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W constrpct g cosmelogical oy model based on 4 Finslerian stracture of space-time. In parifouhar, we
are interosted oo speeific Finsertun Lorenty violating theory hased on a curved version of Cohen and
Ulashow's very special relativity. The osaudation of a Finslerian manifold 1 s Rismanmian manifold leads
0 the Henil of refaibebstio cosmology, Tor a specified observer, A modified flal Friedmann-Robertson-
Walker cosmology is produced. The anatogue of & zero energy particle unfolds some special properties of
the dynaarics, The kinematical equations of motion are affectsd by Incal amisotropies, Seeds of Loreniz
vipdntions may trigger density nhomogeseities o the cosmologiesd fluid,
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LOINTRODUCTION

The wdea of Lorenty vielations {LV) in modern physics
wan be traced back to the studies of Dirac in the late 1950
L Contemporary research probleoms of high energy plivs-
ics tead to the formulation of variows quantum gravitational
(G theorics which inhertt focal anisouopies in most
circumistances. A sonsible approach w0 this direction is
the study of the oxiensions of general relatfeity (GRYS
extensions, where new space-thme symmetries are intro-
duced, Neteworthy formalizations in this direction are
exmradimensional physics amd the poncormmuaivity of
space-time goometry (see .z 12,31, In this framework,
new physical phenomena emerge In fong range dstances
that may resolive guestions of modern thooretics! physics.
A common feature in QG Iy the prediction of & modified
mass-shell condition for elementary paricles. Moroover,
these departures from Lorems varisnce predict 4 vacuam
refractive index and corvections at the dieshold enerpy,
‘The most debated effecty are the dme delay of Hght rays,
which depends on the encrgy of photons Gee e, [4],
and threshold anomalies reported from  astrophysical
ubservations |5]

This phenomenology was recently associated with a
velocity dependent geometry called Finsler, In particonlar,
Girelli er of. |8] arpued that severnd structures, ke the
“rainbow metric” [7] and other alfernative scenarios of
deformed special relativipedike {81 models, can be ap-
progched by a Finslerian perspective. The same formalism
seers o be compuatible with the propagation of mys in
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Horava-Lidshity, gravity (9], Another case where Fiosler-
like structures appear is the Departicle recoll example,
where the effective four-dimensiomal metric depends on
phase space coordinates | H-121 Similar scenarios ffom a
different point of view on steinglike theories have been
discassed In [13], We also mention the corvelaton of
birefringence optics to Finslerian space-times {141 The
aforementioned phenomennlogy suggoests that Finster ge-
ometry could play a fundamental role in modern QG
theories.

Another case on Lorentz violations is the minimalistic
approach of veory special relativity (VER). The construction
of VSR is based on a proper subgroup of the Poingaré
group. An mduced efier moving with the speed of fight
situlates a-null spurionie vector feld, In the context of
YR the intreduction of a neulrine mass roguires ao addi-
tional states and needs no violstion of leptonic nember
FEE] Blowever, dopartures from special relativity and CPT
invariance are difficeli to detect due o the null natyre of
Yether” [16L The above vonstruction is ncorporaied into
the Finslerian Frismework sgain, aftor considering a curved
version of VSR, namely, general very speciul relativity
(GVERS {171

GVER i manipudated o build 8 cosmologieal oy
modded, We use & shilar approach to {18], with the essen-
il dilference that the null character of the spwion i3
preserved in alance with the original GVSR theory. A
better insight zhour the effects of Fingler geometry to
gravicational phivsics iy achieved by the oseulation of a
Finsterian manifold to a Ricmannian one. We consider that
the physical geometry is represented by s Finslerian
Space-time, while gravitational geometry s deseribed
by o Riemann structure, following 119 Therefore, the
Friedmann-Reberson-Walker (FRW) metric is imvoked
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o the Finslerian background to study devimions from the
standard cosmaological picture. In this fnework, an ob-
gorver fulls on a peculinr nongeodesic congrience with
respect o the FRW comoving motfos,

This paper is organived as follows: Afier o shorl intro-
duction o Fingler geomeiry we outhoe the model of GVSR
aed some of i phenomennlogical consequences. In
Seo, L we desoribe the wsefu! ool of the oscolating
Riempanmian space and i impleations 1o gravitational
phiysics. [n Sec. IV we apply the oscolating process o
the model of GVSR using the FRW metrdic Tor a fat
universe. Sections ¥V and Vi are devoted to the construction
of the equations of motion and continnity, relving on the
induced space-time symmetries. In Sec. VH we present the
sobutions {or the seale factor, fux, and anisotropic pressure,
white in See, VIIT we discusy the implied long range
modifications depicted by a wodified FRW potenial.
Besides, we attempl to relate the dynamical behavior w
sorae barge scale observables. Tt seems that exotic matior oy
Tower values for the energy density of the cosmic floid is
required to generate late time acceleration. Sections X and
X further analvze the kinematical properties of the model,
to achieve some level of insight sbout the evolution of the
median. Finally, we highlight for future development that
departures from the safe barbor of Rismann geometry may
irigger density perturhations, leaving artifacts of Lorentz
viplations,

