CHAPTER

Principal

Components and Factor

Analysis Using SPSS

e begin our SPSS example using a principal components

extraction analvsis paired with a varimax rotation, one of the

most popular factor analytic approaches. A second example
using principal axis factoring and an oblique (direct oblimin) rotation follows,
Both are described in some detail.

Preparing to Run a Principal
Components Analysis With a Varimax Rotation

Mhe present example is adapied from a larger study by Gamst etal. (2004)
thar explored the cultural competence of 1,244 mental health providers
i California. Participants completed a number of instruments, including four
~<cltreport cultural competence questionnaires: the Multicultural Awareness,
hoowdedge, Skills Survey (MAKSS:; D'Andrea, Daniels, & Heck, 1991), the
Vulticultural Counseling Awarceness Scale (MCAS-B; Ponterotto & Alexander,
19961, the Cross-Cultural Counseling Inventorv=Revised (CCCI-R; LaFromboise,
Coleman, & Hernandez, 1991), and the Multicultural Competency and ‘Training
survey (MCCTS: Holcomb-McCoy, 2000). The 157 items making up these four
instruments were measured on g 4-point summative response scale ranging
o strongly disagree (1) wo strongly agree (+4).

Begin by entering SPSS and open vour SPSS save file by clicking File =
Open = Data and selecting the SPSS dara file you wish to analyze.,
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Figure 12b.1 Factor Analysis Main Dialog Box

Getting to Factor Analysis

To begin our analyses we click Analyze < Data Reduction = Factor.
This action produces our first SPSS dialog box: Factor Analysis, and we
show this dialog box in Figure 12b.1.

The left panel of this box lists all the variables in our file. By Euc::t:sswety
clicking variables in the left panel and then clicking the right arrow; we can
move the target variables (in the present example, individual cultural com-
petence items) over to the variables list panel on the right side. For the pre-
sent example, the 21 items we plan to factor analyze have been moved over.
We did not select the variables in numerical order because we wanted to
keep items from the same source together in our variable list; thus, our list-
ing starts with Q162, then Q43, and so on. Variables can be selected in any
order, and usually one selects variables from the first to the last as they
appear in the data file.

The pushbuttons at the bottom of the dialog box (Descriptives,
Extraction, Rotation, Scores, and Options) provide the researcher with
a variety of procedural choices to which we will now turn our attention.

By clicking the Descriptives pushbutton, the Factor Analysis:
Descriptives dialog box is produced. We reproduce this box in Figure
12b.2. This dialog box is composed of two sections: Statistics and
Correlation Matrix.
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Figure 12b.2 Dialog Boxes for Descriptives, Extraction, Rotation, and Options
From the Factor Analysis Main Dialog Box
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Figure 12b.2 (Continued)

The Statistics section provides two options. Clicking Univariate
descriptives will provide the number of valid cases, mean, and standard devi-
ation for each variable. The Initial solution checkbox will produce an initial
(unrotated) solution, including communalities, eigenvalues, and percentage of
variance explained, which can be compared with the final (rotated) solution.

The Correlation Matrix section produces eight separate options,
including a Pearson correlation mairix (Coefficients) with significance levels
for all variables in the analysis. These Pearson coefficients should be scanned
to check for consistent patterns of variability or relationships between vari-
ables. We recommend this inspection be conducted during the initial data
screening and univariate/multivariate assumption violation check discussed in
Chapters 3A and 3B. Clicking on the KMO and Bartlett’s test of sphericity
checkbox produces the Kaiser-Mever-Olkin (KMO) measure of sampling
adequacy, which is a rough indicator of how adequate the correlations are for
factor analysis. As a general heuristic (see Kaiser, 1970, 1974), a value of .70 or
above is considered adequate. Bartlett’s test of sphericity provides the inves-
tigator with a test of the null hypothesis that none of the variables are signifi-
cantly correlated. This test should be significant before proceeding with the
factor analysis. The Correlation Matrix section can also generate several
other items, including the Determinant, and the Inverse, Reproduced,
and Anti-image correlation matrices, which are useful for specialized diag-
nostic considerations but are bevond the scope of our discussion.

Clicking the Extraction pushbutton of the Factor Analysis dialog box
produces the Factor Analysis: Extraction dialog box shown also in Figure
12b.2. This box is composed of five sections: Method, Analyze, Display,
Extract, and Maximum Iterations for Convergence.
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The Method box allows the investigator to choose from one of seven
methods of factor (or component) extraction. We have chosen to use the
Principal components method (the default option) in this example.

