can be embedded within any

function where one has to specifically identify a file. So, for instance, one can use

file.choose with read.spss:

Multilevel Models in R 18

> cohesion2<-read.spss(file.choose(),

+ use.value.labels=F, to.data.frame=T)

Notice how "file.choose()" replaces "c:\\temp\\cohesion.sav" used in the

final example in section 2.4.3. With the use of file.choose a GUI dialogue box opens

allowing one to select a specific SPSS sav file.

2.4.5 Checking your dataframes with str , summary, and head

With small data sets it is easy to verify that the data has been read in correctly. Often,

however, one will be working with large data sets that are difficult to visual verify.

Consequently, functions such as str (structure), summary and head provide easy ways to

examine dataframes.

> str(cohesion)

`data.frame': 11 obs. of 7 variables:

$ UNIT : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ...

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ...

 $ COH01 : int 4 3 2 3 4 3 3 3 3 2 ...

 $ COH02 : int 5 NA 3 4 4 3 3 1 3 2 ...

 $ COH03 : int 5 5 3 3 3 2 3 4 3 2 ...

 $ COH04 : int 5 5 3 4 4 2 3 3 3 3 ...

 $ COH05 : int 5 5 3 4 4 1 3 4 3 2 ...

> summary(cohesion)

 UNIT PLATOON COH01 COH02 COH03

 1044B:6 1ST:5 Min. :1.000 Min. :1.00 Min. :1.000

 1044C:5 2ND:6 1st Qu.:2.500 1st Qu.:2.25 1st Qu.:2.500

 Median :3.000 Median :3.00 Median :3.000

 Mean :2.818 Mean :2.90 Mean :3.091

 3rd Qu.:3.000 3rd Qu.:3.75 3rd Qu.:3.500

 Max. :4.000 Max. :5.00 Max. :5.000

 NA's :1.00

 COH04 COH05

 Min. :2.000 Min. :1.000

 1st Qu.:3.000 1st Qu.:3.000

 Median :3.000 Median :3.000

 Mean :3.455 Mean :3.364

 3rd Qu.:4.000 3rd Qu.:4.000

 Max. :5.000 Max. :5.000

> head(cohesion) #list the first six rows of data in a dataframe

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4

5 1044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

Multilevel Models in R 19

2.4.6 Loading data from packages

One of the useful attributes of R is that the data used in the examples are almost always

available to the user. These data are associated with specific packages. For instance, the

multilevel package uses a variety of data files to illustrate specific functions. To gain access to

these data, one uses the data command:

>data(package="multilevel")

This command lists the data sets associated with the multilevel package, and the command

>data(bh1996, package="multilevel")

copies the bh1996 data set to the workspace making it possible to work with the bhr2000

dataframe.

If a package has been attached by library, its datasets are automatically included in the search,

so that

>library(multilevel)

attaches the multilevel package;

>data()

lists all of available data sets in the multilevel package and in other packages, and

>data(bh1996)

copies the data from the package to the workspace without requiring explicit specification of the

package.

2.4.7 Exporting data to spreadsheets using write() and write.table()

There are likely to be occasions when it is useful to export data from R to spreadsheets. There

are two functions that are useful for exporting data -- the write function and the

write.table function. The write function is useful when one wants to export a vector

while the write.table function is useful for exporting dataframes or matrices. Below both

will be illustrated.

Let us assume that we were interested in calculating the average hours worked for the 99

companies in the bh1996 data set, and then exporting these 99 group means to a spreadsheet.

To calculate the vector of 99 group means and write them out to a file we can issue the following

commands:

> HRSMEANS<-tapply(bh1996$HRS,bh1996$GRP,mean)

> write(HRSMEANS,file="c:\\temp\\ghours.txt",ncolumns=1)

The tapply command subdivides HRS by GRP, and then performs the function mean on

the HRS data for each group. This command is similar to the aggregate function that will be

discussed in more detail in section 3.2.2. The write function takes the 99 group means stored

Multilevel Models in R 20

in the object HRSMEANS, and writes them to a file in the "c:\temp" subdirectory called

ghours.txt. It is important to use the ncolumns=1 option or else the write function will

default to five columns. The ghours.txt file can be read into any spreadsheet as a vector of 99

values.

The write.table function is similar to the write function, except that one must specify

the character value that will be used to separate columns. Common choices include tabs

(designated as \t) and commas. Of these two common choices, commas are likely to be most

useful in exporting dataframes or matrices to spreadsheets because programs like Microsoft

EXCEL automatically read in comma delimited or csv files. Below I export the entire bh1996

dataframe to a comma delimited file that can be read directly into Microsoft EXCEL.

> write.table(bh1996,file="c:\\temp\\bhdat.csv",sep=",",

row.names=F)

Notice the use of the sep="," option and also the row.names=F option. The

row.names=F stops the program from writing an additional column of row names typically

stored as a vector from 1 to the number of rows. Omitting this column is important because it

ensures that the column names match up with the correct columns. Recall from section 2.4.2 that

one can use the "file=clipboard" option to directly write to Window's clipboard.

2.5 More on using matrix brackets on dataframes

At this point, it may be useful to reconsider the utility of using matrix brackets to access

various parts of cohesion (see also section 2.3.1). While this may initially appear

cumbersome, mastering the use of matrix brackets provides considerable control over ones'

dataframe.

Recall that one accesses various parts of the dataframe via [rows, columns]. So, for instance,

we can access rows 1,5,and 8 and columns 3 and 4 of the cohesion dataframe as follows:

> cohesion[c(1,5,8),3:4]

 COH01 COH02

1 4 5

5 4 4

8 3 1

Alternatively, we can specify the column names (this helps avoid picking the wrong columns)

> cohesion[c(1,5,8),c("COH01","COH02")]

 COH01 COH02

1 4 5

5 4 4

8 3 1

It is often useful to pick specific rows that meet some criteria. So, for example, we might want

to pick rows that are from the 1ST PLATOON

Multilevel Models in R 21

> cohesion[cohesion$PLATOON=="1ST",]

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

Upon inspection, we might want to further refine our choice and exclude missing values. We do

this by adding another condition using AND operator "&"

> cohesion[cohesion$PLATOON=="1ST"&is.na(cohesion$COH02)==F,]

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

3 1044B 1ST 2 3 3 3 3

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

By using matrix brackets, one can easily and quickly specify particular portions of a dataframe

that are of interest.

2.6 Identifying Statistical models in R

This section presumes the reader has some familiarity with statistical methodology, in

particular with regression analysis and the analysis of variance. Almost all statistical models

from ANOVA to regression to random coefficient models are specified in a common format.

The format is DV ~ IV1+IV2+IV3. In a regression model this dictates that the dependent

variable (DV) will be regressed on three independent variables. By using + between the IV's, the

model is requesting only main effects. If the IVs were separated by the * sign, it would

designate both main effects and interactions (all two and three-way interactions in this case).

2.6.1 Examples

A few examples may be useful in illustrating some other aspects of model specification.

Suppose y, x, x0, x1 and x2 are numeric variables, and A, B, and C are factors or

categorical variables. The following formulae on the left side below specify statistical models as

described on the right.

y ~ x

y ~ 1 + x Both imply the same simple linear regression model of y on x. The first has an implicit

intercept term, and the second an explicit one.

y ~ A Single classification analysis of variance model of y, with classes determined by A.

Basically a one-way analysis of variance.

y ~ A + x Single classification analysis of covariance model of y, with classes determined by A,

and with covariate x. Basically an analysis of covariance.

Multilevel Models in R 22

2.6.2 Linear models

The basic function for fitting ordinary multiple regression models is lm(), and a streamlined

version of the call is as follows:

> fitted.model <- lm(formula, data = data.frame)

For example

> fm2 <- lm(y ~ x1 + x2, data = production)

would fit a multiple regression model of y on x1 and x2 (with implicit intercept term). The

important but technically optional parameter data = production specifies that any

variables needed to construct the model should come first from the production dataframe. This is

the case regardless of whether the dataframe production has or has not been attached on the

search (see section 2.3.3).

2.6.3 Generic functions for extracting model information

The object created by lm() is a fitted model object; technically a list of results of class "lm".

Information about the fitted model can then be displayed, extracted, plotted and so on by using

generic functions that orient themselves to objects of class "lm". These include:

add1 coef effects kappa predict residuals

alias deviance family labels print step

anova drop1 formula plot proj summary

A brief description of the most commonly used ones is given below.

coefficients(object)

Extract the regression coefficients.

Short form: coef(object).

plot(object)

Produce four plots, showing residuals, fitted values and some diagnostics.

predict(object, newdata=data.frame)

The dataframe supplied must have variables specified with the same labels as

the original. The value is a vector or matrix of predicted values corresponding

to the determining variable values in data.frame.

print(object)

Print a concise version of the object. Most often used implicitly.

residuals(object)

Extract the (matrix of) residuals, weighted as appropriate.

Short form: resid(object).

Multilevel Models in R 23

summary(object)

Print a comprehensive summary of the results of the regression analysis. The summary

function is widely used to extract more information from objects whether the objects

are dataframes or products of statistical functions.

2.7 Graphical procedures

Graphical facilities are an important and extremely versatile component of the R environment.

It is possible to use the facilities to display a wide variety of statistical graphs and also to build

entirely new types of graphs. The graphics facilities can be used in both interactive and batch

modes, but in most cases, interactive use is more productive. Interactive use is also easy because

at startup time R initiates a graphics device driver that opens a special graphics window for the

display of interactive graphics. Although this is done automatically, it is useful to know that the

command used is windows() under Windows. Once the device driver is running, R plotting

commands can be used to produce a variety of graphical displays and to create entirely new

kinds of display.

2.7.1 The plot() function

One of the most frequently used plotting functions in R is the plot() function. This is a

generic function: the type of plot produced is dependent on the type or class of the first

argument.

plot(x, y) If x and y are vectors, plot(x, y) produces a scatterplot of y against x.

plot(df)

plot(~ a+b+c, data=df)

plot(y ~ a+b+c, data=df)

where df is a dataframe. The first example produces scatter plots of all of the

variables in a dataframe. The second produces scatter plots for just the three named

variables (a, b and c). The third example plots y against a, b and c.

2.7.2 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If X is a numeric

matrix or dataframe, the command

> pairs(X)

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is, every

column of X is plotted against every other column of X and the resulting n(n - 1) plots are

arranged in a matrix with plot scales constant over the rows and columns of the matrix.

When three or four variables are involved a coplot may be more enlightening. If a and b are

numeric vectors and c is a numeric vector or factor object (all of the same length), then the

command

> coplot(a ~ b | c)

Multilevel Models in R 24

produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply

means that a is plotted against b for every level of c. When c is numeric, it is divided into a

number of conditioning intervals and for each interval a is plotted against b for values of c within

the interval. The number and position of intervals can be controlled with given.values=

argument to coplot() -- the function co.intervals() is useful for selecting intervals.

You can also use two given variables with a command like

> coplot(a ~ b | c + d)

which produces scatterplots of a against b for every joint conditioning interval of c and d. The

coplot() and pairs() function both take an argument panel= which can be used to

customize the type of plot which appears in each panel. The default is points() to produce a

scatterplot but by supplying some other low-level graphics function of two vectors x and y as the

value of panel= you can produce any type of plot you wish. An example panel function useful

for coplots is panel.smooth().

2.7.3 Advanced Graphics and the lattice package

An advanced graphics package called lattice is included with the base program. The

lattice package is an implementation of trellis graphics designed specifically for R that

provides presentation quality graphics. Below is an example involving creating a histogram of

1000 random numbers.

> library(lattice)

> histogram(rnorm(1000),nint=30,xlab="1000 Random Numbers",

 col="sky blue")

1000 Random Numbers

P
e

rc
e

n
t
o

f
T

o
ta

l

0

2

4

6

8

10

-2 0 2

Multilevel Models in R 25

Another example taken from Bliese and Halverson (2002) provides an even better

demonstration of the graphics capabilities of R and the lattice package. This example

illustrates a two-way interaction on a three dimensional surface.

> library(multilevel)

> data(lq2002)

> TDAT<-lq2002[!duplicated(lq2002$COMPID),]

> tmod<-lm(GHOSTILE~GLEAD*GTSIG,data=TDAT)

> TTM<-seq(min(TDAT$GLEAD),max(TDAT$GLEAD),length=25)

> TTV<-seq(min(TDAT$GTSIG),max(TDAT$GTSIG),length=25)

> TDAT2<-list(GLEAD=TTM,GTSIG=TTV)

> grid<-expand.grid(TDAT2)

> fit<-predict(tmod,grid)

> wireframe(fit~GLEAD*GTSIG, data=grid,col="steelblue4",

 screen = list(z = -30, x = -60),

 xlab=list("Leadership \n Climate",

 cex=1.5),ylab=list(" Task \n Significance",cex=1.5),

 zlab=list("Hostility ",cex=1.5),scales=list(arrows=F),

 shade=T,colorkey=F) #or use drape=T instead of shade=T

2.4
2.6

2.8
3.0

3.2
3.4

3.6 2.6

2.8

3.0

3.2

3.4

3.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Leadership

 Climate

 Task

 Significance

Hostility

Multilevel Models in R 26

3 Multilevel Analyses

The remainder of this document illustrates how R can be used in multilevel modeling

beginning with several R functions particularly useful for preparing data for subsequent analyses.

Following data preparation, the manuscript covers:

• Within-group agreement and reliability

• Contextual OLS models

• Covariance theorem decomposition

• Random coefficient modeling or mixed effects models

The discussion of within-group agreement and the covariance theorem decomposition also

includes sections on Random Group Resampling (or RGR). RGR is a resampling technique that

is useful in contrasting actual group results to pseudo-group results (see Bliese & Halverson,

2002; Bliese, Halverson & Rothberg, 2000).

3.1 Attaching the multilevel and nlme packages

Many of the features in the following sections assume that the multilevel and nlme

packages are accessible in R. Recall that multilevel package is not distributed with the base

installation and needs to be retrieved using the "packages" GUI option in R. Also recall that

once retrieved, the package is attached in R using the library command:

> library(multilevel)

By default, the nlme and MASS packages are loaded when the multilevel package is

loaded as several of the functions in the multilevel package depend on nlme and MASS.

3.2 Helpful multilevel data manipulation functions

3.2.1 The merge Function

One of the key data manipulation tasks that must be accomplished prior to estimating several

of the multilevel models (specifically contextual models and random coefficient models) is that

group-level variables must be “assigned down” to the individual. To make a dataframe

containing both individual and group-level variables, one typically begins with two separate

dataframes. One dataframe contains individual-level data, and the other dataframe contains

group-level data. By combining these two dataframes using a group identifying variable

common to both, one is able to create a single data set containing both individual and group data.

In R, combining dataframes is accomplished using the merge function.

 For instance, let us consider the cohesion data introduced when showing how to read data

from external files. The cohesion data is included as a multilevel data set, so we can use it

without having to use read.csv or read.table (see section 2.4.1).

> data(package="multilevel")

Data sets in package `multilevel':

bhr2000 Bliese Halverson and Rothberg (2000)

Multilevel Models in R 27

 agreement data

bh1996 Bliese and Halversion (1996) data

cohesion Platoon Cohesion file

klein2000 Klein et al. (2000) simulation data

univbct Univariate form data for growth modeling

 examples

To copy the cohesion dataframe from the multilevel library in the immediate working

environment, use the data() command:

>data(cohesion)

 >cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05

1 1044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5

3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4

5 1044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

9 1044C 2ND 3 3 3 3 3

10 1044C 2ND 2 2 2 3 2

11 1044C 2ND 1 1 1 3 3

Now assume that we have another dataframe with platoon sizes. We can create this dataframe

as follows:

> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"),

PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3))

> group.size #look at the group.size dataframe

 UNIT PLATOON PSIZE

1 1044B 1ST 3

2 1044B 2ND 3

3 1044C 1ST 2

4 1044C 2ND 3

To create a single file (new.cohesion) that contains both individual and platoon

information, use the merge command.

> new.cohesion<-merge(cohesion,group.size,

 by=c("UNIT","PLATOON"))

> new.cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE

1 1044B 1ST 4 5 5 5 5 3

2 1044B 1ST 3 NA 5 5 5 3

3 1044B 1ST 2 3 3 3 3 3

4 1044B 2ND 3 4 3 4 4 3

5 1044B 2ND 4 4 3 4 4 3

Multilevel Models in R 28

6 1044B 2ND 3 3 2 2 1 3

7 1044C 1ST 3 3 3 3 3 2

8 1044C 1ST 3 1 4 3 4 2

9 1044C 2ND 3 3 3 3 3 3

10 1044C 2ND 2 2 2 3 2 3

11 1044C 2ND 1 1 1 3 3 3

Notice that every individual now has a value for PSIZE – a value that reflects the number of

individuals in the platoon.

In situations where there is a unique group identifier, the by option can be simplified to

include just one variable. For instance, if the group-level data had reflected values for each

UNIT instead of PLATOON nested in unit, the by option would simply read by="UNIT".

3.2.2 The aggregate function

In many cases in multilevel analyses, one will be interested in creating a group-level variable

from individual responses. For example, one might be interested in calculating the group mean

and reassigning it back to the individual. In these cases, the aggregate function in

combination with the merge function is particularly useful. In our cohesion example, for

instance, we want to have the platoon means for variables COH01 and COH02 reassigned back

to the individuals.

