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Covariant kinematics and gravitational bounce in Finsler space-thnes
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The similarity between Finsler und Riemann geometry s an intrigoivg starting polat to extend general
refativity, The lack of gmadeatic restriction over the lne clement (colord naturally generalizes the
Rismannian case and breaks the local symmstries of general relativity. In addition, the Finsler mantfold
is enriched with new geomeiric entities, snd «ff the classical demities are suitably extended. Wo
investiute the covarlant kivomatics of o medivm formed by a Gmelike congruonce, After a beiel view
in the general cise, we impose pariicular geomettie restriciions (o got some anaiyiic nsight. A contrd role
for our snalysis plays the Lie derivative, where even s the case of Drrodationad Killing vestors the bupdle
stiff deforms. We demonstrate an example of an isoropic and exponeatinily expanding cross section that
fmafly deflates or forms a canstie. Furthermere, using the |+ 3 covarlam formalisn we irvestigate the
expansion dytamics of the congreence. Por certain geometric restrictions we retrdeve the Rayehavdbmrd
equation where 3 color-vurvatnre coupling i85 revealed. The condition o prevent the focusing of
meighisoring particles ix given aad s wore Bkely to be fulfilled in highly curved reglons. Then, we
introduee the Levi-Clvigs connection for the osculating Riemannian metric and develop a (spatialiy)

b/

-

isetropic and homogeneous destiike model with a nossingolar bounce.
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L INTRODUCTION

In Emsiein's theory of gravity the four-dimensional
space-time is described by a psende-Ricmannian mantfold.
Loeally, the curvalure effvet i dininished snd the Loreniz
symmetry is always restored. However, when we investi-
gate ronfocal phenomena, the corvaturs offect distorts the
distance module and we depart from the Minkowski Hine
clement {11 The most relevant manifestation of ihis
curvaitire conteibution is the gravitational redshift of light.
When we consider hypothetical modifications of gooersl
relativity (GR), we can violate the Loventz symmetry
kpcally andfor modify the way we distort the distance
module i a nomlocal region, These scenartoy are the
common  playground for phenomenological models of
quantam or emergent gravity,

From a geometric perspective, we can introduce such
GR modifications by diopping the restriction that the line
slement shoudd depend only on guadratic terms with
pospect 1o the coordinate increments. This pontrivial
“symmetry breaking” s the essence of the velncity-
dependent geometry named ay Finsler 12-61 n particular,
the jack of the quadratic restricfion diveetly introduces
Lorentz violations (LVs) {7-91, since the spuce-dime
ocally ix no longer invariant ander the boosts of special
relativity. Also, the global charscteristios of the space-time
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peometry are modified a5 8 consequence of the deformed
length inferval,

Extending the aotion of distance in the field of
nonquadratic metrie functions briags inte play an extra
geomelric property, apart from the curvature, relaed 1o
departures from the guadratic measarement, This extra
property of the Finsler mamfold, often referred as color
3,10}, divectly introduces LV effects within a geometsic
framework. it may be considersd a8 an effective manifes-
ation of guanium or emergent gravitationad phenomens.
Muoreover, the color of the mantlold forces us fo introduce
two types of covariant derdvatives In order to properly
define the paratiel displacement. The fizst covariant derfvae
tive {derivative of the horizontal space) generalizes the
Rismanninn derivative, while the second {derivative of
the vertical spece} 35 a pure Finglerian entity. Apparently,
this “exotic’ differentintion of Finsler geometry gives vise
1o three distinet Ricel identities that result from siixing up
the verticad and borizonta) devivatives. This sel of covariant
identities encodes all the information sbout the kisematics
of Finslerian fows,