11 FINSLER GEOMETRY AND VERY
SPECIAL RELATIVITY

Finsler geometry 1s a generalization of Riemans govme-
try, where all the geomelrical stroctores depend on the
element (&} rather than the positios coordinate solely,
The line eloment is defined by a norm Flx, i} over the
tangent bundle TANOL where M s the base manifold, The
Flx %) s a homogeneous functon of fisst degree with
respect to X, such that the Integral of the arc length
[#{x dr s independent of the purameter 7. Finsler
geomelry is strictly diseriminated from Rienmon geometry
after dropping the quadratic restriction over the melric
function Fix, &3 120], Le.

FHn £) = £l 215, W

Using Buler's theoram we can caleelate the Flosler melric

2)

whith it homogeneous of zero dogres with respeet to &
The definition €23 i redieed (o a Riemanmian meiric when
the metric ensor depends solely on the position x| indicat-
ing that {13 {5 2 quadigic form in &, Therefore, Finsler
geometry can be considerad a8 8 nateral generulization of
Rigmam geometry,

The wnit sphere £, = {Flx, &) = Liet MY C T.M is
calted the indicarriv and defines a three-dimensional Tocus
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i every tangent space T4, In case of » Riemannian space
the indicatrix is an ellipsoid as a result of the guadeatic
resteiction. However, (1) implies that the tangent spaces of
a Finsler space are not equipped with ellipsoidad unit Dally
ay in Riemann geomelry, generating focal anisotroples of
space-time. Therelore a geometrical property should arise
0 describe this distortion” of the mdicatrix, called color
(see e.g [211) In particedar, a Riemanaian space s cos-
sidered entively "whi,” while in most cases & Finsler
space possesses different color patieras over the manifold,

The lack of quadratic restriction appears in some phe-
nomenctogical quantem pravitations] theories as g conse-
guence of Lotentz symunetry breaking 16141 Thus, in
such o scenario, quaniities which measure the color and
ity variations are dircetdy selated o Lorends violations,
These space-times can be chavacterized a5 colorful curved
asumnifdds providing a way 10 study gravitational phe-
nomens tader the hypothiesis of Lorentz vielations [221

An itrguing case of Lorentz symumetry breaking, where
Finster geometry turns up, i Cohen and Glashow’s VSR
1151 The Lorentz viclations are generated by the FSI(2)
subgroug of Lorentz transformations. (ibbons ¢ al. ves-
tigated a deformation of VSR called GVSR [17], Among
the deformations of 18IM{2) there is an 1-parameier fun-
ily catled the DISIML(2). Thiy deformation group lewves
invariant the Fiaslerian Bne element,

ds = (g’ dod 2 gy kb, 33

proposed by Bogoslovsky (see [231 and  references
therein} for the stady of local anisoiropies. The entity #f
is a pudl spurionic vector ficld that desermines the direcdon
of the “otheral” motion’s 4velocity and can be selected ag
A= L0081 [15.07.24) The sisnsiure  of  the
Minkowski metric is set to n; = diag{+ L -1, -1, ~ 1)
throughout this paper. The line clement () determines a
particle’s mass tensor

my = (1 - bhm{8; 4 b, {43

which indicates the Machian mature of the theory (23],
The symmeiry of the Hine element (3) indicates the
Lagrangian of a free-moving particle

L= i ﬁj:“,i:’; SR {3

The above Lagrangian implies the particle's action integral
f o= f L{x, Epds and the canomical momentum i, = ;ji
{251 Using the first order degree homogeneity of the
Lagrangiun with mespect 10 %, we can construet the gener-
alized muss-shell condition

Fulx 3p# p? = a® 6

since the tangent and cotangent bundles define equivalent
genmetrical frameworks (6] Condition (8} can be re-
formed o the following conveniens expression:

Q64IAE-2
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This refation reflects the eolored nuture of the space-fime
manifold, The parmneter B is restricted by various sxperi-
mets o the ouder of [ < 107 (ether drift experiment
and 1l < 107 (gnisorropy of nertigy 117,261,

The metric (2) of Finsler peometry does not deseribe
completely the geometric properties of the underlying
manifold as in the Riomannian case, Father information
must be supplied concorning the (noniinesr comerdon.
We reler o two main branches of formalism mnong others,
characterized by Caran’s amd Chern's  connections.
Chern's approach introduced 2 connection which gave ¢
complete system of local mvarimls ensuring that two
Finsler sch:mms differ by a change of coordinates {see,
for example, {2111 Nevertheless, B is an almost metricsl
misatz, On zi'ue other hand, Cartan’s connection is parely
metrical. Phvsieal implications of the aforementioned per-
speatives suggest 4 nonconservation of energy sad wemen-
turn apart froam @ subclass of Finsler spaces called Berwald
spaces (3¢ e, {13,270 and roferences therein), However,
it s rathor obscure whether departures from relativistic
TEVETEICE AnYIore guaranioe the onergy-Homenium con-
servation andior melricity of space-time. In the following
sections we use a method of great simplicity, inddally
developed for the purpose of comparing various covariant
derivatives of Finsler geometry, the process of ascudorion.
In this approach, a purely Riemannisn metrie is defined n g
tocal subregion (see next section) and GR’s machinery is
valid for the induced Levi-Civita connection,