The first step in this process is to create a group-level file. Creating this file is where one uses

the aggregate function. The aggregate function has three key arguments. The first

argument is a vector or matrix of variables that one wants to convert to group-level variables.

Second is the grouping variable(s) included as a list, and third is the function (mean, var,

length, etc.) executed on the variables. To calculate the means of COH01 and COH02

(columns 3 and 4 of the cohesion dataframe) issue the command:

>TEMP<-aggregate(cohesion[,3:4],

list(cohesion$UNIT,cohesion$PLATOON),mean)

> TEMP

 Group.1 Group.2 COH01 COH02

1 1044B 1ST 3.000000 NA

2 1044C 1ST 3.000000 2.000000

3 1044B 2ND 3.333333 3.666667

4 1044C 2ND 2.000000 2.000000

Notice that COH02 has an “NA” value for the mean. This is because there was a missing

value in the individual-level file. If we decide to base the group mean on the non-missing group

values we can add the parameter na.rm=T, to designate that NA values should be removed

prior to calculating the group mean.

> TEMP<-aggregate(cohesion[,3:4],

list(cohesion$UNIT,cohesion$PLATOON),mean,na.rm=T)

> TEMP

 Group.1 Group.2 COH01 COH02

1 1044B 1ST 3.000000 4.000000

Multilevel Models in R 29

2 1044C 1ST 3.000000 2.000000

3 1044B 2ND 3.333333 3.666667

4 1044C 2ND 2.000000 2.000000

To merge the TEMP dataframe with the new.cohesion dataframe, we must change the

names of the group identifiers in the TEMP frame to match the group identifiers in the

new.cohesion dataframe. We also want to change the names of COH01 and COH02 to

reflect the fact that they are group means. We will use “G.” to designate group mean.

> names(TEMP)<-c("UNIT","PLATOON","G.COH01","G.COH02")

Finally, we merge TEMP up with new.cohesion to get the complete data set.

> final.cohesion<-merge(new.cohesion,TEMP,

by=c("UNIT","PLATOON"))
> final.cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE G.COH01 G.COH02

1 1044B 1ST 4 5 5 5 5 3 3.000000 4.000000

2 1044B 1ST 3 NA 5 5 5 3 3.000000 4.000000

3 1044B 1ST 2 3 3 3 3 3 3.000000 4.000000

4 1044B 2ND 3 4 3 4 4 3 3.333333 3.666667

5 1044B 2ND 4 4 3 4 4 3 3.333333 3.666667

6 1044B 2ND 3 3 2 2 1 3 3.333333 3.666667

7 1044C 1ST 3 3 3 3 3 2 3.000000 2.000000

8 1044C 1ST 3 1 4 3 4 2 3.000000 2.000000

9 1044C 2ND 3 3 3 3 3 3 2.000000 2.000000

10 1044C 2ND 2 2 2 3 2 3 2.000000 2.000000

11 1044C 2ND 1 1 1 3 3 3 2.000000 2.000000

With the aggregate and merge functions, one has the tools necessary to manipulate data

and prepare it for subsequent multilevel analyses (excluding growth modeling which I consider

later). Note that I have illustrated a relatively complex situation where there are two levels of

nesting (Unit and Platoon). In cases where there is only one grouping variable (for example,

UNIT) the commands for aggregate and merge contain the name of a single grouping

variable. For instance,

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T)

3.3 Within-Group Agreement and Reliability

The data used in this section are taken from Bliese, Halverson & Rothberg (2000). The

examples are based upon the bhr2000 data set from the multilevel package. Thus, the first step

is to examine the bhr2000 data set and make it available for analysis.

> help(bhr2000)

> data(bhr2000,package="multilevel")#puts data in working environment

> names(bhr2000)

 [1] "GRP" "AF06" "AF07" "AP12" "AP17" "AP33" "AP34"

 "AS14" "AS15" "AS16" "AS17" "AS28" "HRS" "RELIG"

> nrow(bhr2000)

[1] 5400

Multilevel Models in R 30

The names function tells us that there are 14 variables. The first one, GRP, is the group

identifier. The variables in columns 2 through 12 are individual responses on 11 items that make

up a leadership scale. HRS represents individuals’ reports of work hours, and RELIG represents

individuals’ reports of the degree to which religion is a useful coping mechanism. The nrow

command indicates that there are 5400 observations. To find out how many groups there are we

can use the length command in conjunction with the unique command

> length(unique(bhr2000$GRP))

[1] 99

There are several functions in the multilevel library that are useful for calculating and

interpreting agreement indices. These functions are rwg, rwg.j, rwg.sim, rwg.j.sim,

rwg.j.lindell, awg, ad.m, ad.m.sim and rgr.agree. The rwg function calculates

the James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function calculates

the James et al. (1984) rwg(j) for multi-item scales. The rwg.j.lindell function calculates

r*wg(j) (Lindell, & Brandt, 1997; 1999). The awg function calculates the awg agreement index

proposed by Brown and Hauenstein (2005). The ad.m function calculates average deviation

(AD) values for the mean or median (Burke, Finkelstein & Dusig, 1999). A series of functions

with “sim” in the name (rwg.sim, rwg.j.sim and ad.m.sim) allow one to simulate

agreement values from a random uniform distribution to test for statistical significance

agreement. The simulation functions are based on work by Dunlap, Burke and Smith-Crowe

(2003); Cohen, Doveh and Eich (2001) and Cohen, Doveh and Nuham-Shani (2009). Finally,

the rgr.agree function performs a Random Group Resampling (RGR) agreement test (see

Bliese, et al., 2000).

In addition to the agreement measures, there are two multilevel reliability measures, ICC1

and ICC2 than can be used on ANOVA models. As Bliese (2000) and others (e.g., Kozlowski

& Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1)

and ICC(2) are fundamentally different from agreement measures; nonetheless, they often

provide complementary information to agreement measures, so this section illustrates the use of

each of these functions with the dataframe bhr2000.

3.3.1 Agreement: rwg, rwg(j), and r*wg(j)

Both the rwg and rwg.j functions are based upon the formulations described in James et al.

(1984). Both functions require the user to specify three pieces of information. The first piece of

information is the variable of interest (x), the second is the grouping variable (grpid), and third

is the estimate of the expected random variance (ranvar). The default estimate of ranvar is

2, which is the expected random variance based upon the rectangular distribution for a 5-point

item (i.e., EU
2

) calculated using the formula ranvar=(A^2-1)/12 where A represents the number

of response options associated with the scale anchors. See help(rwg), James et al., (1984), or

Bliese et al., (2000) for details on selecting appropriate ranvar values.

To use the rwg function to calculate agreement for the comfort from religion item (RELIG in

the bhr2000 dataframe) one would issue the following commands.

Multilevel Models in R 31

> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2)

> RWG.RELIG[1:10,] #examine first 10 rows of data

 grpid rwg gsize

1 1 0.11046172 59

2 2 0.26363636 45

3 3 0.21818983 83

4 4 0.31923077 26

5 5 0.22064137 82

6 6 0.41875000 16

7 7 0.05882353 18

8 8 0.38333333 21

9 9 0.14838710 31

10 10 0.13865546 35

This returns a dataframe with three columns. The first column contains the group names

(grpid), the second column contains the 99 rwg values – one for each group. The third column

contains the group size. To calculate the mean rwg value use the summary command:

> summary(RWG.RELIG)

 grpid rwg gsize

 1 : 1 Min. :0.0000 Min. : 8.00

 10 : 1 1st Qu.:0.1046 1st Qu.: 29.50

 11 : 1 Median :0.1899 Median : 45.00

 12 : 1 Mean :0.1864 Mean : 54.55

 13 : 1 3rd Qu.:0.2630 3rd Qu.: 72.50

 14 : 1 Max. :0.4328 Max. :188.00

 (Other):93

The summary command informs us that the average rwg value is .186 and the range is from 0

to 0.433. By convention, values at or above 0.70 are considered good agreement, so there

appears to be low agreement among individuals with regard to religion. The summary

command also provides information about the group sizes.

 Other useful options might include sorting the values or examining the values in a histogram.

Recall that the notation [,2] selects all rows and the second column of the RWG.RELIG object

– the column with the rwg results.

> sort(RWG.RELIG[,2])

> hist(RWG.RELIG[,2])

To calculate rwg for work hours, the expected random variance (EV) needs to be changed from

its default value of 2. Work hours was asked using an 11-point item, so EV based on the

rectangular distribution (EU
2

) is 10.00 (EU
2

=(11
2
-1)/12) – see the rwg help file for details).

> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00)

> mean(RWG.HRS[,2])

[1] 0.7353417

Multilevel Models in R 32

There is apparently much higher agreement about work hours than there was about whether

group members received comfort from religion in this sample. By convention, this mean value

would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide

evidence of agreement.

The use of the rwg.j function is nearly identical to the use of the rwg function except that

the first argument to rwg.j is a matrix instead of a vector. In the matrix, each column

represents one item in the multi-item scale, and each row represents an individual response. For

instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale. The

items were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the

expected random variance is 2.

> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2)

> summary(RWGJ.LEAD)

 grpid rwg.j gsize

 1 : 1 Min. :0.7859 Min. : 8.00

 10 : 1 1st Qu.:0.8708 1st Qu.: 29.50

 11 : 1 Median :0.8925 Median : 45.00

 12 : 1 Mean :0.8876 Mean : 54.55

 13 : 1 3rd Qu.:0.9088 3rd Qu.: 72.50

 14 : 1 Max. :0.9440 Max. :188.00

 (Other):93

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt &

Whitney, 1999) have raised concerns about the mathematical underpinnings of the rwg(j) formula.

Specifically, they note that this formula is based upon the Spearman-Brown reliability estimator.

Generalizability theory provides a basis to believe that reliability should increase as the number

of measurements increase, so the Spearman-Brown formula is defensible for measures of

reliability. There may be no theoretical grounds, however, to believe that generalizability theory

applies to measures of agreement. That is, there may be no reason to believe that agreement

should increase as the number of measurements increase (but also see LeBreton, James &

Lindell, 2005).

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the

r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into

the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group

Variance/Expected Random Variance). Note that Lindell and colleagues also recommend

against truncating the Observed Group Variance value so that it matches the Expected Random

Variance value in cases where the observed variance is larger than the expected variance. This

results in a case where r*wg(j) values can take on negative values. We can use the function

rwg.j.lindell to estimate the r*wg(j) values for leadership.

> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12],

bhr2000$GRP,ranvar=2)

Multilevel Models in R 33

> summary(RWGJ.LEAD.LIN)

 grpid rwg.lindell gsize

 1 : 1 Min. :0.2502 Min. : 8.00

 10 : 1 1st Qu.:0.3799 1st Qu.: 29.50

 11 : 1 Median :0.4300 Median : 45.00

 12 : 1 Mean :0.4289 Mean : 54.55

 13 : 1 3rd Qu.:0.4753 3rd Qu.: 72.50

 14 : 1 Max. :0.6049 Max. :188.00

 (Other):93

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed

earlier.

3.3.2 The awg Index

Brown and Hauenstein (2005) argue that the rwg family of agreement indices have three major

limitations: (1) the magnitude of the measures are dependent on sample size, (2) the scale used

to assess the construct influences the magnitude of the measure, and (3) the use of the uniform

null distribution is an invalid comparison upon which to base an estimate of agreement. To

overcome these limitations, Brown and Hauenstein proposed the awg index as a multi-rater

agreement measure analogous to Cohen’s kappa. The awg index is calculated using the awg

function.

The awg function has three arguments: x, grpid, and range. The x argument represents

the item or scale upon which to calculate awg values. The awg function determines whether x is

a vector (single item) or multiple item matrix (representing the items in a scale), and performs

the awg calculation appropriate for the type of variable. The second function, grpid, is a vector

containing the group ids associated with the x argument. The third argument, range, represents

the upper and lower limits of the response options. The range defaults to c(1,5) which

represents a 5-point scale from (for instance) strongly disagree (1) to strongly agree (5).

The code below illustrates the use of the awg function for the multi-item leadership scale.

> AWG.LEAD<-awg(bhr2000[,2:12],bhr2000$GRP)

> summary(AWG.LEAD)

 grpid a.wg nitems nraters avg.grp.var

 1 : 1 Min. :0.2223 Min. :11 Min. : 8.00 Min. :0.2787

 10 : 1 1st Qu.:0.3654 1st Qu.:11 1st Qu.: 29.50 1st Qu.:0.4348

 11 : 1 Median :0.4193 Median :11 Median : 45.00 Median :0.5166

 12 : 1 Mean :0.4125 Mean :11 Mean : 54.55 Mean :0.5157

 13 : 1 3rd Qu.:0.4635 3rd Qu.:11 3rd Qu.: 72.50 3rd Qu.:0.5692

 14 : 1 Max. :0.5781 Max. :11 Max. :188.00 Max. :0.9144

 (Other):93

Notice that ratings of the a.wg tend to more similar in magnitude to the r*wg(j) which likely

reflects the facts that (a) large variances can result in negative ratings reflecting disagreement,

and (b) the denominator for the measure is fundamentally based upon the idea of maximum

possible variance (similarly to the r*wg(j)) rather than a uniform distribution.

Multilevel Models in R 34

One final note is that Brown and Hauenstein (2005) contend that the class of rwg agreement

indices should not be estimated in cases where group size (or number of raters) is less than the

number of response options (scale anchors) associated with the items (A). In this example, A is

5 representing the scale anchors from strongly disagree to strongly agree. In contrast, however,

Brown and Hauenstein (2005) state that it is appropriate to estimate awg on the number of

anchors minus 1. The reason why awg can be estimated on smaller groups is that awg (unlike rwg)

uses a sample-based variance estimate in the denominator whereas rwg uses a population-based

variance estimate (recall that the formula for the rectangular variance distribution is

ranvar=(A^2-1)/12 which represents a population-based value (EU
2

)). In the example there is no

issue with group size given that the smallest group has eight members.

3.3.3 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim

As noted in section 3.3.1, rwg and rwg(j) values at or above .70 are conventionally considered

providing evidence of within-group agreement. A series of studies by Charnes and Schriesheim

(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen,

Doveh and Nahum-Shani (2009) lay the groundwork for establishing tests of statistical

significance for rwg and rwg(j). The basic idea behind these simulations is to draw observations

from a known distribution (generally a uniform random null), and repeatedly estimate rwg or

rwg(j). Because the observations are drawn from a uniform random null, rwg or rwg(j) estimates will

frequently be zero. Occasionally, however, the rwg or rwg(j) values will be larger than zero

reflecting variations in the pattern of random numbers drawn. Repeatedly drawing random

numbers and estimating rwg and rwg(j) provides a way to calculate expected values and confidence

intervals.

The simulations conducted by Cohen et al., (2001) varied a number of parameters, but the two

found to be most important for the expected value of the rwg(j) were (a) group size and (b) the

number of items. Indeed, Cohen et al., (2001) found that expected rwg(j) values vary considerably

as a function of group size and number of items. This implies that the conventional value of .70

may be a reasonable cut-off value for significance with some configurations of group sizes and

items, but may not be reasonable for others. Thus, they recommended researchers simulate

parameters based on the specific characteristics of the researchers' samples when determining

whether rwg(j) values are significant.

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg

using the idea of simulating null distributions. Their work showed that the 95% confidence

interval for the single item measure varied as a function of (a) group size and (b) the number of

response options. In the case of 5 response options (e.g., strongly disagree, disagree, neither,

agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3

to 0.12 for a group of 150. That is, one would need an rwg estimate of 1.00 with groups of size

three to be 95% certain the groups agreed more than chance levels, but with groups of size 150

any value equal to or greater than 0.12 would represent significant agreement.

The function rwg.sim provides a way to replicate the results presented by Dunlap and

colleagues. For instance, to estimate the 95% confidence interval for a group of size 10 on an

item with 5 response options one would provide the following parameters to the rwg.sim

function:

Multilevel Models in R 35

> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000)

> summary(RWG.OUT)

$rwg

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 0.0000 0.0000 0.0000 0.1221 0.2167 0.8667

$gsize

[1] 10

$nresp

[1] 5

$nitems

[1] 1

$rwg.95

[1] 0.5277778

The results in the preceding example are based on 10,000 simulation runs. In contrast,

Dunlap et al., (2003) used 100,000 simulation runs. Nonetheless, both Table 2 from Dunlap et

al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a

group of size 10 with five response options. Note that a replication of these results may produce

slightly different values.