Finsler spaces can be equivalently described ag the
geometry of g veloclty-dependent metric where the
distance belweon two poinés is invariant under roparamet-
rization of the comnecting cuive, In the litsrature, velocity-
dependent metrics have been studied from the onset of
general relativily, espectally in geometric optics and ana-
ogue gravity, One of the main V'privileges” of Fnsler
space-times is that they natvrally induce modified disper-
slon refations (115 Recently, this type of geometry
appeared in differont perspectives of quantum gravity
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{303 {see, for example, Refl [12] and references thersin).
For examplz, in Horava-Lifshitz gravity, rays may follow
Finsler geodesios 1131 within the condaxt of e “stningy™
space-iime foam where the 1 particles mecoll with the
world sheet 1149, in Cohen and Glashow’s very special
welativity F15], in bimetric theorles of gravity {12,16], and
in hotographic flinds [171. There are also stodies concom-

ing extensions of relativily theory within the framework of

peendo-Finsker strocteres dating back to the 19405 [18,19]
with several issues still remadning open 120].

In GE the internal motica of a flow is “encrypted” in the
fallure of the deviation vector to be parallel transported
slong the congroence. Following the muthematical defiai-
tdon of the Lie drag along the How, we can track the
evodution of expassion, shear, and vorticity with the aid
of the Riccl identily. This elegant and straightforward
derivation leads to Raychaudhuri's equation that played 2
keynoie role in the development of GR (for some recent
works, see Ref. 1217y, Boshed Hght on crucial questions ke
gravitational collapse wnd singulorities, gravitational red-
shift and lensing, and accelerating expansion and infintion.
This discassion s carrled on o various brasches of QG
where intriguing effects are reported 122] In the same line,
the recent entry of Finsler geometry in emergent aspects of
QG creates the need for further insight in the volume
geplytion of a congroence,

Mothvated by the mentioned rescarch warks, we
witl investignte the deformation of timelike congrucnces
following Cartan’s metrical approach [2,6,231 The king-
matics of Finsler geometry includes sevors] complications
coming from the three different Ricel identities and the
amdsotropie corrections in the Lie and absolute derivative.
e must sobve the global problem of peighboring curves
and their deviation vector by imposing specific symmetrics
for the medivm, s particular restrictive cases, we demon-
strate how we can retrieve g closed form expression for
the expansion of neighboring particles. The gonerslized
Raychuuedhuri’s equation is derived, where o color
curvature coupling is revealed that becomes more mpor-
tand in highly curved vegions. The stmple case of a dusiiike
fluid moving slong inotational geodesics gives back
a “countergravity” coandition where the locusing of
matter is prevented. Finally, the Hmit of the osculating
Riemannian metric s considered for o Randers space-tine.
in highly spatially curved regions, the Finsler contribution
can dominae and fead 1o 2 bouncing Friedmann-Reberson-
Walker (FEWY model

{I. FINSLER SPACE-TIMES

Let orfr) be s smooth curve in a manilold M connecting
two space-tme poings. The distance between the points is
given by the following integral over the connecting curve
and ity mugent direction:

8= | Flol{r), o{aiidr (1}
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The metric function £ is defined over the tangent bundle
T M. By imposing that the distance (1) is independent of
the curves parametization 7, we get

Flodyy = AFlgy),  A>0, @

where y* = 25 is the tangent vector 10 the o7} corve. In
cther words, the metric fanction F(x, 9} is hombeeneous of
degree ope with regpect (o the coordinate increments v,
Using Fuler's theorem of homogenous funchions we
retrisve the Tormda

P ) = gunln 304V )
where g, is the mistric tensor and Is given by the relation

1 §°F°
Zaplt, y) = 3 e )

Furdhermore, & Riemum muansifold i remdeved i Flx )
is guadratic with respect o ¥ Then, the double
partial derivative of the previous relation removes the y©
dependence of the wetric. in that sense. Finsler geometry
generalizes the Ricmannian case withia the Held of non-
quadratic metric fonctions. The BEuler-Lagrange equations
for the extremal of Flx, v} give back the usual relation