Before we proceed 10 the Bt of oscalation, we brves-
tgste the mass-shell condition (7} which may provide
observations]l motivations as we axpect modified dispoer
gion refations and an inflnence on threshold energies.
These phepomenological concepts drew some atfention
due w the possibility of constraining various 0 models
with cuvrent astrophysical data (time of Hight differcaces
between photons of different energies, TeV-y, and oliva-
high energy cosmic ravs {UHBOR) threshold anomalies)
P51 In order to demonstrate some ph%mdi mplications of
the modified mass-shell condition (73, we will roughly
compule the hreshold em:yffy of p 4 v p+ o for the
Finslerian background (33 The threshold anomalies have
also been studied for & Finsler-Randers space [28]. For the
sake of simplicity, we will assinne ¢nergy and momentum
conservation

Ey b ogm By PL g = pytopan 18)
where £y and py efor o a high encrgy particle colliding
with o photon (e, g and a7y, Fy, and py represent the
energy and momentis of the produced particles, The non-

Lorentz mmivariant relation (7), for a further agsumption of

massless photons and smadl departures frons Lorentz in-
variance, reads for a photon and the { particle,
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oo g,

B2 = gl e e l:} - 2in (

where B, = cosff, snd #; denoles the angle befween the
partich’s spatial momentam and the spatial part of the il
spurion. The depeadence of {9 on the pacameter 5 rettects
the local musotropic structirs of the Finslerian space-tane.
The same particle with different orlentation possesses 2
differont energy component. Working only on the Tab
frume, we can sidostep the definition of different local
frumes in owr LV theory [5] The it of Mgh esergy
parlicies leads t the following formula for the threshold
CHCTEY:

, - {9
ATA o{;ﬁ;}j,

R T T S A T T o
L -
A 2e

% m[’ﬁ’“ “ B el ‘3}] (10

Fly + Hley

where A stands  for the angle between the ol
S-momentum of the produced particles and the spurion’s
spatial proferred direction. We remark that e LV elfeci o
the threshold energy Tudes out parallel w the spatial direc-
tion {F = 11 The above particke’s producton is expeotad
between soft photons of the cosmic microwave background
{OME) and UHECRs. In general, we do nob expoct 1o
observe UHECHs shove the well-known GZK cutoff ~3 %
IO ¢V (2091, Parricles with encrey values shove thiy eatoil
should be absorbed by the CMEB hackgrovnd. However,
cosmic rays with energles up (o ~3 > 10 ¢V have been
reported, A possible explasation is that the threshold of the
photon-pion process is al larger enorgies. In that spivit we
can constrain various parametens coming from QO scenar-
ios, For pur case the valse of & i a constvaint up fo &~
= 3/{27.7 4+ la{l — £ This is not & tight constraint for
our perameler, but i clearly depicts that looully a Finsler
space s directions] dependent. Nevertheless, the reader
showid keep in mind that energy-momenbun congervation
1s not necessarily valid in a Finslorias background. Alse,
nombrivied physics is involved due to the angle dependence
of the wiass-shell condition, Lagt but not least, a procalike
Lagsangian is hrvariant ender DISIML(2), and iwerefore
massive photons should be embodied o the caleuladons,

L THE PROCESS OF OSCULATION

Let 17 be a region of the space-time Fiosler manifold #
parametrized by the local conrdinates x. In this neighbor
hood the velocity vecior ﬁs’:!d aP can he picked wp e be o®
dependent, ¥ = 52 {x). Thus this local region of #, pos
sesses & Ricsnarmiag wetric

Buunknd = f oty ulx)) (1

arul leads (o the constructions of the oseudating Riemannion
spree. In othey words, the process of osculation relates the

(53353
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velocity ficld uniguely o the space-time points, implyisg
the Emit of relativistic cosmology (30,31 ] The osculation
of a Finslertan manifold deteomines a purely Riemuannian
space-time for a specifiod selection of @*ix). In case of 2
general Tuid the comoving observers live on g different
Riemans space from the one of a Glied obsereer. Insuch o
soenario the link between different familics of obscrvers
belongs (o the context of Finsler geometry 132,331
Consider an early time of the universe where Lorentz
violations and chaclic motion govern the cosmic fuid,
Finsles goometry 15 & candidate physical geometry of this
stme. As the gpiverse evolves, Lorenty viclations and
chaotic motion are expecied to fade oui, onsbling the
ntroduction of the observer’s d-velocity with respect o
spreg-thme coordinates. Hence, the definition of an osou-
fafing Riemarmisn space is pussible, using the observer’s
d-vetouily ekl A pust big-bung Riemannian cosmology
rises up where seeds of the Finglerian era can survive. The
induced Einstedn field equations for the of observer are