The Analyze panel enables the investigator to produce either the
Correlation or the Covariance matrix. We have chosen the correlation
matrix here.

The Display panel allows the researcher to obtain an Unrotated fac-
tor solution and a Scree plot. The unrotated solution, although certainly
optional, can be helpful to the investigator when it is compared with the
final rotated solution. The Scree plot provides one source of information
researchers generally use to determine the number of factors or compo-
nents they will accept in the final solution.

The Extract panel defaults to selecting factors or components whose
eigenvalues exceed 1. We encourage use of this default as well as the scree
plot to help guide your decision making. Should theoretical or pragmatic
circumstances dictate, investigators can override this constraint and provide
their own selection criteria. Because we have a working familiarity with this
data set, we can say in advance that the solution emerging from this analy-
5is is the most viable one.

Last, the Maximum Iterations for Convergence section defaults at
25 iterations or algorithmic passes to achieve a solution. We have kept the
default here,

The Factor Analysis; Rotation dialog box can be produced by clicking
the Rotation pushbutton of the Factor Analysis dialog box. We present
this also in Figure 12b.2. The Rotation dialog box consists of three sections:
Method, Display, and Maximum Iterations for Convergence.

The Method section provides the researcher with a variety of factor
rotation methods, including Varimax, Direct Oblimin, Quartimax,
Equamax, and Promax. For this example, we have chosen the Varimax
procedure. The Display section enables researchers to obtain the Rotated
solution and the Loading plot(s) of the first two or three factors. We wish
to take a look at the rotated solution but will bypass the loading plots.

Investigators can control the Maximum Iterations for Convergence
(steps) needed for SPSS to perform the rotation. The default is set at 25 and
we have left it at that.

Clicking the Options pushbutton of the Factor Analysis dialog box
produces the Factor Analysis: Options dialog box also shown in Figure
12b.2. The Options dialog box has two sections: Missing Values and
Coefficient Display Format.

The Missing Values section allows researchers to Exclude cases
listwise (the default), Exclnde cases pairwise, or Replace with mean
of the particular variable. "'Ff:: have selected listwise deletion of cases,
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The Coefficient Display Format section allows the investigator to
sort the factor weightings by size and to suppress weightings with absolute
values less than a specified value. Sorting coefficients by size usually makes
it easier for researchers to comprehend the results, and we have chosen this
form of display.

One other pushbutton (Scores) is available from the Factor Analysis
dialog box. Clicking Scores produces a Factor Analysis: Factor Scores
dialog box. This box allows researchers to create a new variable for each
factor (component) derived from the analysis. Although this approach is
both valid and legitimate, most researchers compute scale scores by taking
the mean (or the sum) of the items that are “loaded™ or relatively highly
correlated with the factor. In the former procedure, each factor score is
composed of all the variables; the factors are differentiated by the different
weights assigned to each variable. In the latter procedure, variables received
equal (unitary) weights regardless of their factor weights; each factor is ordi-
narily represented by a different and independent set of variables.

The Output From a Principal
Components Analysis With a Varimax Rotation

We have now set up the parameters to run a principal components analysis
with SPSS using data based on the selfreported cultural competency
of 1,244 California mental health practitioners, Let's see what the analyses
suggest,

Assume that prior to running our principal components analysis (i.€.,
during our data screening phase) we examined our descriptive Statistics and
our interitem correlations, and checked for assumption violations. Further
assume that we noted during this initial assessment that our variables were
all measured on a quantitative scale, that each pair of variables appeared to
be bivariate normally distributed, and that each respondent or case was
independent of one another. Assume that we also noted that the large sam-
ple size indicates that our variables-to-cases ratio is optimal. We are there-
fore now ready to look at the principal components output.