D7 4o g, sy

dr
wheres the second ferm in the lefv-band side i3 ustally
called the spray induced by Flx, ¥ and is related to the
Christoffel symbols by the relation

i
G‘ﬂ- = Z'; :}/aﬁﬁ}gi’},if. {6}

The extremal curves (5 defing a space of paths for the
Finsler muanifold,

The essential difference i the Finslerian approuch s
that the guadmtic restricdon on the mewde functon is
dropped. Consequently, the metric easor depends on the
varinble y®, amd each fangent space T <M 5 0o longer
equipped with ellipsoidal unil balls, Instead, there will be »
locus given by the restdetion F(x, ¥} = 1 {see relation ()],
This noncilipticity of the unit balls gives an extya property
1o the Finslerian meanifold, apart from curvature, referred as
color, The main quantity that measures the eolor of our
structure s the Cartap torston tensor

. § !:f&’ ¥ §
Cope = 5 =, 9)

since the condition Oy, » O tmiplics a Riemasnn space. In
thut sense, a Finsler space is a colorful curved manifold,
while a Rismann space is caved bt entirely while [24].
Recently, this extra property of the F, manifold drew
some atferstion i the community of theorsticad phiysics,
since i s reluted to Lorentz-vickuting scenarios (see, for
example, Refs. [8.9,11
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We constder the position spave together with the ¥*
nerements that solve relation {3) as the fundumental var-
fables of the physical space-time. In other words, we
replace the Riemann space-time with 2 Fiasler one where
the position space gives place w0 the clement of support
{x, ¥} 12,231 Thus, tensor fields will depend on the coor-
dinates of the tangent bundle 7'M induced by the local
chart of the base manifold M, In the spirit of Ref. 1197, the
sguare magnitude of & first rank tensor &% i 3 I8 given by
a0 0x v u®, and it separates to three classes: spacelike,
aull, and Hmelike for negative, zevo, and positive values,
respectively.

The tangent bundle T M has a local coordinate base
{, %) However, under a transformation on T "’vi in-

duced by & coordinue change on M,

act transform lineardy, This pmb om is solved by mmg
instead the adapied frame { el ;w with

the cloments 5 de,}

e o B0
where N, e
safoe argoment, the adapted frame o the colangent buadle

T M s e, Sv¢T, with
Sy* = gy + N tdx, 9

1% the nonlinesr connection. Under the

The presence of the nonlinenr connection foposes that
adapied {rame is nonbolenomic in the sense that the
following cormutation formudas hold:

{10y
{1

& 4
g o 4} ] 2
Fee a2

where we ysed the definitions
SNE. AN, o
ke, e Méwgﬁ’ - i (13}

and
‘f;N(I

TN - (14
be f:f}‘c ( }

MNote 1hat the tensor field (135 is also present in the
Ricmana Hmit and reflocts the gravitational field. On the
other hard, the &7, components monitor e “moess up”
between the coordinates of the base manifold M and the
elements of the tangent bundie ¥*,

PHYSICAL REVIEW I 86, 124023 (2013
HE ASPECTS OF FINSLERIAN CONGRUENCES
Conwider a family of curves ¥{s) and their tangent vector
fickd o in a manifold M, The paraliel displacement of »
voctor X% along the o bundie 15 given by the Tollowing
formuk
DxXs  dxe

e e

. i. i 5
ds dys F (1%)

The components P% are @ be specified by (he geometric
propertios of M. We consider the mathematiend idmzu(m
of the deviation vector 7 as the tangent of a second flow
given by the Lie drag of a cosnccting corve along the
congroence. The hnium tor paralie! transport the deviation
vector atong the flow moniters the internal motion of the 49
family, namely,
f},g

ds

The tensor fields in the right-band side of the above can
take explcit expressions depending on the geometric as-

samptions we Impose. The common examiple 8 the
Riemann cuse given in the next subsection.