Because the estimation of rwg in the simulations produces a limited number of possible

responses, the typical methods for establishing confidence intervals (e.g., the generic function

quantile) cannot be used. Thus, the multilevel package provides a quantile method for

the objects of class agree.sim created using rwg.sim. To obtain 90%, 95% and 99%

confidence interval estimates (or any other values) one would issue the following command:

> quantile(RWG.OUT,c(.90,.95,.99))

 quantile.values confint.estimate

1 0.90 0.4222222

2 0.95 0.5277778

3 0.99 0.6666667

Cohen et al. (2009) expanded upon the work of Dunlap et al., (2003) and the early work by

Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to

multiple item scales in the case of rwg(j) values. The function rwg.j.sim is based upon the

work of Cohen et al., (2009) and simulates rwg(j) values from a uniform null distribution for user

supplied values of (a) group size, (b) number of items in the scale, and (c) number of response

options on the items. The user also provides the number of simulation runs (repetitions) upon

which to base the estimates. In most cases, the number of simulation runs will be 10,000 or

more although the examples illustrated here will be limited to 1,000. The final optional

argument to rwg.j.sim is itemcors. If this argument is omitted, the simulated items used

to comprise the scale are assumed to be independent (non-correlated). If the argument is

provided, the items comprising the scale are simulated to reflect a given correlational structure.

Cohen et al., (2001) showed that results based on independent (non-correlated) items were

similar to results based on correlated items; nonetheless, the model with correlated items is more

Multilevel Models in R 36

realistic and thereby preferable (see Cohen et al., 2009). Estimating models with a correlational

structure requires the MASS package in addition to the multilevel package.

For an example of using rwg.j.sim with non-correlated items, consider a case where a

researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where

group size was 15 using a 7-item scale with 5 response options for the items (A=5). The call to

rwg.j.sim would be:

> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000)

> summary(RWG.J.OUT)

$rwg.j

 Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.009447 0.161800 0.333900 0.713700

$gsize

[1] 15

$nresp

[1] 5

$nitems

[1] 7

$rwg.j.95

[1] 0.5559117

In this example, the upper expected 95% confidence interval is 0.56. This is lower than 0.70,

and suggests that in this case the value of 0.70 might be too stringent. Based on this simulation,

one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).

Note that if one replicates this example one will get slightly different results because each run is

based on slightly different combinations of randomly generated numbers. Using the simulation,

one can show that as group size increases and the number of items increase, the criteria for what

constitutes significant agreement decreases.

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will

examine whether group members agreed about three questions specific to mission importance in

the lq2002 data set. This data set was also analyzed in Cohen et al., 2009. We first begin by

estimating the mean rwg(j) for the 49 groups in the sample. Notice that the mean estimate for rwg(j)

is .58. This value is below the .70 conventional criteria and suggests a lack of agreement.

> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")],

 lq2002$COMPID,ranvar=2)

> summary(RWG.J)

 grpid rwg.j gsize

 10 : 1 Min. :0.0000 Min. :10.00

 13 : 1 1st Qu.:0.5099 1st Qu.:18.00

 14 : 1 Median :0.6066 Median :30.00

 15 : 1 Mean :0.5847 Mean :41.67

 16 : 1 3rd Qu.:0.7091 3rd Qu.:68.00

 17 : 1 Max. :0.8195 Max. :99.00

Multilevel Models in R 37

 (Other):43

To determine whether the value of .58 is significant, one can use the rwg.j.sim function

using item correlations and average group size (41.67 rounded to 42). In this case, notice the

simulation suggests that a value of .35 is significant suggesting significant agreement. For

illustrations of how the simulations might be used in a group-by-group basis see Cohen et al.,

(2009).

> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5,

 itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]),

 nrep=1000)

> summary(RWG.J.OUT)

$rwg.j

 Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.007224 0.088520 0.162500 0.548600

$gsize

[1] 42

$nresp

[1] 5

$nitems

[1] 3

$rwg.j.95

[1] 0.346875

3.3.4 Average Deviation (AD) Agreement using ad.m

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as

measures of within-group agreement. Cohen et al., (2009) note that AD indices are also referred

to as Mean or Median Average Deviation or MAD. AD indices are calculated by first computing

the absolute deviation of each observation from the mean or median. Second, these absolute

deviations are averaged to produce a single AD estimate for each group. The formula for AD

calculation on a single item is:

AD = Σ|xij - Xj|/N

where xij represents an individual observation (i) in group j; Xj represents the group mean or

median, and N represents the group size. When AD is calculated on a scale, the AD formula

above is estimated for each item on the scale, and each item's AD value is averaged to compute

the scale AD score.

AD values are considered practically significant when the values are less than A/6 where A

represents the number of response options on the item. For instance, A is 5 when items are asked

on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format.

The function ad.m is used to compute the average deviation of the mean or median. The

function requires the two arguments, x and grpid. The x argument represents the item or scale

upon which one wants to estimate the AD value. The ad.m function determines whether x is a

vector (single item) or multiple item matrix (multiple items representing a scale), and performs

the AD calculation appropriate for the nature of the input variable. The second function, grpid,

Multilevel Models in R 38

is a vector containing the group ids of the x argument. The third argument is optional. The

default value is to compute the Average Deviation of the mean. The other option is to change

the type argument to "median" and compute the Average Deviation of the median.

 For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a

leadership scale. The items were assessed using 5-point response options (Strongly Disagree to

Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.833. The AD

estimates for the first five groups and the mean of the overall sample are provided below:

> data(bhr2000)

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP)

> AD.VAL[1:5,]

 grpid AD.M gsize

1 1 0.8481366 59

2 2 0.8261279 45

3 3 0.8809829 83

4 4 0.8227542 26

5 5 0.8341355 82

> mean(AD.VAL[,2:3])

 AD.M gsize

 0.8690723 54.5454545

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about

ratings of leadership. The overall AD estimate is 0.87, which is also higher than 0.83 and

suggests a general lack of agreement.

The AD value estimated using the median instead of the mean, in contrast, suggests

practically significant agreement for the sample as a whole.

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median")

> mean(AD.VAL[,2:3])

 AD.M gsize

 0.8297882 54.5454545

To use the ad.m function for single item variables such as the work hours (HRS) variable in

the bhr2000 data set it is only necessary to provide a vector instead of a matrix as the first

argument to the ad.m function. Recall the work hours variable is asked on an 11-point response

format scale so practical significance is 11/6 or 1.83. The average observed value of 1.25

suggests agreement about work hours.

> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP)

> mean(AD.VAL.HRS[,2:3])

 AD.M gsize

 1.249275 54.545455

Multilevel Models in R 39

3.3.5 Significance testing of AD using ad.m.sim

The function ad.m.sim is used to simulate AD values and test for significance of various

combinations of group size, number of response options and number of items in multiple-item

scales. The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to

test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg,

the ad.m.sim function works with both single items and multiple-item scales.

The ad.m.sim function is based upon the work of Cohen et al. (2009) and of Dunlap et al.,

(2003). The function simulates AD values from a uniform null distribution for user supplied

values of (a) group size, (b) number of items in the scale, and (c) number of response options on

the items. Based on Cohen et al. (2009), the final optional parameter allows one to include

correlations among items when simulating multiple-item scales. The user also provides the

number of simulation runs (repetitions) upon which to base the estimates. Again in practice, the

number of simulation runs will typically be 10,000 or more although the examples illustrated

here will be limited to 1,000.

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000

dataframe. Recall the AD value based on the mean suggested that groups failed to agree about

leadership. In contrast, the AD value based on the median suggested that groups agreed. To

determine whether the overall AD value based on the mean is statistically significant, one can

simulate data matching the characteristics of the bhr2000 sample:

> AD.SIM<-ad.m.sim(gsize=55,nresp=5,

itemcors=cor(bhr2000[,2:12]),type="mean",nrep=1000)

> summary(AD.SIM)

$ad.m

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.087 1.182 1.208 1.209 1.236 1.340

$gsize

[1] 55

$nresp

[1] 5

$nitems

[1] 11

$ad.m.05

[1] 1.138212

$pract.sig

[1] 0.8333333

Multilevel Models in R 40

The simulation suggests that any AD mean value less than or equal to 1.14 is statistically

significant. Thus, while the AD value for the leadership items (0.87) may not meet the criteria

for practical significance, it does for statistical significance. As with the rwg simulation

functions, the ad.m.sim function has a specifically associated quantile function to identify

different cut-off points. The example below illustrates how to identify values corresponding to

the .90 (.10), .95 (.05) and .99 (.01) significance levels. That is, to be 99% certain that a value

was significant, it would need to be smaller than or equal to 1.114.

> quantile(AD.SIM,c(.10,.05,.01))

 quantile.values confint.estimate

1 0.10 1.155763

2 0.05 1.138212

3 0.01 1.114170

3.3.6 Agreement: Random Group Resampling

The final agreement related function in the multilevel library is rgr.agree. In some ways

this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to

draw inferences about agreement. The difference is that the rgr.agree function uses the

actual group data, while the rwg.j.sim function simulates from an expected distribution (the

uniform null).

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and

calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of

significance to determine whether actual group and pseudo group variances differ. To use

rgr.agree, one must provide three variables. The first is a vector representing the variable

upon which one wishes to estimate agreement. The second is group membership (grpid). The

third parameter is the number of pseudo groups that one wants to create.

The third parameter requires a little explanation, because in many cases the number of pseudo

groups returned in the output will not exactly match the third parameter. For instance, in our

example, we will request 1000 pseudo groups, but the output will return only 990. This is

because the rgr.agree algorithm creates pseudo groups that are identical in size

characteristics to the actual groups. In so doing, however, the algorithm creates sets of pseudo

groups in “chunks.” The size of each chunk is based upon the size of the number of actual

groups. So, for instance, if there are 99 actual groups, then the total number of pseudo groups

must be evenly divisible by 99. Nine-hundred-and-ninety is evenly divisible by 99, while 1000

is not. Rather than have the user determine what is evenly divisible by the number of groups,

rgr.agree will do this automatically. Below is an example of using rgr.agree on the

work hours variable.

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000)

The first step is to create an RGR Agreement object named RGR.HRS. The object contains a

number of components. In most cases, however, users will be interested in the estimated z-value

indicating whether the within-group variances from the actual groups are smaller than the

variances from the pseudo groups. A useful way to get this information is to use the summary

Multilevel Models in R 41

command. When summary is applied to the RGR agreement object it provides standard

deviations, variance estimates, an estimate of the z-value, and upper and lower confidence

intervals.

> summary(RGR.HRS)

$"Summary Statistics for Random and Real Groups"

 N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z-value

1 990 3.322772 0.762333 2.646583 -8.82554

$"Lower Confidence Intervals (one-tailed)"

 0.5% 1% 2.5% 5% 10%

1.648162 1.795134 1.974839 2.168830 2.407337

$"Upper Confidence Intervals (one-Tailed)"

 90% 95% 97.5% 99% 99.5%

4.251676 4.545078 4.832813 5.642410 5.845143

The first section of the summary provides key statistics for contrasting within-group variances

from real group with within-group variances from random groups. The second and third sections

provide lower and upper confidence intervals. Keep in mind that if one replicates this example

one is likely to get slightly different results. This is because the rgr.agree function uses a

random number generator to create pseudo groups; thus, the results are partially a product of the

specific numbers used in the random number generator. While the exact numbers may differ, the

conclusions drawn should be the same.

Notice in the first section that although we requested 1000 random groups, we got 990 (for

reasons described previously). The first section also reveals that the average within-group

variance for the random groups was 3.32 with a Standard Deviation of 0.76. In contrast, the

average within-group variance for the real groups was considerably smaller at 2.65. The

estimated z-value suggests that, overall, the within-group variances in ratings of work hours from

real groups were significantly smaller than the within-group variances from the random groups.

This suggests that group members agree about work hours. Recall that a z-value greater than or

less than 1.96 signifies significance at p<.05, two-tailed.

The upper and lower confidence interval information allows one to estimate whether specific

groups do or do not display agreement. For instance, only 5% of the pseudo groups had a

variance less than 2.17. Thus, if we observed a real group with a variance smaller than 2.17, we

could be 95% confident this group variance was smaller than the variances from the pseudo

groups. Likewise, if we want to be 90% confident we were selecting groups showing

agreement, we could identify real groups with variances less than 2.41.

To see which groups meet this criterion, use the tapply function in conjunction with the

sort function. The tapply function partitions the first variable by the level of the second

variable performs the specified function much like the aggregate function (see section 3.2.2).

Thus, tapply(HRS,GRP,var) partitions HRS into separate Groups (GRP), and calculates

the variance for each group (var). Using sort in front of this command simply makes the

output easier to read.

Multilevel Models in R 42

> sort(tapply(bhr2000$HRS,bhr2000$GRP,var))

 33 43 38 19 6 39 69 17

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282

 20 99 98 44 4 53 61 63

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430

 66 14 76 71 21 18 59 50

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667

 48 60 83 8 22 2 75 11

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947

 96 23 54 47 55 26 74 57

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858

 45 97 64 35 32 41 1 24

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678

 82 37 81 68 42 73 34 25

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000

 93 62 92 12 40 88 5 29

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616

 85 70 77 51 3 13 79 87

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569

 7 95 78 84 46 27 36 15

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287

 89 16 58 49 9 31 90 72

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714

 91 80 86 10 94 28 30 56

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707

 65 52 67

4.7537594 5.2252964 5.3168148

If we starting counting from group 33 (the group with the lowest variance of 0.82) we find 46

groups with variances smaller than 2.41. That is, we find 46 groups that have smaller than

expected variance using the 90% confidence estimate.

It may also be interesting to see what a “large” variance is when defined in terms of pseudo

group variances. This information is found in the third part of the summary of the RGR.HRS

object. A variance of 4.55 is in the upper 95% of all random group variances. Given this

criterion, we have five groups that meet or exceed this standard. In an applied setting, one might

be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.

That is, one might be interested in determining what drives certain groups to have very large

differences in how individuals perceive work hours.

Finally, for confidence intervals not given in the summary, one can use the quantile

function with the random variances (RGRVARS) in the RGR.HRS object. For instance to get the

lower .20 confidence interval:

Multilevel Models in R 43

> quantile(RGR.HRS$RGRVARS, c(.20))

 20%

2.695619

Note that rgr.agree only works on vectors. Consequently, to use rgr.agree with the

leadership scale we would need to create a leadership scale score. We can do this using the

rowMeans function. We will create a leadership scale (LEAD) and put it in the bhr2000

dataframe, so the specific command we issue is:

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12])

Now that we have created a leadership scale score, we can perform the RGR agreement

analysis on the variable.

> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000))

$"Summary Statistics for Random and Real Groups"

 N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z-value

1 990 0.6011976 0.1317229 0.5156757 -6.46002

$"Lower Confidence Intervals (one-tailed)"

 0.5% 1% 2.5% 5% 10%

0.2701002 0.3081618 0.3605966 0.3939504 0.4432335

$"Upper Confidence Intervals (one-Tailed)"

 90% 95% 97.5% 99% 99.5%

0.7727185 0.8284755 0.8969857 0.9651415 1.0331922

The results indicate that the variance in actual groups about leadership ratings is significantly

smaller than the variance in randomly created groups (i.e., individuals agree about leadership).

For interesting cases examining situations where group members do not agree see Bliese &

Halverson (1998a) and Bliese and Britt (2001).

Ongoing research continues to examine the nature of RGR based agreement indices relative to

ICC(1), ICC(2) and other measures of agreement such as the rwg (e.g., Lüdtke & Robitzsch,

2009). This work indicates that measures of RGR agreement are strongly related to the

magnitude of the ICC values.

3.3.7 Reliability: ICC(1) and ICC(2)

The multilevel package also contains the reliability functions, ICC1 and ICC2. These two

functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as

described by Bartko, (1976), James (1982), and Bliese (2000). To use these functions, one first

performs a one-way analysis of variance on the variable of interest. For instance, to calculate a

one-way analysis of variance on work hours, we issue the aov (ANOVA) function from the R

base package. Note that in using the aov function, we use the as.factor function on GRP.

The as.factor function tells aov that GRP (which is numeric in this dataframe) is to be

treated as a categorical variable; consequently, R creates N-1 dummy codes in the model matrix

Multilevel Models in R 44

(the exact form of the effects coding can be controlled, but will not be discussed in detail here).

In the present example, there are 99 groups, so the as.factor function results in the creation

of 98 dummy coded categories (98 df). Interested readers who estimate the model without the

as.factor option will see that GRP erroneously only accounts for 1 df if the as.factor

command is omitted.

> data(bhr2000)

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000)

> summary(hrs.mod)

 Df Sum Sq Mean Sq F value Pr(>F)

as.factor(GRP) 98 3371.4 34.4 12.498 < 2.2e-16 ***

Residuals 5301 14591.4 2.8

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The ICC1 and ICC2 functions are then applied to the aov object.

> ICC1(hrs.mod)

[1] 0.1741008

> ICC2(hrs.mod)

[1] 0.9199889

Bliese (2000) provides a thorough interpretation of these values, but briefly, the ICC(1) value

of .17 indicates that 17% of the variance in individual perceptions of work hours can be

“explained” by group membership. The ICC(2) value of .92 indicates that groups can be reliably

differentiated in terms of average work hours.

3.3.8 Visualizing an ICC(1) with graph.ran.mean

It is often valuable to visually examine the group-level properties of data to see the exact form

of the group-level effects. For instance, Levine (1967) notes that a high ICC(1) value can be the

product of one or two highly aberrant groups rather than indicating generally shared group

properties among the entire sample.

One way to examine the group-level properties of the data is to contrast the observed group

means with group means that are the result of randomly assigning individuals to pseudo groups.