The first output table of Figure 12b.3 shows the results of the KMO and
Bartlett’s test of sphericity assessments by means of a KMO and Bartlett’s
test table. The results from both tests look good. A KMO coefficient in the
high .8s suggests that the data are suitable for principal components analy-
sis. Likewise, a significant Bartlett's test enables us to reject the null hypoth-
esis of lack of sufficient correlation between the variables. These two results
give us confidence to proceed with the analysis.
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KMO and Bartlett’'s Test

_sv'm’h KMO valus
Kaizar-Meyear-Olkin Maasure of Sampling &%ﬂﬁ
Adeguacy. i the correlations are
Bartlett's Tast of Approw, Chi Square 3225.584 :Mm’m
Spharicity df 210 analysis. '
Sig. D00
Communalities

Initial Exfraction
Q162 1.000 521
Q43 1.000 B05
119 1.000 B73
249 1.000 676
Q118 1.000 BEa
Q116 1.000 578
Qing 1.000 552
G153 1.000 21
Q53 1.000 B70
5T 1.000 515
Qa7 1.000 429
Q110 1.000 B&T9
Q115 1.000 B00
Q152 1.000 88T
Q185 1.000 547
Q180 1.000 413
(5[] 1.000 530
Q117 1.000 709
Q144 1.000 564
Q114 1.000 599
20 1.000 55

Extraction Method: Principal Component Analysis.

otal Variance Explain

friitial Elgenvaiies Extraction Sums of &J{I{N’Eﬂ'ﬂ.ﬂﬂdﬂgs Ratation Sums of Squared Loadings

Component | Total | 5 of Variarice | Cumulative % | Total | % of¥fariance | Cumuiative % | Total | % of Variance | Cumulative %

1 6.500 0.851 30951 | 6.500 r-"' a0 551 30851 | 4.396 20,945 20635

2 2 546 12126 a3o7? | 2 12,128 aaor7 | 3428 14,699 56,835

3 2100 10,002 55079 | #2100 10.002 s3.079 | 2896 13.768 49.623

4 1,214 5.780 sas0 T 1.214 5780 58850 | 1.940 9.235 56 859
5 970 4617 63,476
5 855 4.071 67,548
7 736 4.508 71.054
B B85 5.313 74.367
3 600 2 859 77.235
10 588 2,800 80,025
11 542 2 581 82 606
12 502 2300 £4.998
13 471 2,045 87.043
14 447 2.430 BO.373
15 434 2,089 91,441
18 407 1 939 93,380
17 359 1.709 95,080
18 345 1.646 96.736
19 314 1.495 98,230
20 242 1.155 9%, 385
a4 129 615 100,000

Extraction Method: Principal Component Analysis.

Figure 12b.3 Selected Output Tables From the Principal Components Analysis
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The next output table provides the communalities for the Initial and
Extraction (i.c., final) principal components solution. As can be seen, in
a principal components solution, the initial communalities are equal o
1.00. This means that all the variance is accounted for by each variable
because principal components will create as many components as there
are variables. Another way to think of this is to say that each variable is
fully (1.00 or 100%) involved in the solution (because the solution goes
to completion).

The Extraction (final) solution produces communalities that are less
than 1.00 because the final solution retains only components that have
eigenvalues greater than 1.00 (the SP5S default). Thus, less than the total
amount of variance within the original items is captured. These communal-
ities, sometimes symhbolized as b?, are based on the factor matrix (compo-
nent matrix in this present analysis) that we discussed in Chapter 12A and
will cover here in 2 moment, They are computed by summing the squared
factor weights across each row of the matrix. Communalities at this stage
of the analysis indicate the degree to which each variable is participating
or contributing to (is captured by) the component solution. Researchers
should inspect the Extraction communalities for any variables that appear
to be particularly low. Such items may be candidates for removal from the
analysis. After inspection of this table, we conclude that no such items are
present, and proceed with the analysis.

The third output table of Figure 12b.3 summarizes the amount of vari-
ance accounted for by each component after the Initial part of the analysis,
the Extraction phase of the analysis, and the Rotation phase of the analy-
sis. Each row provides information on a component given the other com-
ponents that have already been extracted. The left portion of the table
labeled Initial Eigenvalues represents the solution having gone to coms-
pletion. Thus, 21 components were extracted, accounting for 100% of the
variance.