3(: ch 4 AF g&{:r P (;&}

A, White curved space-times
When the mamfold s Riemannian, the paralle] displace-
mend (13} iavolves only corrections given by the lnear
connection. By taking into account that the deviation vee-
tor 15 Lie transported slong the fiow, £,87 = 4, the sbso-
lute derivative of £° can be gemed as

ég';a- P ap— I’gr’?v}}{a - g}'f’vg,a“,
ds
Comhining he provious cxpression with relation (163, we
find that only Hrst-order terms are involved in our approgi-
mation, Using the 1 -+ 3 covariant formalism 125], we can
write info its irreducible parts the second rank tensor that
encodes el the relevant information

{7

B = v&&u = ﬁﬁa& Tt gyt Ay, (18}
where we ase the definitions with respeet w0 the 3D cova-
riant operator B, = i,*V,, for the expansion of a volume
eloment & = Dy, Tor the shear o = 2Dgu, —
é@ham andd for the voriolly w,; = Dygig and tw four
acceleration A, = 4, {261

In Riemann geometry, the covardant derivative on a
vector field fails o commute due o the curvature of
space-time, The tensarial Ricel identity reads

2‘&7{6}17@ iy B adned Efd (E 9}
and decomposes fo three propagation and three constznint
eguations [26] for the frreducibie parts of relation (18) The
most relevant equation of this set is Raychaudburi’s equa-
thon that moadtors the evolution of the average volume of a
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spatial 30 element o V. It results directly from the Ricel
jdentity (19} by taking the trace and prajecting along the o
family

Aer? ~ @y b [ A9 - A AR
{20

where o = oo, /2 and ¥ = wP a2 and the last
twor termg aro representatives of extornal forees. Given an
indtially cxpanding phase of the flow (8 > 0}, we diveetly
conctade that positive terms in the right-hand side will
accelerate the expansion and negative ones will decelerate.
The staiement is reversed in the case of a contracting
phase. Notice that the evolution faw (20) s 8 pure geomet-
rie relation. it is walid for any theory of gravity that
assumes & Riemarmn manifold for the position space. We
can indirectly connect the evolution formuls (203 with the
energy and momeniem of watier through the Geld equa-
tions and the conservation relations. Tn the context of GR,
Raychaudhurt’s equation reflects the atiracting npature of
gravity, since {or ordinary matier the curvatare contribi-
sion always assists the contraction {211

.‘ [
o+ gé‘}‘a ~ R putul

B. Parallel displacement and Ricol identities

Arx we discussed, in Finsler spaces tensor felds no
lomger depend only on the position but ingstezd they depend
on the elemant of support ix, vy {2,23]. Therefore, the
properties of the tangent hundle T M is of central fmpor-
tance, The sbeolute differentiation of 4 vector fisld X* will
contain an exira contribution along the langent displace-
ment 4v%, I a locsl sxprossion we can write down

DX = 4X° + U9, XPeu® 4 OF, XPay",

er

an

where the coofficlents ¥, and T, are functions of the
element of support. We will restrict our analysis only along
the nonmdized Uimelike direction u¥ o= f;: This congru-
ence plays an sealogous role with the fundamentnl
observer of the 1 + 3 covariant formalism.

By imposing the metfricity condition Dy, = 0, wong
any direetion 2% we can recast relation €217 in g covarkant
Forne by using the hovizontel and verticad split

., DX ol
A e 3 JE s E S FY O i
iy X i Kot dy @2
where
" M{’“ P
Xe,, = e + B X7 (233
. AX4 )
X{‘f‘gy = ;3}"& bR e }‘:‘ {?‘4}

and = v/ F i the unit veotor in the direction of the
clement of support (x,y) while DI® = dF + L, 1"dx,
Note that for X¥ = «f* relation (22) implies i“l 8= & and

PHYRICAL REVIEW D 86, 1240005 (20123}

the spray coefficionts (6} deternrine the integral curves. We
will refer to the operator {233 as the horizomal covariant
derivative mmd o {24) as the verdesl one. Also, the con-
nection cocfficients i (24) satisfy the following relation:

mmmmmmm 4 éga’a -
X &

n.that case a parallel displaced vector field DX = Qkeeps
its length invariant. The covariant expression (22) is the
evolation faw for any first rank tessor, The vestical part
(24) is a direct wsult of the distorted effipsoid conditon
(3}, Together with the noslinesr connection {R), it monitors
the LV effect on the evelution of the X flow,