Goba mlal) = 8507, (x wlxhh {13

wherte (7, , is the standard Einstein teusor coming from the
Ricmann metric (1) The cnergy-rommentum ensor rop-
resents & ganeral imperfect fuid which can be exprossed
int ity irreducible parts {for a recent review see (3413

E}iv = e“’“aﬂi’{y F‘hfﬁ‘ + 2{?{_&”3‘} * ﬂ?«“" GB}

where f1,, = g, = u,u, represents the projective tensor,
i = Togu®u” is the energy density, P = « Toah®®/3 is
the isotropic pressire of the futd coming from the eqgui-
librium pressure and bulk viseosity, g, = BT 'p,g_u”' is the
whal encrgy fux vector, and 7, = B Yhe T, s the
symunetric, trace-free anisotropie stress fensor (351

IV, OSCHLATING GENERAL
VERY SPECIAL RELATIVITY

We can construct our eosmological geometrical machi-
gery by intreducing the metvic function Fly, uy direcdy
from the line element (3), All wensorial iems of Finsler
geometry abey the linear tansformation law 8, = —‘}f}B,
relating different coordinate sysiems. The metnic function
Fix, o) iy any coordingle syelem s rewritten as

= (25 e

. {az‘yﬂ'#ﬁy}bm H {_'ﬂ'ééip}&.

(14}

whore 4, denotes a Riemmnian metric and Greek indices
represent an arbilrwry coovdinate systom, In ogoneral, the
parsincter B cap be considered x depondent (B s bix}}
preserving the -homogencity of (14) with regpect 1o u.
The groops that leave (14) invariant Tor different values
of b are not somorphic, Jeading v geometrcal phase
trangitions 117,284

(33
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The substiution of relation (14} iInte (2% lmplies the
Finslerian melrie wnsor o the explicit form

ot (1 DYLTIN Y, = 2600 = LY NP,
+ 2081 = L ENE e,
+52b - BLTENT )

where Lo agaia’ and ¥ o= mee®. We romark that (13
is v disformal relation between the two TRelnc ensors f
and e, Mot thet for a Lorentz violating background, §,,
plays the role of physical getmetry while o, represents
the graviatenal “potential” [I91

We consiraer @ cosmological model by inserting a fim

FRRW metric and the observer’s 4-velocity u# = (10,00
into {153, I Lorenty violatfons “dilute™ o thermad energy

and entropy, this setup recovers the elassicad FRW limir
The process of oscolation Jeads o a Riemannian space-
fime, whare the observer™s rest fraeoe Hes on g tthed non-
geodesic congrueace.

The cosmological model s investigated during a geo-
mieirical phase where & bs a constant of Hrst order distur
bance upon the FRW metric. Therefore, the osculating
Riemannian Hae element, by virue of {143, Is reduced to

2= det - a0l — BHdx 4 dv®)
~ {1 = b+ B aMd2 ]+ 20 uliididz, (16

where the null spurion has been transformed w0 g =
(1, 0.0, 1 /a3y, The form of the metric (16} indicates that
she background goomelry includes anisotropy, sisce the
space-time expansion is of different rates at different di-
rections. Because of the independence of the metric com-
ponenis to the spatial coordipates, all the imvariam
guanities are ondy fanctions of fme. The off-disgonal
wems of (16) imply that the o = {L0. 0.0} observer
will messure an energy fux component. This elffective

pewfiaf mf}tiem wiﬁl ?esfpu,t 10 the l""RW {Emﬁt is; m&ﬂd o

origin.

Siners {16} iy of a Riemannian nature, wo use the stun-
dard formulas for the comnection and curvatire. The Ricel
fensar iy diveuthy calenlated as

T PN
Ry = —3— + 2473k — 607075,

I
Ry = Ry = asi(l ~ b)) + 2431 = b}

— (Fu 0 4+ 28 4 aitdh,
Ry gd{d = b) 4 2858~ B + (Aa™3 ~ a7 ib,
b .
By == = {rza £ D (7

The Einstein teasor (7, combined to the field Bgs. (13},
recasts the anisotropic ineducible parts of e energy-
meamentin tensor (13 te the following form

S

u



IMMERFECT FLUIDS, LORENTYZ VIOLATIONS, AND L

g, % B, R gitP, Fpp * BB R (18)

The fux and the asisotropie pressure (18, exprossed in
ters of purely geometries] quantities, roffect the general
relativistie interpretation of gravity where spece-tinme cur-
watuve determines the motion of malier