If the actual group means and the pseudo-group means are identical, there is no evidence of

group effects. If one or two groups are clearly different from the pseudo-group distribution it

suggests the ICC(1) value is simply caused by a few aberrant observations. If a number of

groups have higher than expected means, and a number have lower than expected means, it

suggests fairly well-distributed group-level properties.

The graph.ran.mean function allows one to visually contrast actual group means with

pseudo group means. The function requires three parameters. The first is the variable on which

one is interested in examining. The second is the group designator, and the third is a smoothing

parameter (nreps) determining how many sets of pseudo groups should be created to create the

pseudo group curve. Low numbers (<10) for this last parameter create a choppy line while high

Multilevel Models in R 45

numbers (>25) create smooth lines. In cases where the parameter bootci is TRUE (see

optional parameters), nreps should equal 1000 or more.

 Three optional parameters control the y axis limits (limits); whether a plot is created

(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence

intervals are estimated and plotted (bootci=TRUE). The default for limits is to use the

lower 10% and upper 90% values of the raw data. The default for graph is to produce a plot,

but returning a dataframe can be useful for exporting results to other graphing software. Finally,

the default for bootci is to return a plot or a dataframe without bootstrap confidence interval

estimates.

In the following example, we plot the observed and pseudo group distribution of the work

hours variable from the data set bhr2000. Recall, the ICC(1) value for this variable was .17 (see

section 3.3.7).
> data(bhr2000)

> graph.ran.mean(bhr2000$HRS, bhr2000$GRP, nreps=1000,

limits=c(8,14),bootci=TRUE)

The command produced the resulting plot where the bar chart represents each groups' average

rating of work hours sorted from highest to lowest, and the line represents a random distribution

where 99 pseudo groups (with exact size characteristics of the actual groups) were created 100

times and the sorted values were averaged across the 1000 iterations. The dotted lines represent

the upper and lower 95% confidence interval estimates. In short, the line represents the expected

distribution if there were no group-level properties associated with these data. The graph

suggests fairly evenly distributed group-level properties associated with the data. That is, the

ICC(1) value of .17 does not seem to be caused by one or two aberrant groups.

Multilevel Models in R 46

0 20 40 60 80 100

8
9

1
0

1
1

1
2

1
3

1
4

Index

G
ro

u
p

 A
v
e

ra
g

e

3.4 Regression and Contextual OLS Models

Prior to the introduction of multilevel random coefficient models, OLS regression models

were widely used to detect contextual effects. Firebaugh (1978) provides a good methodological

discussion of these types of contextual models as does Kreft and De Leeuw (1998) and James

and Williams (2000).

The basic logic behind these models is that an aggregated group mean can explain unique

variance over and above an individual variable of the same name. So, for instance, Bliese (2002)

found that average group work hours explained unique variance in individual well-being over-

and-above individual reports of work hours. This occurs because there is no mathematical

reason why the group-level relationship between means must be the same as the individual-level

relationship between raw variables. When the slope of the group-mean relationship differs from

the slope of the individual-level relationship, a contextual effect is present (Firebaugh, 1978).

To estimate contextual regression models in R, one uses the OLS regression function lm to

simultaneously test the significance of the individual and group mean variable. If the group-

mean variable is significant it indicates the individual-level and group-level slopes are

significantly different, and one has evidence of a contextual effect (Firebaugh, 1978; Snijders &

Bosker, 1999). As discussed in the next section, there is an important caveat. Specifically, the

standard error associated with the group-level effect is almost always too small producing tests

Multilevel Models in R 47

that are too liberal. For this reason random coefficient models (RCM) are a preferred way to

identify contextual effects.

3.4.1 Contextual Effect Example

 In this example we use the bh1996 dataframe to illustrate the estimation of a contextual

model. The bh1996 dataframe has group mean variables included; however, we will pretend

that it does not so we can illustrate the use of the aggregate and merge functions.

> data(bh1996)

> names(bh1996)

 [1] "GRP" "COHES" "G.COHES" "W.COHES" "LEAD" "G.LEAD"

 [7] "W.LEAD" "HRS" "G.HRS" "W.HRS" "WBEING" "G.WBEING"

[13] "W.WBEING"

> TDAT<-bh1996[,c(1,8,11)] # a dataframe with GRP, HRS and WBEING

> names(TDAT)

[1] "GRP" "HRS" "WBEING"

> TEMP<-aggregate(TDAT$HRS,list(TDAT$GRP),mean,na.rm=T)

> names(TEMP)

[1] "Group.1" "x"

> names(TEMP)<-c("GRP","G.HRS")

> TBH1996<-merge(TDAT,TEMP,by="GRP") #merge group and individual data

> names(TBH1996)

[1] "GRP" "HRS" "WBEING" "G.HRS"

> tmod<-lm(WBEING~HRS+G.HRS,data=TBH1996) #estimate the linear model

> summary(tmod,cor=F)

Call:

lm(formula = WBEING ~ HRS + G.HRS, data = TBH1996)

Residuals:

 Min 1Q Median 3Q Max

-2.87657 -0.57737 0.03755 0.64453 2.37267

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.783105 0.136395 35.068 <2e-16 ***

HRS -0.046461 0.004927 -9.431 <2e-16 ***

G.HRS -0.130836 0.013006 -10.060 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.8902 on 7379 degrees of freedom

Multiple R-Squared: 0.0398, Adjusted R-squared: 0.03954

F-statistic: 152.9 on 2 and 7379 DF, p-value: 0

Notice that G.HRS is significant with a t-value of –10.060. This provides evidence of

significant contextual effects. If we want to examine the form of the relationship, we can plot

the regression slopes for the two models using the following commands:

> plot(TBH1996$HRS,TBH1996$WBEING,xlab="Work Hours",ylab="Well-

Being",type="n") #type = n omits the points which is important since

we have 7,382 observations

> abline(lm(WBEING~HRS,data=TBH1996)) # plots the individual-

level slope

> abline(lm(WBEING~G.HRS,data=TBH1996),lty=2) #group-level slope

Multilevel Models in R 48

This produces the plot provided below. Notice that the group-mean slope (the dotted line) is

considerably steeper than the individual slope (the solid line).

0 5 10 15 20

0
1

2
3

4
5

Work Hours

W
e

ll-
B

e
in

g

While contextual models are valuable, a major limitation with them is that they do not

account for the fact that individuals are nested within groups. In essence, the models are based

on the assumption that individual observations are independent instead of acknowledging that

responses from individuals in the same group might be more similar than would be expected by

chance. For instance, individual responses on well-being are somewhat influenced by group

membership (as we will show later). This has the effect of biasing the standard errors, and

making one a little too likely to detect contextual effects. Specifically, it is likely that the

standard error of 0.013 associated with G.HRS is too small. This in turn makes the t-value too

large. Better models, such as random coefficient models, account for this non-independence.

We will illustrate the estimation of these in section 3.6. For more details on the effects of non-

independence see Bliese (2002); Bliese and Hanges (2004); Kenny and Judd, (1986) and Snijders

and Bosker, (1999).

3.5 Correlation Decomposition and the Covariance Theorem

OLS contextual models provide a way of determining whether or not regression slopes based

on group means differ from regression slopes of individual-level variables. The covariance

theorem provides a way of doing a similar thing for correlations nested in a two-level structure.

Essentially, the covariance theorem allows one to break down a raw correlation into two separate

components – the portion of the raw correlation attributable to within-group (individual)

processes, and the portion of the correlation attributable to between-group (group-level)

processes.

Robinson (1950) was one of the first researchers to propose the covariance theorem, but

Dansereau and colleagues increased the visibility of the theorem by incorporating it into an

Multilevel Models in R 49

analysis system they labeled WABA for Within-And-Between-Analyses (Dansereau, Alutto &

Yammarino, 1984). WABA is actually two integrated procedures, WABA I and WABA II.

WABA I uses a set of decision tools based on eta values to inform decisions about the individual

or group-level nature of the data. Eta values, however, are highly influenced by group size, but

WABA I makes no group size adjustments; consequently, there is little value in WABA I unless

one is working with dyads (see Bliese, 2000; Bliese & Halverson, 1998b). Arguably a more

useful way of drawing inferences from eta-values is to contrast eta-values from actual groups to

eta-values from pseudo groups. We will illustrate this in a Random Group Resampling extension

of the covariance theorem decomposition (see section 3.5.2).

3.5.1 The waba and cordif functions

Dansereau et al.’s (1984) WABA II revolves around the estimation of the covariance theorem

components, and the waba function in the multilevel library provides the covariance theorem

components for the relationship between two variables. For example, to decompose the

correlation between work hours and well-being into the between-group and within-group

component we would issue the following command. Note that for comparative purposes we use

the same data as we did in OLS contextual model example (section 3.4.1).

> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP)

$Cov.Theorem

 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031

$n.obs

[1] 7382

$n.grps

[1] 99

The waba function returns a list with three elements. The first element is the covariance

theorem with all its components. The second element is the number of observations used in the

estimate of the covariance theorem. The third element is the number of groups. The latter two

elements should routinely be examined because the waba function, by default, performs listwise

deletion of missing values.

This formula shows that the raw correlation of -.163=(EtaBX*EtaBY*CorrB) +

(EtaWX*EtaWY*CorrW) or (.379*.236*-.712)+(.925*.972*-.111). Everything in the first set of

parentheses represents the between-group component of the correlation, and everything in the

second set of parentheses represents the within-group component of the correlation.

The group-mean correlation of -.71 definitely looks larger than the within-group correlation of

-.11. Furthermore, since these two correlations are independent, we can contrast them using the

cordif function. This function performs an r to z' transformation of the two correlations (see

also the rtoz function) and then tests for differences between the two z' values using the

formula provided in Cohen and Cohen (1983, p. 54). There are four arguments that must be

provided to cordif. These are (1) the first correlation of interest, (2) the second correlation of

interest, (3) the N on which the first correlation is based, and (4) the N on which the second

correlation is based. In our example, we already have the two correlations of interest (-.13 and -

.66); to get the N for the between-group correlation, we need to know the number of groups. We

can get this N by determining how many unique elements there are in GRP.

Multilevel Models in R 50

> length(unique(bh1996$GRP))

[1] 99

The N for the within-group correlation is slightly more complicated. It is calculated as the

total N minus the number of groups (see Dansereau, et al., 1984). In our example, we already

know that the total N is 7,382 from the waba function output. We also know that the number of

groups is 99. Thus, the N for the within-group correlation is 7,382-99 or 7,283. For illustrative

purposes, however, we will use the nrow function to get the number of observations.

> nrow(bh1996)-99

[1] 7283

With this information, we have all the necessary components for the cordif function.

> cordif(-.1107,-.7122,7283,99)

$"z value"

[1] 7.597172

The z-value is larger than 1.96, so we conclude that the two correlations are significantly

different for each other. That is, the between-group correlation is significantly larger than the

within-group correlation. This finding mirrors what we found in our contextual analysis. Note

that the within-group correlation is based on X and Y deviation scores. These deviation scores

are estimated by subtracting the group mean of X from X, and the group mean of Y from Y. In

random coefficient modeling, these deviation scores are also called group-mean centered scores.

3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba)

As noted above, it may be interesting to see how the eta-between, eta-within, between group

and within-group correlations vary as a function of the group-level properties of the data. To do

this, one can use the rgr.waba function. Essentially, the rgr.waba function allows one to

answer questions such as "is my eta-between value for x larger than would be expected by

chance?" The rgr.waba routine randomly assigns individuals into pseudo groups having the

exact size characteristics as the actual groups, and then calculates the covariance theorem

parameters. By repeatedly assigning individuals to pseudo groups and re-estimating the

covariance theorem components, one can create sampling distributions of the covariance theorem

components to see if actual group results differ from pseudo group results (see Bliese &

Halverson, 2002). Below I illustrate the use of rgr.waba. Note that this is a very

computationally intensive routine, so it may take some time to complete. For comparative

purposes, I begin by re-estimating the covariance theorem components using the first 1000

observations.

> TDAT<-bh1996[1:1000,c(1,8,11)]

> waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP) #Model for first 1000 obs

 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW

1 -0.1500598 0.4136304 0.192642 -0.6302504 0.9104449 0.9812691 -0.1117537

Multilevel Models in R 51

> RGR.WABA<-rgr.waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP,1000)

> round(summary(RGR.WABA),dig=4)
 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW

NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1.00e+03 1000.0000

Mean -0.1501 0.1236 0.1241 -0.1409 0.9921 9.92e-01 -0.1501

SD 0.0000 0.0209 0.0217 0.2463 0.0026 2.80e-03 0.0040

The summary of the rgr.waba object produces a table giving the number of random

repetitions, the means and the standard deviations from analysis. Notice the raw correlation has

a standard deviation of zero because it does not change. In contrast, the between-group

correlation has the highest standard deviation (.25) indicating that it varied across pseudo group

runs. It is apparent that all of covariance theorem components in the actual groups significantly

vary from their counterparts in the pseudo group analysis. This is obvious because most actual

group components are close to two standard deviations different from the pseudo group means.

To test for significant differences in this resampling design, however, one can simply look at the

sampling distribution of the random runs, and use the 2.5% and 97.5% sorted values to

approximate 95% confidence intervals. Any values outside of this range would be considered

significantly different from their pseudo group counterparts. To estimate the 95% confidence

intervals we can use the quantile function.

> quantile(RGR.WABA,c(.025,.975))

 EtaBX EtaBY CorrB EtaWX EtaWY CorrW

2.5% 0.08340649 0.08288485 -0.6048007 0.9861588 0.9857920 -0.1585368

97.5% 0.16580367 0.16797054 0.3613034 0.9965156 0.9965591 -0.1417005

 Notice that all of the covariance theorem values based on the actual groups are outside of the

95% confidence interval estimates. That is, all of the actual group results are significantly

different than would be expected by chance (p<.05). If we estimate the 99% confidence intervals

we find that the between-group correlation is no longer outside of the 99% confidence interval,

but the other values are.

> quantile(RGR.WABA,c(.005,.995))

 EtaBX EtaBY CorrB EtaWX EtaWY CorrW

0.5% 0.07280037 0.07128845 -0.7216473 0.9843644 0.9831655 -0.1608020

99.5% 0.17614418 0.18271719 0.4825655 0.9973465 0.9974557 -0.1386436

Keep in mind in estimating the rgr.waba models that one's results are likely to differ

slightly from those presented here because of the random generation process underlying random

group sampling.

3.6 Multilevel Random Coefficient modeling

This section illustrates the estimation of multilevel random coefficient (MRC) models using

the nlme package (Pinhiero & Bates, 2000). Most of the examples described in this section are

taken from Bliese (2002) and use the Bliese and Halverson (1996) data set (bh1996) included

in the multilevel library. Model notation is based on Bryk and Raudenbush’s (1992) book on

Hierarchical Linear Models or HLM.

A complete description of MRC modeling is beyond the scope of this document; nonetheless,

a short overview is presented to help facilitate the illustration of the methods. For more detailed

Multilevel Models in R 52

discussions see Bliese, (2002); Bryk and Raudenbush, (1992); Hofmann, (1997); Hox (2002);

Kreft and De Leeuw, (1998) and Snidjers and Bosker (1999).

One can think of MRC models as ordinary regression models that have additional variance

terms for handling non-independence due to group membership. The key to understanding MRC

models is to understand how group membership can produce additional sources of variance in

data.

The first variance term that distinguishes a MRC model from a regression model is a term that

reflects the degree to which group differ in their mean values (intercepts) on the dependent

variable (DV). A significant variance term (00) indicates that groups differ on the DV and

allows one to include variables that predict why some groups have high average DV values while

other groups have low average DV values. One predicts group-mean differences with group-

level variables. Group-level variables (or level-2 variables) differ across groups, but are

consistent within-groups. For example, a cohesion measure that was the same across all

members of the same group would be a level-2 variable that could potentially be used to predict

the group-level variance (00) in well-being.

The second variance term that distinguishes a MRC model from a typical regression reflects

the degree to which slopes between independent and dependent variables vary across groups

(11). Single-level regression models generally assume that the relationship between the IV and

DV is constant across groups. In contrast, MRC models permit one to test whether the slope

varies from one group to another. If slopes significantly vary, one can attempt to explain the

variation as a function of group differences – again, one uses level-2 variables such as cohesion

to explain why the slope between IV and DV in some groups is stronger than the slopes in other

groups.

A third variance term is common to both MRC and regression models. This variance term,

2
, reflects the degree to which an individual score differs from its predicted value within a

specific group. One can think of
2
 as an estimate of within-group variance. One uses

individual-level or level-1 variables to predict within-group variance,
2
. Level-1 variables

differ among members of the same group. For instance, a level-1 variable such as participant age

would vary among members of the same group.

In summary, in a complete MRC analysis, one examines (1) level-1 factors related to the

within-group variance
2
; (2) group-level factors related to the between-group variation in

intercepts 00; and (3) group-level factors related to within-group slope differences, 11. The next

sections re-analyze portions of the Bliese and Halverson data set to illustrate a typical sequence

of steps used in multilevel modeling.