The sphitiing of the propagation relation {272} allows s
{0 formulaie a curvature theory in the footsteps of Riemann
geomelry. Using the vertical and horbzontal covarianm
derivatives, we reerieve the following generalized Ricgi
identities:

2%

X = X0 = XIR S ~ X RY. (26)
Xple — K Ly = desfﬂga;w (27}

and
KOl = Mol =XOP 2y - X9 C0 - X2 P4 (28)

where the curvataee components are defined by

i1 B SL#
— 4 de
Rifse ™ gt ™ g T el
LI LE g O R (29
S b Gl = (P O (30D
8L" . "
Pa’ b = fit - C'Wﬂatib + (:ﬂdﬁp s (3i}

ard the torsionlike tensor field P9
ing exprossion

e 15 given by the follow.

(32

The Ricet identitios 26028} enclose the relevant infor-
mation about the nonlinedr kinematics of the integral
curves, since the torstondike wnsors O, R¥, | and P9,
are Tuily determined by the fondamentat funciion Flx v

The imeducible decomposition of relations (253-(28)
will give baek a sot of covarlant rehations [27]. However,
this iz not enough to determine the actual deformation of
the X9 curves. One mast further procesd 1o conneet he
aforementioned relations with the actuad internal motion of
the congructaes, In the general case, i scoms difficult to
retrieve closed form expressions for the evolation of ex-
papsion, shear, and vorticity, Therefore, to get the defor-
mation of 2 cross section we npeed o solve the globul

1240254
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proflem and wack back the kinematics of the medium,
sither by considerable simplifications or by using numeri-
cal sechoiques.

To further dig info this problom, consider a family of
timelike carver and thely magent veotor #* in a Finsler
spaee-time, By virtug of the absolute ditferentiation (2323,
s propagation eguation for the deviation voolor & written
in the form

D

S PPV RN < Y
& LT § éff s

{3

Notice the extrs contribution in the evolution of the devia-
M veotor, coring fromn the vertical operator along the %{f
direction. The component of "mi,f along £ will imvolve op o

second order s with respect 1o £7 in the kinomatics of
ihe mediom (303 (or & similar discossion on higher-order
terms in the Riemannian framework, see Rell 1281 The
most relevant contribution of the second-ueder ferms is
expected whea %—S i parallel o the deviation vector On
the other hand, the second-order terms will fade away if 82
is parallel transported along the congruence. Using the
mathematical defuition of the deviation vector s the Lis
sransported fiskd slong the u® congruence, we shall retrieve
further analytic expressions for the deformation of the
integral cwrves in these two Hmiling cases of f;if
iSecs. VA and VB, respectively). ‘

IV, LIE DERIVATIVE AND KILLING VECTORS

The most closely related to the Rismanaian case defint-
ton of the Lis dedvative results from the infinitesimal
wapsformation on the position coordinates of A

o= g0 0% xkd, 34
where dr s an infinitesima] constant and %0 Is a vocior
fiedd defined over & reglon of the base mantfold (21 The
above displacement assiges at each point x¥ a shiff on the
position space de® = v*{xldr that implies 4 corresponding
varaton of the ¥* components of the element of suppod

~ o fau a,,)
A 3 a’ -
7 Y (Ej‘x}“} Jo

(35

Following the usual procedare {299 for the Lie derivative of
7 veotor field X0, ¥), we lead o the formula

g3

34X )
Xty gl {U&!n}f"j‘

X 36)

L5 = X“wv& -y
The third twrm on the right-hand side of the previous
relation comes from the prelered direction imposed by
the elemont of support. Howeves, the reader should keep in
mind that relation {36} is # special case, since the Lic
derivative is defined along the veotor v9{x) that is inde-
pendent of the coordinate increments y*. The condition
L, e = 0 mplies the equation for the Killing vectors