The default for SPSS, which we allowed to be in effect for this analysis,
was to take seriously only those components with eigenvalues of 1.00 or
areater. As can be seen in the portion labeled as Extraction Sums of
Squares Loadings, only four factors reached this default criterion. The
first component in an unrotated solution always accounts for the most
variance—in this case, about 31%, followed by the second component,
which accounted for about 12%, and so oni. The total amount of variance
accounted for by the first four principal components solution was about
59%. In practice, a robust solution should account for at least 50% of the
variance (Tabachnick & Fidell, 2001b), The extraction and rotated cumula-
tive percentage of variances accounted for (shown in the left portion of
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Scree Plot

Eigenvalue

U T T 1 I 1 1 1 I ] ¥

1 % 5 7 9 11 13 15 17 19 21
Component Number

Figure 12b.4 Scree Plot of the Eigenvalues for the Principal Components Analvsis

Figure 12h.3) will always be the same value. However, the rotated solution
spreads the variability more evenly across the four components (factors).

Figure 12b.4 shows the Scree Plot for the initial (complete) soluton. It is
a graphical way of helping researchers determine how many components or
factors to include in the solution that they will ultimately accept. This figure
contains the eigenvalues on the Y (horizontal) axis and the component number
on the X (vertical) axis. Researchers look to see where the curve turns or "flat-
tens out” across the components. The scree plot takes its name from the debris
that piles up on the sides of a volcano or 2 mountain. The turning point, in this
case at Component 4, indicates a transition point between components with
high and low eigenvalues. This plot confirms our previous observation derived
from the Total Variance Explained table (Figure 12b.3) that four compo-
nents best describes our principal components solution.

The Unrotated Component Matrix is shown in Figure 12b.5. Values
in the array are correlations between the variables and the components,
Thus, Variable Q120 is correlated 774 with Component 1, —.186 with
Component 2, and 50 on. This output is also the source of the communality
results we showed in Figure 12b.3. For example, the communality of Q162
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Component Matrix®

Component
1
Q120 T4 =186 -077 124
Q114 J11 —.DB6 - 276 =113
Q115 T3 -.213 - 225 - 101
Q118 B89 -.448 -.143 =070
Q17 863 —.454 —.238 =068
2118 659 - 368 =-.284 -.053
Q116 B4 - J0E - 249 -i12
Q180 553 242 —022 —. 218
a152 541 489 042 - 150
Q167 540 43 —.054 -.129
Q62 B Y B18 005 —036
Q153 442 586 064 —.280
Q157 380 553 040 - 257
Q110 ATE —-.219 598 210
Q191 A435 —.061 573 45
a5 AB5 -.082 569 013
144 520 026 540 —-.035
Q109 47 -2 12 218 203
Q53 A85 128 —.307 B0
Da4g A90 386 =134 519
43 47T 294 -.238 A83
Extraction Methad: Principal Companant Analysis.
a. 4 componants extracted.
Rotated Component Matrix®
Campanent
Q117 826 —023 46 074
o118 801 Ao 99 138
Q118 TH3 ~.021 233 06T
Q118 741 096 a5 092
CH15 der 88 A28 41
Q120 Ja7 257 278 112
Q114 680 L3z 057 189
Q153 47 TBO 087 052
Q157 a5 T15 040
Q152 147 94 52
Q12 - [052 669 (042
Q167 257 568 098
Q1180 326 533 35
Q11a 157 —.026 B0
Q108 AT —-.034 Fi4
Qa5 433 A58 of 1R
191 098 A8 705
144 AGT 247 JBEY
53 278 072 020
49 L85 303 14
‘ (243 e 1 238 030

b mmhwm
the. items Hﬂ’-‘ﬂﬁﬂ‘ﬂl
‘most strongly Wﬁml?g

i mmﬂm;ﬁiﬁﬁi

Extraction Methed: Principal Component Analysis.
Rotation Methaod: Varimas with Kalser Mormalization,

a. Rotation converged in 5 iterations,

Figure 12b.5 Component Matrix Summarizing the Extraction Phase and Varimax Rotated
Component Matrix
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is shown in Figure 12b.3 as521. That value is equal to the sum of the
squared correlations (unrotated weightings) shown in ‘Table 12b.5.
Examining the row representing Q162 confirms this (3712 + .6182 + .0052
+ =.0362 = 520886, which rounds to 521).

Motice that the correlations for the first component are generally
maoderately high. The highest weighting is seen for Q120 (it is .774), but
there are only two more in the .7s. At the same time, the weakest weights
are still in the 3s. This illustrates the “one solution fits all” strategy when
the least squares solution is applied.