3.6.1 Steps in multilevel modeling

Step 1. Because multilevel modeling involves predicting variance at different levels, one

typically begins a multilevel analysis by determining the levels at which significant variation

exists. In the case of the two-level model (the only models that I will consider here), one

generally assumes that there is significant variation in
2
 – that is, one assumes that within-group

variation is present. One does not necessarily assume, however, that there will be significant

intercept variation (00) or between-group slope variation (11). Therefore, one begins by

examining intercept variability (see Bryk & Raudenbush, 1992; Hofmann, 1997). If 00 does not

Multilevel Models in R 53

differ by more than chance levels, there may be little reason to use random coefficient modeling

since simpler OLS modeling will suffice. Note that if slopes randomly vary even if intercepts do

not, there may still be reason to estimate random coefficient models (see Snijders & Bosker,

1999).

In Step 1 of a MRCM analysis, one explores the group-level properties of the outcome

variable to determine three things: First, what is the ICC(1) (commonly referred to simply as the

ICC in random coefficient models) associated with the outcome variable. That is, how much of

the variance in the outcome can be explained by group membership. Second, one examines

whether the group means of the outcome variable are reliable. By convention, one would like

the group mean reliability to be around .70 because this indicates that groups can be reliably

differentiated (see Bliese, 2000). Third, one wants to know whether the variance of the intercept

(00) is significantly larger than zero.

These three aspects of the outcome variable are examined by estimating an unconditional

means model. An unconditional means model does not contain any predictors, but includes a

random intercept variance term for groups. This model essentially estimates how much

variability there is in mean Y values (i.e., how much variability there is in the intercept) relative

to the total variability. In the two stage HLM notation, the model is:

Yij = 0j+rij

0j = 00 + u0j

In combined form, the model is: Yij =00 + u0j+rij. This model states that the dependent

variable is a function of a common intercept 00, and two error terms: the between-group error

term, u0j, and the within-group error term, rij. The model essentially states that any Y value can

be described in terms of an overall mean plus some error associated with group membership and

some individual error. The null model provides two estimates of variance; 00 associated with u0j

reflecting the variance in how much each groups’ intercept varies from the overall intercept (00),

and
2
 associated with rij reflecting how much each individuals’ score differs from the group

mean. Bryk and Raudenbush (1992) note that this model is directly equivalent to a one-way

random effects ANOVA – an ANOVA model where one predicts the dependent variable as a

function of group membership.

The unconditional means model and all other random coefficient models that we will consider

are estimated using the lme (for linear mixed effects) function in the nlme package (see

Pinheiro & Bates, 2000). There are two formulas that must be specified in any lme call: a fixed

effects formula and a random effects formula.

 In the unconditional means model, the fixed portion of the model is 00 (an intercept term)

and the random component is u0j+rij. The random portion of the model states that intercepts will

be allowed to vary among groups. We begin the analysis by attaching the multilevel package

(which also loads the nlme package) and making the bh1996 data set in the multilevel package

available for analysis.

> library(multilevel)

> data(bh1996)

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996,
 control=list(opt="optim"))

Multilevel Models in R 54

In the model, the fixed formula is WBEING~1. This states that the only predictor of well-being

is an intercept term. One can think of this model as stating that in the absence of any predictors,

the best estimate of any specific outcome value is the mean value on the outcome. The random

formula is random=~1|GRP. This specifies that the intercept can vary as a function of group

membership. This is the simplest random formula that one will encounter, and in many

situations a random intercept model may be all that is required to adequately account for the

nested nature of the grouped data. The option control=list(opt="optim") in the call to

lme instructs the program to use R’s general purpose optimization routine. Versions of lme

after 2.2 default to a different optimizing routine. The other routine, nlmimb, has several

advantages including much better diagnostics when optimization fails. In practice, however, it

tends to converge less often than the general purpose optimization routine. Furthermore, the

examples in this document were estimated under "optim", so for consistency we will revert

back to the original optimizer. In practice, users should use the default "nlmimb" optimizer;

however, if models fail to converge it may be useful to revert back to "optim".

Estimating ICC. The unconditional means model provides between-group and within-group

variance estimates in the form of 00 and
2
, respectively. As with the ANOVA model, it is often

valuable to determine how much of the total variance is between-group variance. This can be

accomplished by calculating the Intraclass Correlation Coefficient (ICC) using the formula: ICC

= 00/(00 +
2
) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes

that the ICC is equivalent to Bartko’s ICC(1) formula (Bartko, 1976) and to Shrout and Fleiss’s

ICC(1,1) formula (Shrout & Fleiss, 1979). To get the estimates of variance for an lme object,

one uses the VarCorr function.

> VarCorr(Null.Model)

GRP = pdSymm(1)

 Variance StdDev

(Intercept) 0.03580079 0.1892110

Residual 0.78949727 0.8885366

> 0.03580079/(0.03580079+0.78949727) #Calculate ICC

[1] 0.04337922

The estimate of 00 (between-group variance or Intercept) is 0.036, and the estimate of
2

(within-group variance or Residual) is 0.789. The ICC estimate (00/(00 +
2
)) is .04.

To verify that the ICC results from the random coefficient modeling are similar to those from

an ANOVA model and the ICC1 function (see section 0) one can perform an ANOVA analysis

on the same data.

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996)

> ICC1(tmod)

[1] 0.04336905

The ICC value from the random coefficient model and the ICC(1) from the ANOVA model are

basically identical.

Estimating Group-Mean Reliability. When exploring the properties of the outcome variable, it

can also be of interest to examine the reliability of the group mean. The reliability of group

Multilevel Models in R 55

means often affects one’s ability to detect emergent phenomena. In other words, a prerequisite

for detecting emergent relationships at the aggregate level is to have reliable group means (Bliese

1998). By convention, estimates around .70 are considered reliable. Group mean reliability

estimates are a function of the ICC and group size (see Bliese, 2000; Bryk & Raudenbush, 1992).

The GmeanRel function from the multilevel package calculates the ICC, the group size, and the

group mean reliability for each group.

When we apply the GmeanRel function to our Null.Model based on the 99 groups in the

bh1996 data set, we are interested in two things. First, we are interested in the average

reliability of the 99 groups. Second, we are interested in determining whether or not there are

specific groups that have particularly low reliability.

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996,

 control=list(opt="optim"))

> GREL.DAT<-GmeanRel(Null.Model)

> names(GREL.DAT)

[1] "ICC" "Group" "GrpSize" "MeanRel"

> GREL.DAT$ICC #ICC estimate

[1] 0.04337922

> GREL.DAT$MeanRel

 [1] 0.7704119 0.7407189 0.8131975 0.6557120 0.8222325

 [6] 0.5594125 0.5680426 0.6065741 0.6387944 0.7466758

[11] 0.6387944 0.6201282 0.7996183 0.8099782 0.7860071

[16] 0.6759486 0.8116016 0.7860071 0.6557120 0.7437319

[21] 0.8066460 0.6661367 0.7839102 0.8131975 0.5920169

[26] 0.7210397 0.8222325 0.6065741 0.7245244 0.6134699

[31] 0.6557120 0.6852003 0.5843267 0.8178269 0.8066460

[36] 0.7940029 0.6896308 0.7174657 0.6610045 0.8131975

[41] 0.7376341 0.6610045 0.8193195 0.7061723 0.7727775

[46] 0.8207878 0.6557120 0.7407189 0.7795906 0.5680426

[51] 0.6201282 0.6265610 0.5994277 0.7407189 0.7137989

[56] 0.7750949 0.8163095 0.7437319 0.7959093 0.8099782

[61] 0.7022044 0.8207878 0.6939384 0.7022044 0.7704119

[66] 0.7376341 0.8099782 0.6661367 0.5994277 0.8193195

[71] 0.7860071 0.4048309 0.6502517 0.7604355 0.7279232

[76] 0.7959093 0.6852003 0.7523651 0.7210397 0.6939384

[81] 0.8964926 0.7210397 0.9110974 0.8795291 0.8788673

[86] 0.9088937 0.8863580 0.7860071 0.8277854 0.9100090

[91] 0.8083266 0.8379118 0.8886532 0.8330020 0.8250530

[96] 0.6661367 0.7551150 0.4204716 0.5504306

> mean(GREL.DAT$MeanRel) #Average group-mean reliability

[1] 0.7335212

Notice that the overall group-mean reliability is acceptable at .73, but that several groups have

quite low reliability estimates. Specifically, group 72 and group 98 have reliability estimates

below .50.

We can show that the group-mean reliability from the random coefficient model is equivalent

to the ICC(2) from the ANOVA model by using the bh1996 data to estimate the ICC(2) in an

ANOVA framework (see section 0.).

Multilevel Models in R 56

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996)

> ICC2(tmod)

[1] 0.7717129

In this case the ICC(2) estimate from the ANOVA model differs from the group-mean

reliability estimate from the random coefficient model. This occurs because group sizes are

unequal. If all the groups were the same size, then the two measures would be nearly identical.

With reference to ICC(2) values and group-mean reliability, note that there are alternate ways

of estimating group-mean reliability. Snijders and Bosker (1999) show, for example, that one

can estimate overall group-mean reliability by determining what percentage of the total group

variance is made up by 00.

Finally, keep in mind that the estimates of within-group and between-group variance from the

random coefficient model will be nearly identical to those from the ANOVA model as long as

restricted maximum likelihood estimation (REML) is used in the random coefficient modeling

(this is the default in the lme routine of the nlme package). If full maximum likelihood is used,

the variance estimates may differ somewhat from the ANOVA estimates particularly in small

sample situations. In our running example, the use of REML versus full maximum likelihood

makes little difference. Notice the use of the method="ML" below:

> mod.ml<-lme(WBEING~1,random=~1|GRP,data=bh1996,method="ML",

 control=list(opt="optim"))

> VarCorr(mod.ml)

GRP = pdLogChol(1)

 Variance StdDev

(Intercept) 0.03531699 0.1879282

Residual 0.78949525 0.8885354

The maximum likelihood estimate of the ICC is also 0.043 [0.0353/(0.0353+0.789)] which is

identical to the REML estimate.

Determining whether 00 is significant. Returning to our original analysis involving well-

being from the bh1996 data set, we might be interested in knowing whether the intercept

variance (i.e.,00) estimate of 0.036 is significantly different from zero. To do this we compare –

2 log likelihood values between (1) a model with a random intercept, and (2) a model without a

random intercept.

A model without a random intercept is estimated using the gls function in the nlme

package. The –2 log likelihood values for an lme or gls object are obtained using the logLik

function and multiplying this value by –2. If the –2 log likelihood value for the model with

random intercept is significantly larger than the model without the random intercept (based on a

Chi-square distribution), then one concludes that the model with the random intercept fits the

data significantly “better” than does the model without the random intercept. In the nlme

package, model contrasts via –2 log likelihood values are facilitated by using the anova

function.

Multilevel Models in R 57

> Null.Model.2<-gls(WBEING~1,data=bh1996,

 control=list(opt="optim"))

> logLik(Null.Model.2)*-2

`log Lik.' 19536.17 (df=2)

> logLik(Null.Model)*-2

`log Lik.' 19347.34 (df=3)

> 19536.17-19347.34

[1] 188.83
> anova(Null.Model,Null.Model.2)

 Model df AIC BIC logLik Test L.Ratio p-value

Null.Model 1 3 19353.34 19374.06 -9673.669

Null.Model.2 2 2 19540.17 19553.98 -9768.084 1 vs 2 188.8303 <.0001

The –2 log likelihood value for the gls model without the random intercept is 19536.17. The

–2 log likelihood value for the model with the random intercept is 19347.34. The difference of

188.8 is significant on a Chi-Squared distribution with one degree of freedom (one model

estimated a variance term associated with a random intercept, the other did not, and this results in

the one df difference). These results suggest that there is significant intercept variation.

In summary, we would conclude that there is significant intercept variation in terms of general

well-being scores across the 99 Army companies in our sample. We also estimate that 4% of the

variation in individuals’ well-being score is a function of the group to which he or she belongs.

Thus, a model that allows for random variation in well-being among Army companies is better

than a model that does not allow for this random variation.

Step 2. At this point in our example we have two sources of variation that we can attempt to

explain in subsequent modeling – within-group variation (
2
) and between-group intercept (i.e.,

mean) variation (00). In many cases, these may be the only two sources of variation we are

interested in explaining so let us begin by building a model that predicts these two sources of

variation.

To make things interesting, let us assume that individual well-being is related to individual

reports of work hours. We expect that individuals who report high work hours will report low

well-being. At the same time, however, let us assume that average work hours in an Army

Company are related to the average well-being of the Company over-and-above the individual-

level work-hours and well-being relationship. Using Hofmann and Gavin’s (1998) terminology,

this means that we are testing an incremental model where the level-2 variable predicts unique

variance after controlling for level-1 variables. This is also directly equivalent to the contextual

model that we estimated in section 3.4.1.

The form of the model using Bryk and Raudenbush’s (1992) notation is:

 WBEINGij = 0j + 1j(HRSij)+rij

 0j = 00 + 01(G.HRSj) + u0j

1j = 10

Let us consider each row of the notation. The first row states that individual well-being is a

function of the groups’ intercept plus a component that reflects the linear effect of individual

reports of work hours plus some random error. The second line states that each groups’ intercept

is a function of some common intercept (00) plus a component that reflects the linear effect of

average group work hours plus some random between-group error. The third line states that the

Multilevel Models in R 58

slope between individual work hours and well-being is fixed—it is not allowed to randomly vary

across groups. Stated another way, we assume that the relationship between work hours and

well-being is identical in each group.

When we combine the three rows into a single equation we get an equation that looks like a

common regression equation with an extra error term (u0j). This error term indicates that

WBEING intercepts (i.e., means) can randomly differ across groups. The combined model is:

 WBEINGij = 00 + 10(HRSij) + 01(G.HRSj) + u0j + rij

This model is specified in lme as:

> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996,

 control=list(opt="optim"))

> summary(Model.1)

Linear mixed-effects model fit by REML

 Data: bh1996

 AIC BIC logLik

 19222.28 19256.81 -9606.14

Random effects:

 Formula: ~1 | GRP

 (Intercept) Residual

StdDev: 0.1163900 0.8832353

Fixed effects: WBEING ~ HRS + G.HRS

 Value Std.Error DF t-value p-value

(Intercept) 4.740829 0.21368746 7282 22.185808 <.0001

HRS -0.046461 0.00488798 7282 -9.505056 <.0001

G.HRS -0.126926 0.01940357 97 -6.541368 <.0001

 Correlation:

 (Intr) HRS

HRS 0.000

G.HRS -0.965 -0.252

Standardized Within-Group Residuals:

 Min Q1 Med Q3 Max

-3.35320562 -0.65024982 0.03760797 0.71319835 2.70917777

Number of Observations: 7382

 Number of Groups: 99

Notice that work hours are significantly negatively related to individual well-being.

Furthermore after controlling the individual-level relationship, average work hours (G.HRS) are

related to the average well-being in a group. The interpretation of this model, like the

interpretation of the contextual effect model (section 3.4.1) indicates that the slope at the group-

level significantly differs from the slope at the individual level. Indeed, in this example, each

hour increase at the group level is associated with a -.163 (-.046+-.127) decrease in average well-

being. The coefficient of -.127 reflects the degree of difference between the two slopes.

Multilevel Models in R 59

At this point one can also estimate how much of the variance was explained by these two

predictors. Because individual work hours were significantly related to well-being, we expect

that it will have “explained” some of the within-group variance
2
. Similarly, since average

work hours were related to the group well-being intercept we expect that it will have “explained”

some of intercept variance, 00. Recall that in the null model, the variance estimate for the

within-group residuals,
2
, was 0.789; and the variance estimate for the intercept, 00, was 0.036.

The VarCorr function on the Model.1 object reveals that each variance component has

changed slightly.
> VarCorr(Model.1)

GRP = pdSymm(1)

 Variance StdDev

(Intercept) 0.01354663 0.1163900

 Residual 0.78010466 0.8832353

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.

That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the

variance of the between-group intercepts decreased from 0.036 to 0.014. We can calculate the

percent of variance explained by using the following formula:

 Variance Explained = 1 – (Var with Predictor/Var without Predictor)

To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%)

of the within-group variance in
2
, and group-mean work hours explained 1 – (0.014/0.036) or

0.611 (61%) of the between-group intercept variance 00. While the logic behind variance

estimates appears pretty straightforward (at least in models without random slopes), the variance

estimates should be treated with some degree of caution because they are partially dependent

upon how one specifies the models. Interested readers are directed to Snijders and Bosker (1994;

1999) for an in-depth discussion of variance estimates.

Step 3. Let us continue our analysis by trying to explain the third source of variation, namely,

variation in our slopes (11, 12, etc.). To do this, let us examine another variable from the Bliese

and Halverson (1996) data set. This variable represents Army Company members’ ratings of

leadership consideration (LEAD). Generally individual soldiers’ ratings of leadership are related

to well-being. In this analysis, however, we will consider the possibility that the strength of the

relationship between individual ratings of leadership consideration and well-being varies among

groups.

We begin by examining slope variation among the first 25 groups. Visually we can do this

using xyplot from the lattice package.