V. MODIFIED FRIEDMANN EQUATIONS

The osculating Riemannian approach defines & cosmos
togieal foy model for a tilted observer, enviching the picture
of the "standard” cosmelogy. Fhe presence of Bux, aniso~
tropic pressure, and peculiar motion reflects the assomed
Finsterian background. This process relates the generated
Lorentz viclations to large seale structure dynamics. Using
the sxpressions (18), we intreduce a relativistic wtgd flaid
{13y m albianee with the anisolropic metric (16)

g, = 0,00, 00,
i, ” = diagll, T{eh T, - 2703,

(i3

5

where QU0 and 1HY are considered onkaown fanctions,
For weak devistions from the FRW cosmology Q0. 11
can be of first order 361,

The standard caleulstion of the Einsteln field equations
{12) for & generad fuid leads w the following equations of
motion for the seale factor

&t 4 Bty

Cgi — "§£Z 1) f&? B omm _Wig.m $s (2{}}
& 23 e o o
b Do ok a4~ a @Y s - BarGLP - 1 THBY
7 a
{213
3 P ) ‘
f"f; 2% Qadg -+ o0
Fid 4
w8 GIP + ba P+ 201 + 2TIEL ()
a i ’ .
(mg + 3-»«}}’: = R G(Da + b, 2%
a* é

where & s considersd constant and swmall. We have abso
made the approximations #Q and b0 = 0 since i, is of
fiest order. This systems of differential equations will be
ipvestigated with the aid of the linear dependent continuity
eguations,

The relation (203 is a2 modified Friedmann eguation with
an extra lwm A3 = 4a %875 /3, analogous W b The
sien of & will determine the affect of this extra geomelro-
dynamical quantity, as we will briefly demonstrate in
Sec. VL The lerm AL/3 acts as an Velfective”™ dme-
dependent cosmological constant, which tends {ast W zero
for an expanding universe. Howsver, at carfior tdmes this
Lopsntz. vieliting “confribution” can crociafly affect the
dynanics. In case b vanes ab different geometrical phases,
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someons nhsl inclode derivatives of & 1o describe this
general strocture.

VE THE CONTINUITY BQUATHON
The defisition of the »# frame validatos the conservation
law V1% = 0, where the covariant derivalive comws
fromn the osculating metnic g,,, (x} {11 The nowzen com-
ponents of the energy-momentum fensor’s divergence load
13 set of two differential equations; the thmelike part
provides the energy density formula

; 3
b+ :%f{i(;g + P}(] - '4;9) =0 (24
i e ;

and the spacelike part the momentum density conservation

04300 = 2P wia b — (P4 el (25)
i

where all the gquadratic termg of & and @ have been

dropped out. The ordinary differcntial equation (24) gives

back the sclotion

b o

wlty = pgals B f.::(;}( atfy ! f)), {263

where we have applied the eguation of state w = P/u and
o is an integration constant, Afler plugging (26} info (35},
a direct caloulation determines ¢

Ol = — gl + E}uxp{méz’:ﬂ + whalzl” 4}
gt T Galn”h 2T

Tn the special case w == 1 the energy density cvolves as
in the FRW model while the enorgy ffux decays as the
standand dust Hmid

VH, SOLUTIONS POR THE SCALE FACTOR AND
THE ANISOTROPIC PRESSURE

We can recast the system of the ordinary differentinl
wonations (Z0-023) to 2 more convement form, usimg the
linear deperdent continuity equations (24) and (253 The
sotution for the scale factor o0 cam be diveetly provided by
the modified Fricdmann equation (203, Alter substituting
the energy density (263 and G0 we derive

4 w7

AT e OO
i ga i et 5 Had

LR
Pt

3w 13

5

s

PRSI ] .
x (; Wwl (z"“*"*f}) OBy, (28

where alf the quadratic erms of b have beon omitied since
we are imderested in o Hest order approximation of the
unknown parameter. We present the anelviical solutions of
{28).

Sedwrions for g{t), w ¥ ~ |

0640333
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The infegration of (28 for w 2 ~ | Dpplies the solution

g ‘1 . {ﬁ{w"} 042 aif?rv-m ft}f?fx
o

(28}

The second term of (29 reflects the contribution of the
underiine Finglerian theory fo the expansion dynamics,
Given an expanding phase, the first term of (25} increases
fuster compared to the second one, dowminating the solu-
ton, When & ig sel to zemn we recover the flal FRW
golation.
Solutions for alf), w = — |
In the w1 ense the Friedmann equation is shaph-
fied to the form
at
3(25 b 3;{3 : 51:12}? b S@T{‘;ﬂ.g {3{)}
The differential equation {38 is inwgrated to the logarith-
mic solution
f o Blafa) + @b, 313
indicating a vapld expansion,
The anivatrapic pressuve 115
After calowlating the scale factor a{v) we can subtract
(313 and (22y and derive the following expression for the
anisotvopic pressure HH

) = —%;ngr:i‘{f}“ﬁ(“’“*‘}b + ARy

® (a“f*a?- ~%a “‘ﬁaé)z; + £4H%, (32
We illustrate the evolution of anisotropic pressure 32 fur
indicative valoes of w at Arst order approach

i ;,{iwi = {), firatier

Hipp = i - b+ j} Bow s 173, radiation
e

(33
dark enorpy

The amisobopic pressure fades oub s grows up.
Nevertheless, T1{s} tonds fo Infinily for ordinary matier sl
early fimes, while ab the exotic case (w = — I} behaves
cxponcmiaily,