PHYSICAL REVIEW 13 86, 124025 (2012}
Uy + Uy F Z?.f'-'(?afmv”;dgff = ), (3%

Thus, the Killing solutiens are kinemetically enriched
compared 0 general relativity, since Cartan’s (orsion wa-
sor Uype and the clement of support beply expansion,
shear, and vorticity for the bundle,

Consider the 4-velocity of a timelike congruence #*
together with the doviation veotor £, and let us assume
that they both depend only on the position x%. Tn that case,
retation (367 takes the simplified form

Lo = £ = a0 = 0. (38)

For a parallel displaced element of support, %ﬁ = {3 the
vertical contribution disappears from refation (33}, and the
horizontal derivative plays the same role with the Riemann
covariant dervative. Therefore, the intemal deformation
of the o flow is fully deseribed by the irreducible parts of
B = sy, Thus, assuming 2 geodesic dSmebike congr-
ence and using (33) wgether with (37) and (38}, we got

O+ FCu (0 + 07 87 = G, (39}

where we define Cup = 2,7, "h,/ Capr and 8, =
{8y, + o, in anglogy to the Riemann case for the
hortrzonts]l covariant derivative, while £¢ = fu‘*éﬁ* is the
spacelike part of the unit vector . Thus, for a tmelike
congruence #7(x) that is a Killing vector and the deviation
veetor depends solely on the position, the expangion and
shear are nonzere if the element of support points W a
preferred direction In space. Note that shear free and
irrotational Killing vectors of e previous example are
abways nonexpanding.

V. FINSLERIAN CURVES AND
VOLUME EVOLUTION

The ondy geometric wol in hand to measure the relative
motion of a family of curves (s} is the paradiel displace
wment of the deviation vecton As we already mentioned, this
displacement is directly related to the covantant derdvative
of the tangent vector 1. However, in Finsler geometry the
covariant dechvative s replaced by the hordzontal and ver-
deal decompositon of the sbsohute derivative. This is a
natural result, since the shandonment of the quudratic
restriction forces us 1o replace the position space »” with
the element of support 0%, ¥°L Therefore, & wolate the
vodume evelution of o Finslerian congruence we need o
take into account all the curvature together with the orsion
fensors {26128} and vp 16 sevond order terms i refaiion
{10}, The analyvtical treatment of this problemy scems a very
comphicaied sask, bul we can get some togight through
soune geomeic sssumptions.

First, et us prove that second-order forms i relation
{16) enter the Kpematics, Consider a dmetike fow # and
itz deviation vector £ that depends only on x¥. The paralle!
displaceinent of the unit direction #* along &® decomposes

12253
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to a component along and perpesdicuiar to the deviating
vector &Y

= fge 4 je. (403

To focus on the second-order termy we assume that the
tramsverse part of (U vanishes: T = 0, Nowe that this
assumplion lmples F£, =, since P = y8/F by con-
strnction. Then, by vittue of (233, (33), and (38) we got
the following relation:

{)é' o Rag})éz& + “‘“Cwbg*_ﬁ:ﬁf’i “4n

which proves our previous stsiement that sccond-order
terms are nataratly involved in dhe evolution of the devia-
tion vector. it is evident from relation (41} that an anaiytic
expression for the expansion, shear, and vorticity of the
comgruence is unapproachable.

The second-order terms of £, complicate the piciure,
wad even in simple geometric configurations aonfinear
effects will wwnerge. Bven i we consider the isotropic
condition Tor the frstorder lerms wg, = B, Cartan's
tensor will change the nifiad direction of £, Thorefore, an
isotropic cross seotton will eventually be distorted. In the
following twe subsections, we study two partionlar cova-
rignt examples of relation (413, In the first one, we Imposs
spherical symmetry in the evolution law (41) and retrieve
particular sohntions with respect to the affine parameter of
the congruence, In the second one, we restrict our analysis
tir a partioutar class of eurves where the anisotropic unit
divection I is parallel displaced and recover an evolution
formula for the expansion of the bumdle.