> library(lattice)

> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,],

 type=c("p","g","r"),col="dark blue",col.line="black",

 xlab="Leadership Consideration",

 ylab="Well-Being")

Multilevel Models in R 60

Leadership Consideration

W
e
ll-

B
e
in

g

1 2 3 4 5

0
1
2
3
4
5

1 2

1 2 3 4 5

3 4

1 2 3 4 5

5

6 7 8 9

0
1
2
3
4
5

10
0
1
2
3
4
5

11 12 13 14 15

16 17 18 19

0
1
2
3
4
5

20
0
1
2
3
4
5

21

1 2 3 4 5

22 23

1 2 3 4 5

24 25

From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some

slope variation. The plot, however, does not tell us whether or not this variation is significant.

Thus, the first thing to do is to determine whether the slope variation differs by more than chance

levels.

Is slope variation significant? We begin our formal analysis of slope variability by adding

leadership consideration to our model and testing whether or not there is significant variation in

the leadership consideration and well-being slopes across groups. The model that we test is:

 WBEINGij = 0j + 1j(HRSij)+ 2j(LEADij) + rij

 0j = 00 + 01(G.HRSj) + u0j

 1j = 10

 2j = 20 + u2j

The last line of the model includes the error term u2j. This term indicates that the leadership

consideration and well-being slope is permitted to randomly vary across groups. The variance

term associated with u2j is 12. It is this variance term that interests us in the cross-level

interaction hypothesis. Note that we have not permitted the slope between individual work hours

and individual well-being to randomly vary across groups.

In combined form the model is: WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +

u0j + u2j * LEADij + rij. In R this model is designated as:

Multilevel Models in R 61

> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996,

 control=list(opt="optim"))

> summary(Model.2)

Linear mixed-effects model fit by REML

 Data: bh1996

 AIC BIC logLik

 17838.58 17893.83 -8911.29

Random effects:

 Formula: ~LEAD | GRP

 Structure: General positive-definite, Log-Cholesky parametrization

 StdDev Corr

(Intercept) 0.3794891 (Intr)

LEAD 0.1021935 -0.97

Residual 0.8008079

Fixed effects: WBEING ~ HRS + LEAD + G.HRS

 Value Std.Error DF t-value p-value

(Intercept) 2.4631348 0.20832607 7281 11.823459 <.0001

HRS -0.0284776 0.00446795 7281 -6.373764 <.0001

LEAD 0.4946550 0.01680846 7281 29.428928 <.0001

G.HRS -0.0705047 0.01789284 97 -3.940387 2e-04

...

Number of Observations: 7382

Number of Groups: 99

In line with our expectations, leadership consideration is significantly related to well-being.

What we are interested in from this model, however, is whether 12, the slope between leadership

consideration and well-being significantly varies across groups. To determine whether the slope

is significant, we test the –2 log likelihood ratios between a model with and a model without a

random slope for leadership consideration and well-being. We have already estimated a model

with a random slope. To estimate a model without a random slope we use update on

Model.2 and change the random statement so that it only includes a random intercept.

> Model.2a<-update(Model.2,random=~1|GRP)

> anova(Model.2,Model.2a)

 Model df AIC BIC logLik Test L.Ratio p-value

Model.2 1 8 17838.58 17893.83 -8911.290

Model.2a 2 6 17862.68 17904.12 -8925.341 1 vs 2 28.10254 <.0001

The difference of 28.10 is significant on two degrees of freedom. Note that there are two

degrees of freedom because the model with the random slope also estimates a covariance term

for the slope-intercept relationship. The log likelihood results indicate the model with the

random effect for the leadership consideration and well-being slope provides a significantly

better fit than the model without this random effect. This indicates significant slope variation.

Given the significant variation in the leadership and well-being slope, we can attempt to see

what group-level properties are related to this variation. In this example, we hypothesize that

Multilevel Models in R 62

when groups are under a lot of strain from work requirements, the relationship between

leadership consideration and well-being will be relatively strong. In contrast, when groups are

under little strain, we expect a relatively weak relationship between leadership consideration and

well-being. We expect these relationships because we believe that leadership is relatively

unimportant in terms of individual well-being when groups are under little stress, but that the

importance of leadership consideration increases when groups are under high stress. We are, in

essence, proposing a contextual effect in an occupational stress model (see Bliese & Jex, 2002).

A proposition such as the one that we presented in the previous paragraph represents a cross-

level interaction. Specifically, it proposes that the slope between leadership consideration and

well-being within groups varies as a function of a level-2 variable, namely group work demands.

In random coefficient modeling, we test this hypothesis by examining whether a level-2 variable

explains a significant amount of the level-1 slope variation among groups. In our example, we

will specifically be testing whether average work hours in the group “explains” group-by-group

variation in the relationship between leadership consideration and well-being. In Bryk and

Raudenbush’s (1992) notation, the model that we are testing is:

 WBEINGij = 0j + 1j(HRSij)+ 2j(LEADij) + rij

 0j = 00 + 01(G.HRSj) + u0j

 1j = 10

 2j = 20 +21(G.HRSj) + u2j

In combined form the model is:

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) + 21(LEADij * G.HRSj) + u0j + u2j

*LEADij + rij.

In lme we specify the cross-level interaction by adding an interaction term between

leadership (LEAD) and average group work hours (G.HRS). Specifically, the model is:

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,

random=~LEAD|GRP,data=bh1996,control=list(opt="optim"))

> round(summary(Final.Model)$tTable,dig=3)

 Value Std.Error DF t-value p-value

(Intercept) 3.654 0.726 7280 5.032 0.000

HRS -0.029 0.004 7280 -6.391 0.000

LEAD 0.126 0.217 7280 0.578 0.564

G.HRS -0.175 0.064 97 -2.751 0.007

LEAD:G.HRS 0.032 0.019 7280 1.703 0.089

The tTable results from the final model indicate there is a significant cross-level interaction

(the last row using a liberal p-value of less than .10). This result indicates that average work

hours “explained” a significant portion of the variation in 12 – the vertical cohesion and well-

being slope.

We can examine the form of our interaction by predicting four points – high and low group

work hours and high and low leadership consideration. We start by selecting values for G.HRS

and LEAD that are one standard deviation above the mean and one standard deviation below the

Multilevel Models in R 63

mean. By using the Group Work Hours variable in the original data set, we have means and

standard deviation values weighted by group size.
 > mean(bh1996$G.HRS)
[1] 11.2987

> sd(bh1996$G.HRS)

[1] 0.8608297

> 11.30-.86; 11.30+.86

[1] 10.44

[1] 12.16

> mean(bh1996$LEAD)

[1] 2.890665

> sd(bh1996$LEAD)

[1] 0.771938

> 2.89-.77; 2.89+.77

[1] 2.12

[1] 3.66

Once we have the high and low values we create a small data set (TDAT) with high and low

values for the interactive variables, and mean values for the non-interactive variables (individual

work hours in this case). We then use the predict function to get estimates of the outcome

given the values of the variables.
> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),

 LEAD=c(2.12,2.12,3.66,3.66),

 G.HRS=c(10.44, 12.16, 10.44, 12.16),

 GRP=c(1,1,1,1))

> predict(Final.Model,TDAT,level=1)

 1 1 1 1

2.380610 2.198103 3.217337 3.120810

The predicted values in this case are specifically for GRP 1. Each group in the sample will

have different predicted values because the slopes and intercepts randomly vary among groups.

In many cases, one will not be specifically interested in the predicted values for specific groups,

but interested in the patterns for the sample as a whole. If one is interested in estimating overall

values, one can change the level of prediction to level=0.

> predict(Final.Model,TDAT,level=0)
[1] 2.489508 2.307001 3.204766 3.108239

attr(,"label")

[1] "Predicted values"

Notice that the values for the sample as a whole differ from those for GRP 1.

When the values are plotted, the form of the interaction supports our proposition; however, to

better illustrate the effect, the figure uses values of 7 and 12 to represent low and high average

work hours. Note this plot was generated in PowerPoint.
> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),

 LEAD=c(2.12,2.12,3.66,3.66),

 G.HRS=c(7, 12, 7, 12),

 GRP=c(1,1,1,1))

Multilevel Models in R 64

> predict(Final.Model,TDAT,level=0)

[1] 2.854523 2.323978 3.397820 3.117218

attr(,"label")

[1] "Predicted values"

2.0

2.3

2.5

2.8

3.0

3.3

3.5

Negative Positive

Individual Ratings of Leadership Consideration

In
d

iv
id

u
al

 W
el

l-
B

ei
n

g
12 Hours (group average) 7 Hours (group average)

Soldiers’ perceptions of leadership consideration are positively related to their well-being

regardless of the number of hours that the group, on average, works; however, the relationship

between leadership consideration and well-being is stronger (steeper slope) in groups with high

work hours than in groups with low work hours. Another way to think about the interaction is to

note that well-being really drops (in relative terms) when one perceives that leadership is low in

consideration and one is a member of a group with high work hours. This supports our

proposition that considerate leadership is relatively more important in a high work demand

context.

In this model one can also estimate how much of the variation in the slopes is “explained” by

the group work hours. The estimate of the between group slope variance, 12, in the model with

a random slope for the relationship between leadership and well-being (Model.2) is 0.0104.
> VarCorr(Model.2)

GRP = pdLogChol(LEAD)

 Variance StdDev Corr

(Intercept) 0.14401197 0.3794891 (Intr)

LEAD 0.01044352 0.1021935 -0.97

Residual 0.64129330 0.8008079

 The estimate after average work hours has “explained” some of the slope variance

(Final.Model) is 0.0095.

Multilevel Models in R 65

> VarCorr(Final.Model)

GRP = pdLogChol(LEAD)

 Variance StdDev Corr

(Intercept) 0.131260632 0.36229909 (Intr)

LEAD 0.009545556 0.09770136 -0.965

Residual 0.641404947 0.80087761

 Thus, average group work hours accounts for 1 – (0.0095/0.0104) or 8.6% of the slope

variance. Once again, I emphasize that this is a rough estimate, and I direct readers to Snijders

and Bosker (1994; 1999) for additional information on estimating effect sizes.

3.6.2 Plotting an interaction with interaction.plot

The previous example showed the form of the interaction plot by exporting predicted values

into PowerPoint. In many cases, however, users may simply want a way to quickly examine the

form a two-way interaction within R. This task can be accomplished using the

interaction.plot function illustrated below.

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,

 random=~LEAD|GRP,data=bh1996,control=list(opt="optim"))

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),

 LEAD=c(2.12,2.12,3.66,3.66),

 G.HRS=c(7, 12, 7, 12),

 GRP=c(1,1,1,1))

> TDAT$WBEING<-predict(Final.Model,TDAT,level=1)

> with(TDAT,interaction.plot(LEAD,G.HRS,WBEING))

2
.2

2
.4

2
.6

2
.8

3
.0

3
.2

3
.4

LEAD

m
e

a
n

 o
f
 W

B
E

IN
G

2.12 3.66

 G.HRS

7

12

Multilevel Models in R 66

3.6.3 Some Notes on Centering

In multilevel modeling, one will eventually have to contend with centering issues. In our

examples, we have simply used raw, untransformed variables as predictors. In some cases,

though, there may be good reasons to consider centering the variables. Basically, there are two

centering options with level-1 variables.

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.

Grand-mean centering is often worth considering because doing so helps reduce multicollinearity

among predictors and random effect terms. In cases where interactive terms are included, grand-

mean centering can be particularly helpful in reducing correlations between main-effect and

interactive terms. Hofmann and Gavin (1998) and others have shown that grand-mean centered

and raw variable models are basically identical; however, grand-mean centered models may

converge in situations where a model based on raw variables will not. The computational

efficiency of grand-mean centered models is due entirely to reductions in multicollinearity

because the computer algorithms tend to have trouble converging when correlations among

variables become too high.

Grand-mean centering can be accomplished in one of two ways. The explicit way is to

subtract the overall mean from the raw variable. The less obvious way is to use the scale

function. The scale function is typically used to standardize (mean=0, sd=1) variables, but can

also be used to grand-mean center. Below I create grand-mean centered variables for leadership

both ways.

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD)

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=F)

In the first example a single value (the mean of leadership) is recycled and subtracted from

each element in the vector of leadership scores to create a new variable. In the second example,

the use of the option scale=F instructs scale to provide a grand-mean centered variable.

Group-mean centering is another centering option with level-1 variables. In group-mean

centering, one subtracts the group mean from each individual score. The new variable reflects

how much an individual differs from his or her group average. It is important to keep in mind

that group-mean centering represents a completely different parameterization of the model than

does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 2002; Snijders &

Bosker, 1999). Most authors recommend that one use group-mean centering only if there is a

strong theoretical reason to believe that a respondent's relative position within the group is more

important than the absolute rating (Hox, 2002; Snijders & Bosker, 1999). For instance, one

might use group-mean centering if one believed that the key predictive aspect of work hours was

whether an individual worked more or less than his or her group members.

There may also be value in using group-mean centering when testing a cross-level interaction.

Bryk and Raudenbush (1992) and Hofmann and Gavin (1998) point out that group-mean

centering provides the “purest” estimate of the within-group slope in these situations. That is,

slope estimates based on raw variables and grand-mean centered variables can be partially

influenced by between-group factors. In contrast, group-mean centered variables have any

between-group effects removed. Bryk and Raudenbush (1992) show that group-level

interactions can some times pose as cross-level interactions, so a logical strategy is to use raw or

Multilevel Models in R 67

grand-mean centered variables to test for cross-level interactions, but verify the final results with

group-mean centered variables.

Group-mean centered variables are created by subtracting the group-mean from the raw

variable. Thus, they are identical to the within-group scores calculated in WABA (see section

3.5.1). To create group-mean centered variables in R, one needs two columns in the dataframe –

the raw variable and the group-mean. In section 3.2 the aggregate and merge functions

were illustrated as ways of creating a group-mean variable (via aggregate) and merging the

group means back with the raw data (via merge). Below these functions are used to help create

a group-centered leadership variable.

> TDAT<-bh1996[,c("GRP","LEAD")]

> TEMP<-aggregate(TDAT$LEAD,list(TDAT$GRP),mean)

> names(TEMP)<-c("GRP","G.LEAD")

> TDAT<-merge(TDAT,TEMP,by="GRP")

> names(TDAT)

[1] "GRP" "LEAD" "G.LEAD"

> TDAT$GRP.CENT.LEAD<-TDAT$LEAD-TDAT$G.LEAD

> names(TDAT)

[1] "GRP" "LEAD" "G.LEAD" "GRP.CENT.LEAD"

One would typically choose a shorter name for the group-mean centered variables, but this

name was chosen to be explicit.

The bh1996 dataframe has group-mean centered variables for all the predictors. The group-

mean centered variables begin with a "W" for "within-group". For comparison, the model below

uses the group-mean centered leadership variable in lieu of the raw leadership variable used in

the final model in the preceding section.

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,

+ random=~LEAD|GRP,data=bh1996, control=list(opt="optim"))

> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS,

+ random=~LEAD|GRP,data=bh1996, control=list(opt="optim"))

> round(summary(Final.Model.R)$tTable,dig=3)

 Value Std.Error DF t-value p-value

(Intercept) 4.705 0.211 7280 22.250 0.000

HRS -0.028 0.004 7280 -6.264 0.000

W.LEAD 0.044 0.222 7280 0.197 0.844

G.HRS -0.142 0.019 97 -7.421 0.000

W.LEAD:G.HRS 0.040 0.019 7280 2.064 0.039

Notice that the cross-level interaction is now significant with a t-value of 2.064. In contrast,

recall that the cross-level interaction in the model with the non-centered leadership variable had a

t-value of 1.703 (p<.10). Thus, there are some minor differences between the two model

specifications.

Multilevel Models in R 68

4 Growth Modeling

Growth models are an important variation of multilevel models (see section 3.6). In growth

modeling repeated observations from an individual represent the level-1 variables, and the

attributes of the individual represent the level-2 variables. The fact that the level-1 variables are

repeated over time poses some additional analytic considerations; however, the steps used to

analyze the basic growth model and the steps used to analyze a multilevel model share many key

similarities.

This chapter begins by briefly reviewing some of the methodological challenges associated

with growth modeling. Following this, the chapter illustrates how data must be configured in

order to conduct growth modeling. Finally, the chapter illustrates a complete growth modeling

analysis using the nlme package. Much of this material is taken from Bliese and Ployhart

(2002).

4.1 Methodological challenges

In general, the methodological challenges associated with longitudinal analyses of any kind

can be daunting. For instance, since longitudinal data is collected from single entities (usually

persons) over multiple times, it is likely that there will be some degree of non-independence in

the responses. Multiple responses from an individual will tend to be related by virtue of being

provided by the same person, and this non-independence violates the statistical assumption of

independence underlying many common data analytic techniques (Kenny & Judd, 1986). The

issue of non-independence should be familiar to individuals who have worked with multilevel

modeling since non-independence due to group membership is key characteristic of multilevel

models. That is, multilevel models are fundamentally about modeling the non-independence that

occurs when individual responses are affected by group membership.

In longitudinal designs, however, there are additional complications associated with the level-

1 responses. First, it is likely that responses temporally close to each other (e.g., responses 1 and

2) will be more strongly related than responses temporally far apart (e.g., responses 1 and 4).