Vill. MODIFIED POTENTIAL FOR A ZERO
ENERGY PARTICEE

The properties of the model can be further investigatod
using (he zere energy particle approach. The Friedman
equation of motion (208 can be weitten v 2 form that
represents the conservalion of a particle’s kisetic and
potentinl encrey. Substituting the energy density solution
{263 in (200 we retrieve

&.Jw..l y bk gy 4
TTEE expd — o Fid

Vig) e -

(34)
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The Brst term of (343 refers 1o the clagsfcal FRW potential,
while the sccond one 15 due o MSCrOSCOPIC CONSeqUences
of the assuaed focal anisolropic stracture. We resiricr our
irerstigation for w < 373 which ensures that the befavior
of the poteniis! depends solely on the sign of &, Consider
anr ingoing paint particle falling into the potential (34,
which represents 2 collapsing uwaiverse. As we approach
a == 0, the kinetic energy of the particle diverges signifi-
cantly from the FRW limit, since the £7% term dominates
the dypamics; away from the initfal singodarity the BV
effect fades oun
Posizive values of & guarantee that the polnt particle hits
the initial singularity faster than the FRW case, since the
potential decays af a more rmpid rate (see Fig. 1) On the
other hand, negative values of b assure an exiroral poing

Y5 + 3w (o i

(5~ 3w

35
1+ 3w %)

= 5"‘54?

where the accelerating confraction tams fo # decelerating
phase for —~ 173 <0 w =0 5/3 fsee Fig 2). As the pasticle
fulis Tarther down, it s Gnally bounced by the potontial &t
the potnt Va1 = 0,

G e By 174 ,

When the pasticle reaches this furning point, the decclerat-
ing confraction is reverled o an acecleraling expansion
areil it crosses the extremal 2. sgain, The following decel-
erating plase recovers gradually the FRW model with
Ao (L

Using the solution (29} we can roughly estimage the
durarion of the aceelerating phase hefween the bouncing
and the extremal point

(36}

v

FER 1 Free scole potential for the anslogous 2800 energy one-
dimensionsd dynamics with =0, w > ~ /3 the continuous
e s the FRW potential (b = (). Now ol the model’s poten-
tial approaches — oo faster than the cassionl one.
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Fii. 2 Free sople potential for b <06, The zero energy pamdsz

approaching from ¢ - oo aecelerates until € crosses the min-
s of the potential VW) then B decelerntes until i hits the
pateatial at the bouncing point. The model recovers FRW
behavior for large valoes of o

By N 3. .

At~ (,% ;im) — By, @7

where gy is the cnergy donsity for ¢ g I g come-
sponds (0 the present matier densily distoibution, close W

the critical dengity pg o 107 grow™, ihen approg-
mately Ar = 10" see for the erher driff experiment and
Ares 18 oo Tor the andeotropy of Inertia. Thus, aceord-
ing 1o estimations of the age of ofd stars ~3 x 17 {37)
our model, starting from dy,, has entered o decelerating
phase. This conclosion s not in alliance with the observed
cosmie accoleratdon fom the Type ia superaova data
Exotic matier with w = — 173 must be assomed for repro-
ducing the desired expanding behavior, An aliernalive way
toy introdhzce late tme acocleration i the prosont epoch is
the adopiion of the prosenl encrpy deasily disteibotion
Tower values. I particulsr, the values, gy ~ 1079 grom
for ether drift experiment and jg ~ W grom™™ for the
arisotropy of nertia, secars that the model accelorates
until oday, I ease of clusters that are Jarge enough to be
representatives of the overall mass density, only the lmit of
the ather drife experiment & close, yot legs than the up to
date density measurements {38].

X BNVESTIGATION OF KINEMATICAL
QUANTITIES

T he de ‘velueﬁy 1w of the observer’s vost frame lntrodn-
cos a st between space and time. The vector o deter-
mines the projective eosor b, which acls as the three-
dimensional medric of the observery instantaneous rest
space for a hypersurtace orthogonal congruence.

PITYSICAL REVIEW D 82, Ga4is 2o

fat n congruence x#{7} consise of ponpeodesics, where
the tangeat vector fekt is the d-velocity & ~ {1, 0,0 0)
and the line cloment {16) imptioys the shear vorticlity and
expansion tensors, The ensor feld

Vit = Mh, gt ogp ¥ oty b Agug (53]

measies he failore of deviation vector €% 1o be paralled
gapsported afong the congruence. The expansion scalar #
is dofined as 8 = V%, and measures the expansion of a
volume element 4 along w7, the shear tensor ogy =
Vipttgy = Pl Vot — L@k, represents deforma-
tioos in the shupe of dV. while the vorticity lensor @ ,p =
Vit expresses orientstion changes of dV. Alter expand-
ing for smudl values of b we can derive the following
approximation series:

g = Rt - 2da b+ O{bY) {39
&

ard

iy diag[& wf‘;a”g’:fk, - 1’;;; 3::: ]b + GIFY (A

while

@ = O, (413

Thus the hyporsurface orthogonad condition bolds for the
vongrience. Additionally, the noavanishing sheer wasor
mﬁeczs t%;a‘ 'kma.mazim% am’m\mpiw; Gf 12}9 floid. Arz infmm