Although there are some moderately high weightings for some variables
on other components, there are not that many and they are not all that high.
We see, for example, that the hishest weighting on Component 2 is for
Q162 with a correlation of 618 and only two variables (Q162 and Q157)
are weighted as high as the 55, Component 4 has only three variables
showing any weighting of worth, and these are not especially strong.

The Rotated Component Matrix, also presented in Figure 12b.5,
provides the “heart” of our SPSS principal components output. Some inves-
tigators prefer to suppress the printing of component weightings below a
certain magnitude (e.g., .30) to simplify the presentation. We have chosen
to display all the coefficients. The “sorting by size” format that we checked
in the Options dialog box, although operative in the previous table, can be
best seen here. Variables are ordered by correlations within each of the com-
ponents starting with Component 1. We see that Q117 had the highest
and Q114 had the lowest correlation on the first component and so appear
in order at the top of the list. Q153 was the highest correlated variable on
Component 2 and so appears directly under Q114. A casual inspection of
this rotated component matrix shows that the solution has moved in the
direction of simple structure. Not only has the first component been some-
what "deflated,” correlations on all components have been “sharpened” in
that they are either relatively high or relatively low.

It is with respect to Figure 12b.5 that the science of objectively evalu-
ating the dispersion of each variable’s correlation on each component
occurs. Conversely, the art of principal components (or factor) analysis
occurs when researchers creatively decide the essence of each component
by ereating an identifying component name. Selecting a component name
is typically driven by the nature of the most highly weighted items (e.g.,
items in the .7s or .8s) of the component. This information is found by
mspecting each variable’s correlation on each respective component,
Ideally, investigators hope to find that each variable will have a relatively
high correlation on one component (or factor) and relatively low correla-
Hons on the remaining components.
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Careful inspection of Figure 12b.5 suggests that this is the case. Far
example, Variables Q117 through Q114 all have high correlations on
Component 1 and low correlations on Components 2, 3, and 4. The
researcher can then scrutinize these seven items to determine their under-
lying commonality or essential nature.

The content of the items are shown in Table 12b.1 toward the end of
this chapter, ordered in the same way as the rotated components matrix.
Interpretation of components or factors is based on item content.
Researchers study what the items of a factor relate to and attempt to
determine what they have in common——that is, what the underlying theme
or dimension may be that ties them together. This theme is the label given
to the variate (the component or factor).

The first seven items were found to correlate to the first component.
From the item wording shown in Table 12b.1, these items all seem to be
related to mental health practitioners’ understanding of issues relating
to sexuality, gender, aging, social class, and disability; thus, we refer to this
component as non-ethnic ability. Variables Q153 through Q180 all corre-
late relatively highly and exclusively on Component 2, These six items deal
with mental health practitioner multicultural awareness. The next five items
(Q110-Q144) appear to be related to practitioners’ multicultural knowl-
edge. The last three items (Q53, Q49, and Q43) all have high cortelations
on Component 4. These last items encompass practiioner multicultural
sensitivity to mental health consumers.

Our task was simplified (for presentation purposes) by the small
number of variables (21) entered into the principal components analysis. In
practice, researchers routinely factor analyze large numbers of variables
(e.g:, 30, 50, 100, or more) simultaneously. With large arrays of items, inves-
tigators should be deliberate in their inspection of the rotated component
matrix, We encourage the adoption of this simple process. Line up a ruler
underneath the first variable in the Rotated Component Matrix—in the
present example, Q117. Using a highlight marker, underscore the highest
weighting for that variable. If there happens to be more than one relatively
high weighting, then highlight all of them for that variable, Repeat this
process for each variable in turn. Through this process, the underlying
structure should begin to emerge and then the more creative process of
imposing meanings by labeling components (factors) can begin.

We have now achieved our goal of data reduction by reducing an array
of 21 multicultural mental health practitioner statements into four orthogo-
nal (uncorrelated) principal components. At this point, we can begin to use
these components as “analytical devices” or composite variables where we
average an individual respondent’s scores on the items that compose each
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of the four components. These new composite variables can then be used
as dependent variables in subsequent statistical analyses.

Principal Axis Factoring With an Oblique Rotation

Using the same multicultural self-report data as before, we will now demon-
strate how to conduct a factor analysis using a popular extraction technique
called principal axis factoring. We will pair this with an oblique rotation
technique called oblimin.