A, Spheriend symmetric evolation

Asgsurne that Cartan’s torsion tensor takes ifs reducible
form {301

C{;M = C{ﬁ h;{ﬁﬂ-}» {4 2.}

where C% = (9, ¢ ig often referred as Cartan’s torsion
vector. Alse, [, = go o+ ol by i the anpular tersor that
projects orthogonal o v, and ¢ = 31 for & spacelike or
fimelike unit direction, respectively, Apart from the aniso-
tropic contribution from Cartan's tensor in relation (413,
there 35 an isotropic offect along ihe direction of £ In
particular, we recover an isoiropic evolution for the cross
section when €, is paralle]l o the deviation vector ¢, =
C&, and the simple relation w,, = Bh,, holds. Then,
by virtue of these assumptions and msing relations (41)
and {42} we arrive at the expression

3] é::ﬁ

i

e (b O {433

¢
with (0 = ?ﬁﬁ‘. Thus, in the above exampie the deviation
vector akways points al the same direction, as it is parallel
displaced with respect to the y(x) curves, An initally

PIYSICAL REVIEW D 86, 124025 (2012

spherical symmatric reglon of space will sustin is shaps
as i moves along the % congroence. 1 that case, the
magninde of the deviation vector is abways the mdiug 7
of an iketropie 3D wection, Contracting relation {43) along
£, we derive the evelulion law for the rading:

e (B CFr {443
where the dot operator denotes the absolute derivative with
respect 0 & The second term in the right-hand side of
refation {44} involves nondinesr correetions 1o the expan-
sion dypamics through Cartwt’s tersion veotor. When
Cartan’s fersor vanishes, we retrieve the vorticily and shear
free expansion of the Rivmaenaian Limit where B s § . In
that case, a constant expansion rale guarantecs an oxpo-
nential sohution for the volume slement, The exponentisl
behavior is closely related to inflationary sconarios of the
carly Unbvorse.

To demonstrate how o simple Inflagonary model can be
affected by the nonlinesr Finsler contribution, let B=
const and O = const. This Hmit setrieves the aforemen-
toned behavior for O - §. The solution of relstion (44)
leads to the formula for the volume of an Isotropic cross
section of the v congruence:

' b )3!2
LRSS O —
({'EB(:‘ B

where ¢ s a constant of inlegration. In the Ricroannian
spproximation, the case of B < cormsponds W an
exponential contraction which tends W the singular value
V- Q. For the Finsledan volume element (435 given the
conditions B < O and € > 0, we get an additional phase of
decelersting contraction for small values of the parnmeter
g O the other band, for 8 <0 and €= 0 the clement
motctonically contracts. In both cases of contraction, the
singular fate V- § ig abways unavoidable. The inflation-
ary behavior in general velabivity i3 retrfeved fw 820
whete a 3-sphere ctornally expands exponcodally. 1 rehi-
fion {453, for B> 0 and C <10 an initially inflationary
expansion s o & decelerating one that leads to a “fro-
zen” state: V,, = {~ &% Purthermore, for B > 0 and
> { and by restricting the values of ¥ to be real, the
parpneter 5 is bounded by an upper value 5. = ;,i: fr:‘—’igfw
The volume element tends 1o & caustic 2s we approach 5,
since its radius reach infinity within a finite time interval.
The two cases of expansion are depicied in Fig. 1

4%y

B. Raychaudhur?’s equation

The intrinsie nonlivear natwe of he Fingler manifold
disapproves the extraction of the propagation equations for
ihe Kinsmatical properties of the »® bundle. In the general
vase, the evolution of the expansion cunool be exprossed in
closed form, This is evident even in the simplified example
of the previows secton [see refation {443, The main sus-
peet for this complication is the vertical part of the absolte
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FiG. L Free seade volume evolution for an inidally expanding

oross section with respeet to the parameter of the fundamenial &
congruenee. The solid Tne corresponds o negative values of €.
An imithally eaponential expansion grdually mms o s deocler-
ating phase that Bually “freezes™ w0 o constunt value vV, =
[ {53}3;2, On the other hamd, positive values of ¢ (dashed Hined
sot an upper value 2, for the arclength where the volume elamont
reathes e caustis,

derivative. In order 1o derive Ravchaundhui's equation, we
are forced to impose some geomstyic constraints, The firse
dmstic assumption takes tmo account converns the ahso-
lixte dertvative of the upil direction /%