”("i?,‘w‘} mih the nonzers wammmm
AF = {000 g a4 OB A4

The presence of acceleration representy noagravilational
phenomena. Therefore, the {undamentsd observer @5 nof
moving glong geodesios sinee Lorentz \g@siamaa pontrih-
wie substantially to the gmvzmﬂeml theory. This is o direet
rexult from the distortion of the fine eloment {i} ceHng
from the & parameder.

X, RAVOHAUDHURI EQUATION
AND FOCUBRING THEOREM

The Hmd's volame ovolution s refrieved by the timclike
part of the Ricel Wdentities which lead o the well-known
Revehaudhur couation. In case of a hypersurface orthogo-
nal  geodesic congruence and  ordinary  matter e
Bavehaudhuesd equatios Implies the formation of a singu.
larity due o the attractive patume of gravity, Howeves, a
pongeodesic congraeace may avoid the caustic shce the
external forces may resist the collapse, Given a nongeode-
sic congruence, the Raychaudhurt equation reads

1 ! . ,
Eifr B gg E{Uz - {&7‘}
= Rt + A~ A AR (43

(640357
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wheee 2,4, = #
of a veutorn

The line clement €16} validates the hypersurface or-
thogonality of the u# congruence, Wy ¢ Thus, the
aly quantities that weay offer g positive contribution in
the r;gjéu hand side of (43 are related W0 4-aecoloration A%
In particular, the square magnitude of the d-aceeleration
always resists the collapse (assists the expansion) since i1
a spacelike vector, while 2# A4, depends on the state of the
expansion. The quantity D% 4, slways keeps a positive
sigrs for @ universe at a decelerating phase, This posiiive
sign is stilf ensured for an accelerating phase if @ < dda™
The effect of Lorenty vickations wins over the altractive
nature of gravity if the following condition holds

DEA, -

L8PV Ay denotes the spatial gradient

(ddy
A first order approximmation of the addiional terms In {43)
imply D#A, — A AF = O(b7). However, af an earlier
stage of the expansion, where the Lorentz viokations ae
stronger, the scoelerating wrms may dictate over the nega-
tive ones preventing the collapse of the fluid o a ‘s,wmc{-
vical singularity. On the other hand, if the values of 57 are
comparabie o the cosmological constant, the DAA, —

A AR term may give rise to the dark encrgy seenario of
an almost empty seifeaccelemting universe.,

- i
AL AR Rt + Lo

XE LORENTZ VIOLATIONS AB A SOURCE OF
INHOMOGENEITIES

We consider a space-time whete the uaiverse is regarded
a3 4 single bonperfoct fuid, a divect result of the process of
osculation. Spatial inhomogencities in the cosmic thuid are

“detected by the Hlowing dimensionless, gauge-invariant
guardiiiey 39400

ai8

B = f%,f (45

Z = alni 8, {463

which both vanish in spatially homogeneous space-times,
The tensors {45) and (46} do not vanish aven in case they
are zero for a specific value of the time coordinate. They
are comsidered as some of the key sources of the density
pertarbations {34]. Despile the sele dependonce on time of
4 and # their sputial gradient does not vanish since 7 #
{0, The evolution of (457 and (46 al frst order 18 deseribed
by the differentind equations [34,41]

. B 4
igﬂ} R 933“1{ “+ (E + MM)ZR + Guveciﬁ;:
LS ) it
{zﬁ i
i (%ﬁ fg e 'ffmé)f) (47
et
Zog + W, + +tiud, + IaDP
= —ffféﬂz F ol = AP (4%)

PHYEICAL REVIEW T 82, 064035 (20140}

where flux and scoeleration act as sowrces of perturhations.
Hence, this mechanism indicates that Lorentz vieclations
may gererate inhomogencities. A divect caleulation gives
back the nonvanishing ct;m;a{m@mﬁ

w 3L b w? i aip,
v e {45
Z, = wsa{ff fi.;) + oA,
a  al
where {2 is the FRW solution since the leading terms of
(44 are proportional o b, Note that, in case of w = -~ 1,

the density inhomogeneilios e zero.

XIL DISCUSSION

The osculaton of & Fimslerian manifold gencrates
a Ricmannian cosmologicsl fey model for a specific
develovity . "Fhe rest frame of the fundamental observer
lics on a dlted nongeodesic congruence. The peeuliar
velocity »® defines the energy-momentum tensor of an
imperfect flnid, given an almost FRW metric of zero spatial
curvature, This construction belds for w = {1, 0,00
reirseve the standard FRW limdit of the comoving observer,
in cave of vanishing Lorentz vielations, The resulting line
clement of space~-time deseribes an anizotropic expanding
(conmetingy medivm, Therelore, an fmperfect Huid with
flux and anisoiropie pressare (s injected 7 into spage
suppord this anisolopy.