The process to now run the second analysis is very similar to the first.
Only two of the dialog boxes need to be changed to accomplish this next
analysis. In the Factor Analysis: Extraction dialog box, pull down the
Method menu and select Principal axis factoring. Again, we request a
Correlation matrix, an Unrotated factor solution, and a Scree plot.
We will also ask for extraction of those factors whose Eigenvalues exceed
1.00. This is shown in Figure 12b.6.

Click the Rotation pushbutton to arrive at the Factor Analysis:
Rotation dialog box (shown also in Figure 12b.6). Enter the Method sec-
tion and click Direct Oblimin. Leave the Delta setting at 0 (the default).
The delta setting is the way SPSS sets the limits on the degree of correlation
it permits the factors to achieve. A delta value of 0 allows for a fair amount
of correlation and can usually serve the purposes of most researchers most
of the time. In the Display section of the Rotation dialog box we click the
Rotated solution option.

The extraction phase is summarized in the Total Variance Explained
table shown in Figure 12b,7, A quick inspection of this table is similar but
not identical to what we found in our previous principal components analy-
sis. The results labeled Initial Eigenvalues are the same as they were for
the last analysis because in principal axis factoring, a principal components
analysis is done initially. But then, as we have seen in Chapter 12A, the focus
changed. Unlike principal components analysis; which analyzes the total
variance, factor analysis deals with only the common variance. Principal axis
factoring (also called principal factors analysis) substitutes commonalities
for 1s on the diagonal of the correlation matrix and then extracts factors to
account for the shared variance.

In its focus on the common variance, principal factors identified only
three factors with eigenvalues over 1.00. These three factors cumulatively
accounted for about 49% of the shared or common variance with this
extraction method, This may be compared with the 59% of explained vari-
ance accounted for by the principal components analysis. Such a drop in
explained variance oceurs because variance not shared among the variables



528 4 APPLIED MULTIVARIATE RESEARCH

Figure 12b.6 Dialog Boxes for Extraction and Rotation From the Factor Analysis
Main Dialog Box '

is automatically not possible to be accounted for by the factor analysis pro-
cedures. Thus, principal axis (or any of the factor analyses) will therefore
explain less variance than will be attributed to principal components.

The four-factor unrotated factor matrix is presented in Figure 12b.8 even
though only three factors achieved eigenvalues over 1.00. We have done this
for two reasons: (a) This allows us to contrast this outcome with the prior
one, and (b) the three-factor solution was not nearly as interpretable as the
four-component solution (that was ultimately selected by the researchers).
Inspection of Figure 12b.8 suggests a pattern of results roughly similar to
that found with the principal components solution. The first factor once
again has relatively high to moderate correlations for all the variables, and
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Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation
Factor Toial % of Variance | Cumufative % Total % of Variance | Cumulative % Total
1 G.500 30.951 30,951 B01s 28.664 28,664 4.985
2 2.546 12126 43.077 2.046 8745 38.408 3.324
3 2.100 10.002 53.079 1.591 7.578 45 087 3.038
4 1.214 5.780 58859 705 3.356 49 3.436
& ST0 4617 563476 iqa
6 .B55 4071 67.548
i JTa8 3.506 71,054
8 o6 3.313 T4.367
9 GO0 2.859 77225
10 tan 2.800 80.025
1 542 2.581 82 606
12 H02 2,382 84.998
L E AT 2.245 87.243
14 44T 2130 B8.373
G A34 2.068 o144
i6 407 1.939 83.380
17 359 1.7048 95.090
18 346 1.646 96.736
19 314 1.495 8B.230
20 242 1.155 99,385
21 29 B15 100.000
Exiraction Method: Principal Axis Factoring.
a. When factors are correlated, sums of squared loadings cannot be added to obtain a tolal variance.

ETrre»‘-aiaﬂr fa@:ataﬁmm

Figure 12b.7 Eigenvalues and Variance Accounted for by the Principal Axis Factoring

the correlations on the other factors are not very high. Notice that only
three correlations on Factor 4 are greater than .30 and that no variable
showed its highest correlation on that factor. Such a result is not surprising
given that the fourth factor did not reach an eigenvalue of 1.00.