This pattern is defined as a simplex pattern or lag 1 autocorrelation. Second, it is likely that

responses will tend to become either more variable over time or less variable over time. For

instance, individuals starting jobs may initially have a low degree of variability in performance,

but over time the variance in job performance may increase. In statistical terms, outcome

variables in longitudinal data are likely to display heteroscedasticity. To obtain correct standard

errors and to draw the correct statistical inferences, autocorrelation and heteroscedasticity both

need to be incorporated into the statistical model.

The need to test for both autocorrelation and heteroscedasticity in growth models arises

because the level-1 variables (repeated measures from an individual) are ordered by time. One

of the main difference between growth models and multilevel models revolves around

understanding how to properly account for time in both the statistical models and in the data

structures.

In R, growth modeling is conducted using the nlme package (Pinhiero & Bates, 2000) and

the lme function in particular. These are, of course, the same functions used in multilevel

modeling (see section 3.6). It will become apparent, however, that the nlme package has a wide

variety of options available for handling autocorrelation and heteroscedasticity in growth models.

Multilevel Models in R 69

Prior to conducting a growth modeling analysis, one has to create a data set that explicitly

includes time as a variable. This data transformation is referred to as changing a data set from

multivariate to univariate form or “stacking” a data set. In the next section, we show how to

create a dataframe for growth modeling.

4.2 Data Structure and the make.univ Function

The first step in conducting a growth modeling analysis is to create a data set that is amenable

to analysis. Often data is stored in a format where each row represents observations from one

individual. For instance, an individual might provide three measures of job satisfaction in a

longitudinal study, and the data might be arranged such that column 1 is the subject number;

column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 4 is job

satisfaction at time 3, etc.

The univbct dataframe in the multilevel library allows us to illustrate this arrangement.

This data set contains three measures taken six-months apart on three variables – job satisfaction,

commitment, and readiness. It also contains some stable individual characteristics such as

respondent gender, marital status and age at the initial data collection time. These latter

variables are treated as level-2 predictors in subsequent modeling.

For convenience, the univbct dataframe has already been converted into univariate or

stacked form. Thus, it is ready to be analyzed in a growth model; however, for the purposes of

illustration, we will select a subset of the entire univbct dataframe and transform it back into

multivariate form. With this subset we will illustrate how to convert a typical multivariate

dataframe into the format necessary for growth modeling.

> library(multilevel)

> data(univbct)

> names(univbct)

 [1] "BTN" "COMPANY" "MARITAL" "GENDER" "HOWLONG" "RANK" "EDUCATE"

 [8] "AGE" "JOBSAT1" "COMMIT1" "READY1" "JOBSAT2" "COMMIT2" "READY2"

[15] "JOBSAT3" "COMMIT3" "READY3" "TIME" "JSAT" "COMMIT" "READY"

[22] "SUBNUM"

> nrow(univbct)

[1] 1485

> length(unique(univbct$SUBNUM))

[1] 495

These commands indicate there are 1485 rows in the data set representing 495 individuals.

Thus each individual provides three rows of data. To create a multivariate data set out of the

univbct dataframe, we can select every third row of the univbct dataframe. In this

illustration we restrict our analyses to the three job satisfaction scores and to respondent age at

the initial data collection period.

> GROWDAT<-univbct[3*(1:495),c(22,8,9,12,15)] #selects every third row
> GROWDAT[1:3,]

 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3

3 1 20 1.666667 1 3

Multilevel Models in R 70

6 2 24 3.666667 4 4

9 3 24 4.000000 4 4

The dataframe GROWDAT now contains data from 495 individuals. The first individual was

20 years old at the first data collection time. At time 1, the first individual’s job satisfaction

score was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0.

Because of the nature of the univbct dataframe in the multilevel package, we have added

additional steps by converting a univariate dataframe to a multivariate dataframe; nonetheless,

from a practical standpoint the important issue is that the GROWDAT dataframe represents a

typical multivariate data set containing repeated measures. Specifically, the GROWDAT

dataframe contains one row of information for each subject, and the repeated measures (job

satisfaction) are represented by three different variables.

From a growth modeling perspective, the key problem with multivariate dataframes like

GROWDAT is that they do not contain a variable that indexes time. That is, we know time is an

attribute of this data because we have three different measures of job satisfaction; however,

analytically we have no way of explicitly modeling time. Thus, it is critical to create a new

variable that explicitly indexes time. Thus requires transforming the data to univariate or a

stacked format.

The make.univ function from the multilevel package provides a simple way to perform this

transformation. Two arguments are required (x and dvs), and two are optional (tname and

outname). The first required argument is the dataframe in multivariate or wide format. The

second required argument is a subset of the entire dataframe identifying the columns containing

the repeated measures. The second required argument must be time-sorted -- column 1 must be

time 1, column 2 must be time 2, and so on. The two optional arguments control the names of

the two created variables: tname defaults to "TIME" and outname defaults to "MULTDV".

 For instance, to convert GROWDAT into univariate form we issue the following command:

> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5])

> UNIV.GROW[1:9,]

 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV

X3 1 20 1.666667 1 3 0 1.666667

X31 1 20 1.666667 1 3 1 1.000000

X32 1 20 1.666667 1 3 2 3.000000

X6 2 24 3.666667 4 4 0 3.666667

X63 2 24 3.666667 4 4 1 4.000000

X64 2 24 3.666667 4 4 2 4.000000

X9 3 24 4.000000 4 4 0 4.000000

X95 3 24 4.000000 4 4 1 4.000000

X96 3 24 4.000000 4 4 2 4.000000

Note that each individual now has three rows of data indexed by the variable “TIME”. Time

ranges from 0 to 2. To facilitate model interpretation, the first time is coded as 0 instead of as 1.

Doing so allows one to interpret the intercept in subsequent models as the level of job

satisfaction at the initial data collection time. Second, notice that the make.univ function has

created a variable called “MULTDV”. This variable represents the multivariate dependent

Multilevel Models in R 71

variable. The variable “TIME” and the variable “MULTDV” are two of the primary variables

used in growth modeling. Finally, notice that AGE, SUBNUM and the values for the three job

satisfaction variables were repeated three times for each individual. By repeating the individual

variables, the make.univ function has essentially created a dataframe with level-2 variables in

the proper format. For instance, subject age can now be used as a level-2 predictor in subsequent

modeling.

4.3 Growth Modeling Illustration

With the data in univariate form, we can begin to visually examine whether or not we see

patterns between time and the outcome. For instance, the commands below use the lattice

package to produce a plot of the first 30 individuals:

>library(lattice)

> xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,],
 type=c("p","r","g"),col="blue",col.line="black",

 xlab="Time",ylab="Job Satisfaction")

Time

J
o
b
 S

a
ti
s
fa

c
ti
o
n

0.00.51.01.52.0

1

2

3

4

5
1 2

0.00.51.01.52.0

3 4

0.00.51.01.52.0

5 6

7 8 9 10 11

1

2

3

4

5
12

1

2

3

4

5
13 14 15 16 17 18

19 20 21 22 23

1

2

3

4

5
24

1

2

3

4

5
25

0.00.51.01.52.0

26 27

0.00.51.01.52.0

28 29

0.00.51.01.52.0

30

From this plot, it appears as though there is considerable variability both in overall levels of

job satisfaction and in how job satisfaction changes over time. The goal in growth modeling is to

Multilevel Models in R 72

determine whether or not we can find consistent patterns in the relationship between time and job

satisfaction. Thus, we are now ready to illustrate growth modeling in a step-by-step approach.

In this illustration, we follow the model comparison approach outlined by Bliese and Ployhart

(2002) and in also discussed in Ployhart, Holtz and Bliese (2002).

As an overview of the steps, the basic procedure is to start by examining the nature of the

outcome. Much as we did in multilevel modeling, we are interested in estimating the ICC and

determining whether the outcome (job satisfaction) randomly varies among individuals. Second,

we are interested in examining the form of the relationship between time and the outcome. In

essence, we want to know whether the outcome generally increases, decreases, or shows some

other type of relationship with time. The plot of the first 30 individuals shows no clear pattern in

how job satisfaction is changing over time, but the analysis might identify an overall trend

among the 495 respondents. Third, we attempt to determine whether the relationship between

time and the outcome is constant among individuals or whether it varies on an individual-by-

individual basis. Fourth, we model in more complicated error structures such as autocorrelation,

and finally we add level-2 predictors of intercept and slope variances.

4.3.1 Step 1: Examine the DV

 The first step in growth modeling is to examine the properties of the dependent variable. As

in multilevel modeling, one begins by estimating a null model and calculating the ICC.

> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW,

na.action=na.omit, control=list(opt="optim"))

> VarCorr(null.model)

SUBNUM = pdLogChol(1)

 Variance StdDev

(Intercept) 0.4337729 0.6586144

Residual 0.4319055 0.6571952

> 0.4337729/(0.4337729+0.4319055)

[1] 0.5010786

In our example using the UNIV.GROW dataframe, the ICC associated with job satisfaction is

.50. This indicates that 50% of the variance in any individual report of job satisfaction can be

explained by the properties of the individual who provided the rating. Another way to think

about this is to note that individuals tend to remain fairly constant in ratings over time, and that

there are differences among individuals. This observation is reflected in the graph of the first 30

respondents.

4.3.2 Step 2: Model Time

Step two involves modeling the fixed relationship between time and the dependent variable.

In almost all cases, one will begin by modeling a linear relationship and progressively add more

complicated relationships such as quadratic, cubic, etc. To test whether there is a linear

relationship between time and job satisfaction, we regress job satisfaction on time in a model

with a random intercept.

> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW,

na.action=na.omit,control=list(opt="optim"))

Multilevel Models in R 73

> summary(model.2)$tTable

 Value Std.Error DF t-value p-value

(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000

TIME 0.05176461 0.02168024 903 2.387640 0.01716169

An examination of the fixed effects indicates that there is a significant linear relationship

between time and job satisfaction such that job satisfaction increases by .05 each time period.

Note that since the first time period was coded as 0, the intercept value in this model represents

the average level of job satisfaction at the first time period. Specifically, at the first time period

the average job satisfaction was 3.22.

More complicated time functions can be included in one of two ways – either through raising

the time variable to various powers, or by converting time into power polynomials. Below both

techniques are illustrated.

> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM,

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim"))

> summary(model.2b)$tTable

 Value Std.Error DF t-value p-value

(Intercept) 3.23308157 0.04262697 902 75.8459120 0.0000000

TIME -0.03373846 0.07816572 902 -0.4316273 0.6661154

I(TIME^2) 0.04276425 0.03756137 902 1.1385167 0.2552071

> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM,

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim"))

> summary(model.2c)$tTable

 Value Std.Error DF t-value p-value

(Intercept) 3.2704416 0.0346156 902 94.478836 0.00000000

poly(TIME, 2)1 1.5778835 0.6613714 902 2.385775 0.01724863

poly(TIME, 2)2 0.7530736 0.6614515 902 1.138517 0.25520707

Both models clearly show that there is no significant quadratic trend. Note that a key

advantage of the power polynomials is that the linear and quadratic effects are orthogonal. Thus,

in the second model the linear effect of time is still significant even with the quadratic effect in

the model. In either case, however, we conclude that time only has a linear relationship with job

satisfaction.

4.3.3 Step 3: Model Slope Variability

A potential limitation with model 2 is that it assumes that the relationship between time and

job satisfaction is constant for all individuals. Specifically, it assumes that each individual

increases job satisfaction by .05 points at each time period. An alternative model is one that

allows slopes to randomly vary. Given the degree of variability in the graph of the first 30

respondents, a random slope model seems quite plausible with the current data. The random

slope model is tested by adding the linear effect for time as a random effect. In the running

example, we can simply update model.2 by adding a different random effect component and

contrast model 2 and model 3.

> model.3<-update(model.2,random=~TIME|SUBNUM)

> anova(model.2,model.3)

Multilevel Models in R 74

 Model df AIC BIC logLik Test L.Ratio p-value

model.2 1 4 3461.234 3482.194 -1726.617

model.3 2 6 3434.132 3465.571 -1711.066 1 vs 2 31.10262 <.0001

The results clearly indicate that a model that allows the slope between time and job

satisfaction to randomly vary fits the data better than a model that fixes the slope to a constant

value for all individuals.

In cases where higher-level trends were also significant, one would also be interested in

determining whether allowing the slopes of the higher-level variables to randomly vary also

improved model fit. For instance, one might find that a quadratic relationship varied in strength

among individuals.

4.3.4 Step 4: Modeling Error Structures

The fourth step in developing the level-1 model involves assessing the error structure of the

model. It is important to carefully scrutinize the level-1 error structure because significance tests

may be dramatically affected if error structures are not properly specified. The goal of step 4 is

to determine whether one’s model fit improves by incorporating (a) an autoregressive structure

with serial correlations and (b) heterogeneity in the error structures.

Tests for autoregressive structure (autocorrelation) are conducted by including the

correlation option in lme. For instance, we can update model.3 and include lag 1

autocorrelation as follows:

> model.4a<-update(model.3,correlation=corAR1())

> anova(model.3,model.4a)

 Model df AIC BIC logLik Test L.Ratio p-value

model.3 1 6 3434.132 3465.571 -1711.066

model.4a 2 7 3429.771 3466.451 -1707.886 1 vs 2 6.360465 0.0117

A model that allows for autocorrelation fits the data better than does a model that assumes no

autocorrelation. A summary of model 4a reveals that the autocorrelation estimate is .367 (see the

Phi coefficient).

> summary(model.4a)

Linear mixed-effects model fit by REML

 Data: UNIV.GROW

 AIC BIC logLik

 3429.771 3466.451 -1707.886

.....

Correlation Structure: AR(1)

 Formula: ~1 | SUBNUM

 Parameter estimate(s):

 Phi

0.3676831

It is important to note that the use of correlation=corAR1() in the default mode

assumes data is structured such that time increases for each individual. Stacked data created

using make.univ has this structure. If data are imported or otherwise manipulated so that this

order is not maintained, it will be necessary either to re-order the dataframe or to specify the

Multilevel Models in R 75

structure to corAR1() with more detail (see help files). For example, if the rows in

GROW.UNIV are randomly ordered, the estimate for AR 1 changes:

> UNIV.GROW2<-UNIV.GROW[order(rnorm(1485)),]

> UNIV.GROW2[1:10,]

 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV

6 2 24 3.666667 4.000000 4.000000 0 3.666667

285.2 93 20 2.333333 3.000000 3.000000 2 3.000000

339.2 109 33 3.666667 3.000000 3.333333 2 3.333333

228 74 23 5.000000 NA 5.000000 0 5.000000

894 294 37 4.000000 4.000000 4.000000 0 4.000000

1029.1 339 20 3.000000 3.333333 3.000000 1 3.333333

1416 468 20 3.333333 3.333333 3.666667 0 3.333333

696.2 228 19 4.000000 2.666667 3.333333 2 3.333333

735.1 241 25 3.666667 3.000000 3.000000 1 3.000000

51 17 20 3.666667 3.000000 3.000000 0 3.666667

> tmod<-lme(MULTDV~TIME,random=~1|TIME,na.action=na.omit,

data=UNIV.GROW2,corAR1())

> summary(tmod)

Linear mixed-effects model fit by REML

 Data: UNIV.GROW2

 AIC BIC logLik

 3766.914 3793.113 -1878.457

...

Correlation Structure: AR(1)

 Formula: ~1 | TIME

 Parameter estimate(s):

 Phi

0.05763463

Notice how the estimate of the phi-coefficient has changed (replications will result in different

estimates of the phi-coefficient because of different structures associated with the random sorting

of the data). To ensure the data is in the proper structure, use the order function as follows on

any dataframe that is improperly structured:

> UNIV.GROW3<-UNIV.GROW2[order(UNIV.GROW2$SUBNUM,UNIV.GROW2$TIME),]

> UNIV.GROW3[1:10,]

Multilevel Models in R 76

 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV

3 1 20 1.666667 1.000000 3 0 1.666667

3.1 1 20 1.666667 1.000000 3 1 1.000000

3.2 1 20 1.666667 1.000000 3 2 3.000000

6 2 24 3.666667 4.000000 4 0 3.666667

6.1 2 24 3.666667 4.000000 4 1 4.000000

6.2 2 24 3.666667 4.000000 4 2 4.000000

9 3 24 4.000000 4.000000 4 0 4.000000

9.1 3 24 4.000000 4.000000 4 1 4.000000

9.2 3 24 4.000000 4.000000 4 2 4.000000

12 4 23 3.333333 3.666667 3 0 3.333333

Finally, we can examine the degree to which the variance of the responses changes over time.

A simple preliminary test of variance homogeneity can be conducted by examining the variance

of job satisfaction at each time point using the tapply command.

> tapply(UNIV.GROW$MULTDV,UNIV.GROW$TIME,var,na.rm=T)

 0 1 2

0.9681912 0.8831397 0.7313358

The analysis suggests the variance of job satisfaction is decreasing over time. To model

decreasing variance one can use the varExp option. In cases where variance increases can use

the varFixed option (see Pinheiro & Bates, 2000 for details).

> model.4b<-update(model.4a,weights=varExp(form=~TIME))

> anova(model.4a,model.4b)

 Model df AIC BIC logLik Test L.Ratio p-value

model.4a 1 7 3429.771 3466.451 -1707.886

model.4b 2 8 3428.390 3470.309 -1706.195 1 vs 2 3.381686 0.0659

The model that includes both autocorrelation and allows for decreases in variance fits the data

marginally better (using a liberal p-value) than does the model that only includes autocorrelation.