The field equations fead 1o 2 modificd Priedmann equs-
for of moton with an effective varving cosmological
constant proportional w0 b, The spatiad curvabme is consid-
gred & = { In accordance with the astrophysical observa-
tions, The Finstein field eguations, combined with the
conservasion laws for the fux and energy density, provide
anatytical solutions for the scale Tactor, wisolropic pres-
s, energy density, and fux. However, the expressions for
the scale factor are ghven in the form ¢ = Ha) The model’s
differential cquations add « first order exponential factor
the FRW’s standard oncrgy density while the flux and
anisotropic pressure tend w zere for an inereasing alf).
We remark that the Bux vector does not divectly vanish
even i the parameter b 18 801 10 2010,

Furthermore, we investigate the model’s behavior using
the zero epergy padicle with o modified potential, In
relation w the FRW case. The parameter & plays an inflo-
entlal role, since it determines substantizl propertics of the
dynarnics. In particular, for b > 0 a contracting universe
will hit the initial singularity faster than the TRW. On the
ather band, i & < O 3 richer scemarto oocurs; an acoslard-
ing contraction Ieads o the potentiat's local minlimsm,
wrning to a decelorating contraction antil it bouriees
back at some {orming point. After the particle’s reflection
w the poteniial, an accelersling phase fakes place onul
we cross the extremal point. Finally, a decelerating expan-
gion governs the evolution due to the atiractive nature of
gravity, reeovering the PRW Hmit with A = 0. In order to
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reproduce late ime acceleration two possibilities vise up:
assume exotic meter with w0 — 1/3, or a “lghter” sai-
verse with oy < phg foday, Nevertheless, the gme
dependent effect tn the kinematics, coming from the LV
parameten, gives birth o g divect discrimination 1o the A
cold durk matter strectre sinee the exbra lorm oan be
arddressed a3 an effective varying eosmological constant,

Ome koy geometrical guantity w " transkate™ observatio-
nal data i the ssisosity distance d; (o). The form of thig
function depends on the physical hypotheses taken into
account. In that serse, the merpretation of the observations
v model dependent. Vielating the symunetries of space-
tme in large digtances, o (o} might be crucially affected.
A first question s how sensitive this funciion can be in
werms of any extra parameters introduced by the model. I
our mendel s et sensitive to the parameter b, one conld
accurately determine whother or not the effective varving
cosmaplogical constad plays 2 role in the expansion dy-
namics. ven in such a case, observations sugaest that a
constant A rerm s completcly consistent with the currend
data. Oun the other hand, because of many theorotieal
motivations, there has been an extensive amowd of work
wmvestigating whether improved observational scenarios
could moasure 8 tme-dependent A behavior. These sur-
vevs me mainly directed by bwrvos seoustic oscillations,
SN, Lensing, and UM datg [42]

In GR ordinary matter abways falls slong geodesics at
the presence of gravity alope, The study of gravitational
coliapse leads to the formulation of singularity theoroms.
Heowever, ofher phenomens in nature impose nongeodesic
motion (dor o recent review soe [347) I this arcoa the
question of a caustic singubarity must be tovisited, A
churgcteristic example is the coflapse of an ideal MHD
fhuid where magnetic tonsion may prevent the formation of
a canstic 1431 The present phenomenological madel pointy

PHYSHIAL REVIEW T 82, 064033 (20140

out that the osculation of a Finsler space to a Riewaanian
one leads o nongendesic motion. The observes's
egeceleration vector mimics Loventz violations for our
effective theory. Therefore, Ravehaadharl’'s cquation im-
phies that the formation of a singularity depeads on the
magnitude of the parameter & which gives birth o Lorentz
violations.

The presence of Tux at the onergy-mommeRtum Esor i u
direct consequence of the reduced nonsomoving motion,
sinee go; £ 0 The existence of fux combined with the
pecoliar motion acts a8 a source of mhomegencitios. As a
result, relics of Loreaty violations are oncoded (o density
perturbations. In the conlext of Pingler geometry, this
mechanism  demonstraies a possible  correlation of
forenty violations 1o OMB physies, pointing owt sone
possible future developments in the feld,

further research would include the construction of a
spaially curved muodified FRW mindel and the backreac-
tion of Lorentz viclations to spatial curvetore, Also, the
comeept of gromeirics] phase tapsitions via Fissledan
geometrical structures s of some ingrest. In the frame-
work of GVER we can express these phase trassitions
by selting & dependent on the space-lime coordinates.
The study of the b evolution may shed light to the ques-
tion, “why i b so small?” Pisally, & vital task stll re-
mains how a consistent modified gravitational theory
capn be achisved using the whole machivery of Fingler
goometry [447
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