Unlike orthogonal rotations such as varimax that produce one
rotated solution matrix, oblique rotations such as oblimin produce two
matrices: the Pattern Matrix and the Structure Matrix (both shown in
Figure 12b.9). As we indicated previously, there has been a fair amount of
discussion within the multivariate statistics literature as to which matrix
to use, In practice, both often provide fairly comparable results; the main
difference is that the pattern matrix reports the weightings in standardized



530

<

APPLIED MULTIVARIATE RESEARCH

Factor Matrix®
Factor
2 3
Q120 758 ~. 158 —.054 =107
Q114 588 ~.054 —.238 —.0B6
Q115 681 - 185 ~= 183 —. 082
Q117 658 — 435 -.202 —.083
Q1ie £58 —413 106 -.0439
Q118 649 —.367 —.245 -.028
Q116 616 =261 —.183 =076
Q152 515 450 9 —.131
Q180 513 208 -022 +.128
Q167 502 286 —~.055 =076
Q144 A85 007 ABT 030
Q49 AT 365 -131 418
Q53 464 119 —.263 442
Q43 450 261 =203 328
Q153 A23 247 033 ~:251
Q162 346 538 - 018 ~.034
Q157 335 A81 010 -.188
Q110 467 =371 o 76
Q185 .438 -.042 481 005
Q191 417 —.022 477 025
Q108 424 —.154 A51 133

Extraction Method: Principal Axis Factoring.
a. 4 factors extracted. 7 iterations required.

Figure 12b.8 Factor Matrix for the Four-Factor Principal Axis Extraction

form (analogous to beta weights in multiple regression), whereas the struc-
ture matrix provides the structure coefficients representing the correlations
of the variables to the factors.

As can be seen in both the Pattern and Structure matrices, fairly
comparable correlations are found between the two. Generally, the pattern
matrix produces slightly higher correlations for the more highly correlated
items, and the structure matrix produces slightly higher correlations for the
more weakly correlated items within each factor. This factor solution based
on principal factors extraction and oblique rotation, although differing in
the amount of explained variance and showing slightly different numerical

correlations from the one derived based on principal components extrac-

tion and varimax rotation, nonetheless yielded very similar interpretations
of the underlying structure of the variables. That is, exactly the same vari-
ables in virtually the same order correlated on the same factors. The only
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Pattern Matrix®

The pattern
-ma‘tmshwwath"é :
standardized weights
 of the variables akin
o me -'re@éasifm:
 beta weights (pattern
coefficients),

Wahﬂﬁi‘ﬂ ghl hted ;
"’tm#ﬁm tﬁat

ensfﬁufe;ma]

We have highlighted
the items that
- 'mﬁhew rﬁpsf

Facior
Z

Ly | B35 =115 016 — 02
o118 788 ~088 —028 AT
21189 TH8 ~109 A17¥ -8
2115 JBa3 024 -0 A4
2115 TR 108 006 g
Q120 -G48 68 A52 =0
0114 BZR 219 - 65 0BG
Q153 —005 753 015 — 045
Q157 -032 B2T 008 =006
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Figure 12b.9 Pattern Matrix and Structure Martrix for the Principal Axis Solution With an
Obligue Rotation
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exception can be seen on Factor 4 where here Q49 correlated more
strongly than Q53, whereas the reverse was true on Component 4; how-
ever, the correlations are so close in both cases that the reordering is trivial,
In the present example, the Structure Matrix also produced a pattern of
moderate correlations on Factor 3 and Factor 4 that are not present in the
Pattern Matrix. These correlations make the interpretation more ambigu-
ous with the Structure Matrix and thus, we would encourage the use of
the Pattern Matrix for this example.

As a conclusion to this analysis, consider Figure 12bh.10, which depicts
the Factor Correlation Matrix for this oblique rotation. As can be seen, all
the factors show low to moderate correlations between factor pairs.
Specifically, Factor 1 seems to be moderately correlated with Factor 3 and
Factor 4, whereas Factor 2 has a moderate correlation with Factor 4 and
low correlations with Factor 1 and Factor 3.

Factor Correlation Matrix

Factor 1 =2 3 4

1 1.000 238 408 409
o 238 1.000 287 447
3 A06 267 | 1.000 189
4 409 447 188 | 1.000

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser
Normalization.

Figure 12b.10

Correlations of the Principal Axis Factors
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Table 12b.1 Summary of Items and Factor Loadings From Principal Components Analysis
With Varimax Rotation (V = 415)%

Component Loading Corrected
Sceale Original Subscale Ttem-Total

Variable Origin Ttem Name ! 2 3 4 Communality Correlation

Q117 MAKSS I havean excellent 83 -2 A5 =07 S 55
ability tor assess
accurately the
mental health needs
of gay men.