In subsequent analyses, however, model.4b ran into convergence problems. Consequently, we

elect to use model.4a as our final level-1 model.

With the completion of step 4, we have exhaustively examined the form of the level-1

relationship between time and job satisfaction. This analysis has revealed that (a) individuals

randomly vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not

quadratic, relationship between time and job satisfaction, (c) the strength of the linear

relationships randomly varies among individuals, and (d) there is significant autocorrelation in

the data. At this point, we are ready to add level-2 variables to try and explain the random

variation in intercepts (i.e., mean job satisfaction) and in the time-job satisfaction slope.

Multilevel Models in R 77

4.3.5 Step 5: Predicting Intercept Variation

Step 5 in growth modeling is to examine factors that can potentially explain intercept

variation. Specifically, in our case we are interested in examining factors that explain why some

individuals have high job satisfaction while other individuals have low job satisfaction. In this

example, we explore the idea that age is related to intercept variation.

To model this relationship, the individual-level characteristic, age, is used as a predictor of the

job satisfaction intercept. The model that we will test is represented below using the Bryk and

Raudenbush (1992) notation.

 Yij = 0j + 1j(Timeij) + rij

 0j = 00 + 01(Agej) + u0j

1j = 10 + u1j

This equation states that respondent j’s mean level of job satisfaction (0j) can be modeled as a

function of two things. One is the mean level of job satisfaction (00) for all respondents. The

second is a coefficient associated with the individual’s age (01). Note that the error term for the

intercept (u0j) now represents the difference between an individuals’ mean job satisfaction and

the overall job satisfaction after accounting for age. In lme the model is specified as:

> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM,

 correlation=corAR1(),na.action=na.omit,data=UNIV.GROW,

 control=list(opt="optim"))

> round(summary(model.5)$tTable,dig=3)

 Value Std.Error DF t-value p-value

(Intercept) 2.347 0.146 897 16.086 0.000

TIME 0.053 0.024 897 2.205 0.028

AGE 0.034 0.005 486 6.241 0.000

Model 5 differs only from Model 4a in that Model 5 includes a new fixed effect, AGE.

Notice that age is positively related to levels of job satisfaction. Also notice that there are fewer

degrees of freedom for age than for time since age is an individual (level-2) attribute.

In interpreting the coefficients from model 5, we conclude that in cases where age is 0 and

where time is 0, the expected level of job satisfaction is 2.347. In some ways, this interpretation

is strange because age will never actually be 0 in this population. Consequently, it may be useful

to reparameterize age by grand-mean centering the variable (see Singer, 1998). Grand mean

centering involves subtracting the overall mean from each observation (see section 3.6.3). A

model using a grand-mean centered version of age (AGE2) is presented below.

> UNIV.GROW$AGE2<-UNIV.GROW$AGE-mean(UNIV.GROW$AGE,na.rm=T)

> model.5b<-lme(MULTDV~TIME+AGE2,random=~TIME|SUBNUM,

 correlation=corAR1(),na.action=na.omit,data=UNIV.GROW,

 control=list(opt="optim"))

> round(summary(model.5b)$tTable,dig=3)

Multilevel Models in R 78

 Value Std.Error DF t-value p-value

(Intercept) 3.216 0.043 897 74.564 0.000

TIME 0.053 0.024 897 2.205 0.028

AGE2 0.034 0.005 486 6.241 0.000

With age grand-mean centered, the intercept estimate of 3.216 now represents the initial job

satisfaction value for a respondent of average age (25.7 years old). Notice that the t-values for

time and age did not change between this and the previous model. While we will continue our

analyses using the untransformed age variable, readers should keep in mind that grand-mean

centering is often valuable in terms of enhancing the interpretability of models.

4.3.6 Step 6: Predicting Slope Variation

The final aspect of growth modeling involves attempting to determine attributes of individual

respondents that are related to slope variability. In this section, we attempt to determine whether

respondent age can explain some of the variation in the time-job satisfaction slope. The model

that we test is presented below:

Yij = 0j + 1j(Timeij) + rij

 0j = 00 + 01(Agej) + u0j

 1j = 10 + 11(Agej) + u1j

This model is similar to the model specified in step 5 except that we now test the assumption

that the slope between time and job satisfaction for an individual (1j) is a function of an overall

slope (10), individual age (11), and an error term (u1j). In lme, the model is specified as:

> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM,

 correlation=corAR1(),na.action=na.omit,data=UNIV.GROW,

 control=list(opt="optim"))

Note that the only difference between model 5 and model 6 is that we include an interaction

term for time and age. A summary of model 6 reveals that there is a significant interaction

between time and age.

> round(summary(model.6)$tTable,dig=3)

 Value Std.Error DF t-value p-value

(Intercept) 2.098 0.186 896 11.264 0.000

TIME 0.271 0.104 896 2.608 0.009

AGE 0.043 0.007 486 6.180 0.000

TIME:AGE -0.008 0.004 896 -2.153 0.032

In section 3.6.1 we illustrated how to use the predict command to generate points that could

be used to plot out interactions. An alternative approach is to use the overall coefficients from

the final model in conjunction with high and low values for the predictors to generate points for

plots. Notice in the example that follows that the first row in the TDAT dataframe is a row of 1s

Multilevel Models in R 79

for the intercept, while the other rows contain high and low values for time, age and the time*age

interaction.

> TDAT<-data.frame(COEFS=(summary(model.6)$tTable)[,1],

CASE1=c(1,0,21,0),CASE1=c(1,0,31,0),

CASE3=c(1,2,21,42),CASE4=c(1,2,31,62))

> TDAT

 COEFS CASE1 CASE1 CASE3 CASE4

(Intercept) 2.097720117 1 1 1 1

TIME 0.271036716 0 0 2 2

AGE 0.043449071 21 31 21 31

TIME:AGE -0.008432157 0 0 42 62

> sum(TDAT[,1]*TDAT[,2])

[1] 3.010151

> sum(TDAT[,1]*TDAT[,3])

[1] 3.444641

> sum(TDAT[,1]*TDAT[,4])

[1] 3.198073

> sum(TDAT[,1]*TDAT[,5])

[1] 3.463921

These points are used in the plot of the interaction. Notice that older individuals reported

higher job satisfaction initially, and tended to show a very slight increase over time. In contrast,

younger respondents tended to report lower initial job satisfaction, but showed a more

pronounced increase in job satisfaction over time.

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Time 0 Time 2

21 Years Old

31 Years Old

Multilevel Models in R 80

5 Miscellaneous Functions

The multilevel package has a number of other functions that have either been

referenced in appendices of published papers, or are of basic utility to applied organizational

researchers. This section briefly describes these functions. Complete help files are available in

the multilevel package for each of the functions discussed.

5.1 Scale reliability: cronbach and item.total

Two functions that are can be particularly useful in estimating the reliability of multi-item

scales are the cronbach and the item.total functions. Both functions take a single

argument, a dataframe with multiple columns where each column represents one item in a multi-

item scale.

5.2 Random Group Resampling for OLS Regression Models

The function rgr.OLS allows one to contrast a group-level hierarchical regression model

with an identically specified model where group identifiers are randomly generated. This type of

model was estimated in Bliese and Halverson (2002).

5.3 Estimate multiple ICC values: mult.icc

The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a

given data set. For instance, to estimate the ICC(1) and ICC(2) values for work hours,

leadership, cohesion and well-being in the bh1996 data set one provides a dataframe with the

variables of interest as the first argument in the mult.icc function, and a grouping variable as

the second argument. The mult.icc function is based upon lme from the nlme package.

> mult.icc(bh1996[,c("HRS","LEAD","COHES","WBEING")],bh1996$GRP)

 Variable ICC1 ICC2

1 HRS 0.12923696 0.9171286

2 LEAD 0.14746131 0.9280442

3 COHES 0.04804840 0.7900745

4 WBEING 0.04337922 0.7717561

5.4 Estimating bias in nested regression models: simbias

Bliese and Hanges (2004) showed that a failure to model the nested properties of data in

ordinary least squares regression could lead to a loss of power in terms of detecting effects. The

article provided the simbias function to help estimate the degree of power loss in complex

situations.

5.5 Detecting mediation effects: sobel

MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the

mediation tests used in psychology tend to have low power. One test that had reasonable power

was Sobel's (1982) indirect test for mediation. The sobel function provides a simple way to

run Sobel's (1982) test for mediation. Details on the use of the sobel function is available in

the help files.

Multilevel Models in R 81

6 Conclusion

This document has provided a non-technical overview of how R can be used in a wide variety

of multilevel models. It should be apparent that R is a powerful language that is well-suited to

multilevel analyses. Clearly, there is some degree of effort required to learn new programs such

as R. The benefits associated with learning R, however, will be well worth the effort for those

whose work revolves around complex data analyses. Hopefully, the examples in this document

will help users apply R to their own multilevel problems.

7 References

Bartko, J. J. (1976). On various intraclass correlation reliability coefficients. Psychological

Bulletin, 83, 762-765.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language. New York:

Chapman & Hall.

Bliese, P. D. (1998). Group size, ICC values, and group-level correlations: A simulation.

Organizational Research Methods, 1, 355-373.

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications

for data aggregation and Analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel

Theory, Research, and Methods in Organizations (pp. 349-381). San Francisco, CA:

Jossey-Bass, Inc.

Bliese, P. D. (2002). Multilevel random coefficient modeling in organizational research:

Examples using SAS and S-PLUS. In F. Drasgow & N. Schmitt (Eds.), Modeling in

Organizational Research: Measuring and Analyzing Behavior in Organizations (pp.

401-445). San Francisco, CA: Jossey-Bass, Inc.

Bliese, P. D., & Britt, T. W. (2001). Social support, group consensus and stressor-strain

relationships: Social context matters. Journal of Organizational Behavior, 22, 425-436.

Bliese, P. D. & Hanges, P. J. (2004). Being both too liberal and too conservative: The perils of

treating grouped data as though they were independent. Organizational Research

Methods, 7, 400-417.

Bliese, P. D. & Halverson, R. R. (1996). Individual and nomothetic models of job stress: An

examination of work hours, cohesion, and well-being. Journal of Applied Social

Psychology, 26, 1171-1189.

Bliese, P. D., & Halverson, R. R. (1998a). Group consensus and psychological well-being: A

large field study. Journal of Applied Social Psychology, 28, 563-580.

Bliese, P. D., & Halverson, R. R. (1998b). Group size and measures of group-level properties:

An examination of eta-squared and ICC values. Journal of Management, 24, 157-172.

Multilevel Models in R 82

Bliese, P. D., & Halverson, R. R. (2002). Using random group resampling in multilevel

research. Leadership Quarterly, 13, 53-68.

Bliese, P. D., & Halverson, R.R. & Rothberg, J. (2000). Using random group resampling (RGR)

to estimate within-group agreement with examples using the statistical language R.

Unpublished Manuscript.

Bliese, P. D. & Jex, S. M. (2002). Incorporating a multilevel perspective into occupational stress

research: Theoretical, methodological, and practical implications. Journal of

Occupational Health Psychology, 7, 265-276.

Bliese, P. D., & Jex S. M. (1999). Incorporating multiple levels of analysis into occupational

stress research. Work and Stress, 13, 1-6.

Bliese, P. D., & Ployhart, R. E. (2002). Growth modeling using random coefficient models:

Model building, testing and illustrations. Organizational Research Methods, 5, 362-387.

Brown, R. D., & Hauenstein, N. M. A. (2005). Interrater agreement reconsidered: An

alternative to the rwg indices. Organizational Research Methods, 8, 165-184.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA:

Sage.

Burke, M. J., Finkelstein, L. M., & Dusig, M. S. (1999). On average deviation indices for

estimating interrater agreement. Organizational Research Methods, 2, 49-68.

Chambers, J. M. & Hastie, T. J. (1992). Statistical Models in S. New York: Chapman & Hall.

Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlation analysis for the

behavioral sciences (2nd Ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, A., Doveh, E. & Eick, U. (2001). Statistical properties of the rwg(j) index of agreement.

Psychological Methods, 6, 297-310.

Cohen, A., Doveh, E. & Nahum-Shani, I. (2009). Testing agreement for multi-item scales with

the indices rwg(j) and ADM(J). Organizational Research Methods, 12, 148-164.

Dansereau, F., Alutto, J. A., & Yammarino, F. J. (1984). Theory testing in organizational

behavior: The varient approach. Englewood Cliffs, NJ: Prentice-Hall.

Dunlap, W. P., Burke, M. J., & Smith-Crowe, K. (2003). Accurate tests of statistical

significance for rwg and average deviation interrater agreement indices. Journal of

Applied Psychology, 88, 356-362.

Multilevel Models in R 83

Firebaugh, G. (1978). A rule for inferring individual-level relationships from aggregate data.

American Sociological Review, 43, 557-572.

Hofmann, D. A. (1997). An overview of the logic and rationale of Hierarchical Linear Models.

Journal of Management, 23, 723-744.

Hofmann, D. A. & Gavin, M. (1998). Centering decisions in hierarchical linear models:

Theoretical and methodological implications for research in organizations. Journal of

Management, 24, 623-641.

James, L. R. (1982). Aggregation bias in estimates of perceptual agreement. Journal of Applied

Psychology, 67, 219-229.

James, L.R., Demaree, R.G., & Wolf, G. (1984). Estimating within-group interrater reliability

with and without response bias. Journal of Applied Psychology, 69, 85-98.

James, L. R. & Williams, L. J. (2000). The cross-level operator in regression, ANCOVA, and

contextual analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel Theory,

Research, and Methods in Organizations (pp. 382-424). San Francisco, CA: Jossey-

Bass, Inc.

Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence

Erlbaum Associates.

Klein, K. J. & Kozlowski, S. W. J, (2000). Multilevel theory, research, and methods in

organizations. San Francisco, CA: Jossey-Bass, Inc.

Klein, K. J., Bliese, P.D., Kozlowski, S. W. J, Dansereau, F., Gavin, M. B., Griffin, M. A.,

Hofmann, D. A., James, L. R., Yammarino, F. J. & Bligh, M. C. (2000). Multilevel

analytical techniques: Commonalities, differences, and continuing questions. In K. J.

Klein & S. W. Kozlowski (Eds.), Multilevel Theory, Research, and Methods in

Organizations (pp. 512-553). San Francisco, CA: Jossey-Bass, Inc.

Kozlowski, S. W. J., & Hattrup, K. (1992). A disagreement about within-group agreement:

Disentangling issues of consistency versus consensus. Journal of Applied Psychology,

77, 161-167.

Kreft, I. & De Leeuw, J. (1998). Introducing multilevel modeling. London: Sage Publications.

LeBreton, J. M., James, L. R. & Lindell, M. K. (2005). Recent Issues Regarding rWG, rWG,

rWG(J), and rWG(J). Organizational Research Methods, 8, 128-138.

Levin, J. R. (1967). Comment: Misinterpreting the significance of “explained variation.”

American Psychologist, 22, 675-676.

Multilevel Models in R 84

Lindell, M. K. & Brandt, C. J. (1997). Measuring interrater agreement for ratings of a single

target. Applied Psychological Measurement, 21, 271-278.

Lindell, M. K. & Brandt, C. J. (1999). Assessing interrater agreement on the job relevance of a

test: A comparison of CVI, T, rWG(J), and r*WG(J) indexes. Journal of Applied

Psychology, 84, 640-647.

Lindell, M. K. & Brandt, C. J. (2000). Climate quality and climate consensus as mediators of the

relationship between organizational antecedents and outcomes. Journal of Applied

Psychology, 85, 331-348.

Lindell, M. K., Brandt, C. J. & Whitney, D. J. (1999). A revised index of interrater agreement for

multi-item ratings of a single target. Applied Psychological Measurement, 23, 127-135.

Lüdtke, O., & Robitzsch, A. (2009). Assessing within-group agreement: A critical examination

of a random-group resampling approach. Organizational Research Methods, 12, 461-

487.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., Sheets, V. (2002). A

comparison of methods to test mediation and other intervening variable effects.

Psychological Methods, 7, 83-104.

Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York:

Springer-Verlag.

Ployhart, R. E., Holtz, B. C. & Bliese, P. D. (2002). Longitudinal data analysis: Applications of

random coefficient modeling to leadership research. Leadership Quarterly, 13, 455-486.

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American

Sociological Review, 15, 351-357.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.

Psychological Bulletin, 86, 420-428.

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models,

and individual growth models. Journal of Educational and Behavioral Statistics, 24,

323-355.

Snijders, T. A. B. & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological

Methods and Research, 22, 342-363.

Snijders, T. A. B. & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and

advanced multilevel modeling. London: Sage Publications.

Multilevel Models in R 85

Sobel, M. E., (1982). Asymptotic confidence intervals for indirect effects in structural equation

models. In S. Leinhardt (Ed.), Sociological Methodology 1982 (pp. 290-312).

Washington, DC: American Sociological Association.

Tinsley, H. E. A., & Weiss, D. J. (1975). Interrater reliability and agreement of subjective

judgements. Journal of Counseling Psychology, 22, 358-376.