Q118 MAKSS [haveanexcellent 80 —-01 -09 14 67 35
ability to assess
accurately the
mental health needs
of lesbians,

Q119 MAKSS Ihave an excellent .78 -02 g M 57 506
ability 1o assess
accurately the
mental health needs
of persons with
disabilities.

0116 MAKSS I have an excellent T4 9 9 09 58 B
ability to assess
accurately the
mental health needs
of nider adults.

Q115 MAKSS  Lhave an excellent .73 19 A4 14 G0 61
ahility to assess
accurately the
mental health needs
of men.

Q120 MAKSS:  Ihave anexcellent: .71 .26 28 11 i 70
ability to assess
accurately the
mental health needs
of persons who
come from very poor
s50Cioeconomic
backgrounds.
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Scale

Variable Origin

Owiginal Subscale
lterm Name

Component Loading

2

3

4

Carrected
Ttem-Tolal

Communality Correlation

O114

(2153

Q157

0152

Q162

Q167

MAKSS

MCA-58

MCA-5B

MCA-SB

MCA-5B

MCCTS

I have an excellent
ability to assess
accurately the mental
health needs of
WOMEr:.

I am aware that
counselors frequently
impose their own
cultural values upon
minority clients.

I am aware that being
born a White person
in this society carries
with it certain
advantages.

I am aware of
institutional barriers
that may inhibit
minorities from using
mental health
SErVICES,

I am aware that being
horn a minority in
this society brings
with it certain
challenges that White
people do not have
to face,

I am aware of how
much my cultural
background and
experiences have
influenced my
artitudes about
psychological
Processes.

68

05

01

21

18

By

.69

67

57

06

04

15

04

19

05

26

18

60

62

52

36

32

43

o2

41

o %

5

AR

(Continued)
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Table 12b.1 (Continued)

Component Logding Correcied
Scale Original Subscale ltem-Total
Variable Origin lter Name ;i 3 é Communality Correlation

(180 MCCTS  Ican identify my o) 53 14 07 41 45
reactions that are
based on stereo-
tvpical beliefs about
different ethnic
BrOUPS

Q110 MAKSS Thave anexcellent .16 =03 .o R | 68 45
ahility to critique
multi-cultoral
research.

0109 MAKSS [ have an excellent A7 =03 Tl =12 5 41
ahility to identify the
strengths dand
weaknesses of
psychological tests in
terms of their use
with persons of
different cultural/
racial/ethnic
backgrounds.

Q185 MCCTS I can discuss within- |13 16 flrde LR ¢ 55 43
| group differences
among ethnic groups
(e.z., low socio-
ECONOMIc SLatus
(SES) Puerto Rican
client vs. high SES
Puerto Rican client).

Q191  MCCTS  [can discuss 3 S Ay L) 53 41
research regarding
mental health issues
and cultarally
different
populations,
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Component Loading Corrected

Scale Original Subscale ftem-Total
Variable Origin Itewm Name i 2 3 “ Communality Correlation

(144 MCAS-B | am knowledgeable .17 25 69 -.02 56 A9
of acculturation
models for various
ethnic minority

Sroups,

Q53 CCCI-R My communication .27 07 02 77 67 41
is appropriate for my
clients.

049 CCCI-R [ am aware of 09 A0 J1 T5 OB A

institutional barriers
that affect the client.

43 CCCI-R lamawareof how 18 24 03 2 61 42
my own values might
affect my client,

Eigenvalues 650 255 210 1.21
% of Variance 50.95 12.13 1000 578
Coefficient Alpha 90 78 B0 .75

MNotes. The variable names in the first column would not be part of the table placed into the manuscript; we
included them here so that you may clearly see the inventory item that matches up with the variable names
that were used in the analysis. Boldface indicates highest factor loadings. Component 1= Non-Ethnic
Ability, Component 2 = Multicultural Awareness, Component 3 = Multicultural Knowledge, Component
4 = Multicultural Sensitivity to Consumers. Corrected item-total correlations show the Pearson rs between
the itemn and its subscale (the subscale score is “corrected” by excluding the particular item in computing
the total score for the subscale).