Precisely, fel us consider a Comily of tmelike flow Hnes
along which 7 is parallel displaced, 25 = 0. fn that case,
relution (333 gives back the evolution of the deviation
vegtor, £, = £pte®. The umit element is writlen into Hs
irredacible parts a8

1w fuy 4 €, {46y

and since the absole derivative alomg ¥ vanishes we
refriove the oxpression for the 4-acocioration of the
COAZIUCRCE!

A, = =L (473

By usiag relatton (47) together with the Hmit that the
connecting vector £4 depends oaly on x, the Lie decivative
(38) implies that ondy first-order terms are invelved in
the right-hand side of (33} Moreover, using relations
(33) and 038} for a class of curves where the anisotropic
unit divection # s paratlel displaced {17 == (), we retrieve
the relation

£ g £8 (43)

Hence, in owr Hmitdng case we can frack e internal
motion of the medinm with the aid of the horizongal
derivative

Baif = Hgipe (Zﬁ,ﬂ;\}

in agalogy to the Riemannian case discussed in Sec. TH AL
The irreductble parnts of the shove expression monitor

PHYSICAL REVIEW 1 86, 1240033 (2042}

the expansion, shear, and vorticity of the congroence.
Their definitions are shmilar 1o the Rismanndan case
{18}, although the Levi-Civilm commection V, s o
placed by the hovizonial operator that involves the
nonfinear connection.

Furthermore, the tdmelike pat of the costracied
Riect identily gives back the propagation equation for the
expansion

&+ i 8% m - R u” - Uo? ~ w?) - Ty ntu?
3
i P .
g D E) - DL, (56}

where o7 = oo, /2 and @ = w*w,, /2 are, respee-
tively, the scalar square magpitudes of the shear and
vorticity, while T, = C AR, represents a coloe-
curvature coupling coming from the anholonomy of the
basls and the nfrinsic anisotropy of the metric, The last
ihree terms are due 1o the acceleration given in relation
{47 and comrespond to nongeodesic motion. n the right-
hand side of relation (30%, positive torms resist the cone
traction of the limelike bundle, while nogative wrms assist
the focusing of the congruence. On the other hand, in an
expanding phase, positive terms accelorate the deviation of
neighboring How lines, while negative terms contribute
with a decelerating effect.

Y1 COLLAPSE OF A DUSTLIKE F1AHD

In generad relativity, Raychaodhur!’s eguation is a sec-
exsury tool to study the behavior of a self-graviiating fuid.
i has a purely geometrioal origin, although it is indirectly
correlated o e enorgy and momentum of matter through
Emngiein's field equations. When we consider irrotational
Loy = U3 perfect Huid configurations of ordinary matier,
fhe congruence always forms a caustic. On the other hand,
if we replace the Riemann manifold with a Finslerian, we
are unable to derive in the general case a closed form
expression for the expansion. Also, the relation between
matter and geametry remaings in the sphere of speculution,
but remarkable progress hay been made 10,311

The deryation of relation (30} requires 2 paralle] dis-
placed element of support 25 = 0 along the #® bundle.
Under this agsumption, the relevant Finsler catities that
enter Rayehaudhurt’s formulz are the Riemang curvature
{26y together with the two torsions (C¥, L R, Yand the
d-goceleration. Purthennore, nongeedesic motion is neces-
sarily retated with the unit preferred direction throush (47,
Sinee fur the paraliel displacement (22) the only operator i3
the horizemtal differentiation (23), it is identified sy the
covariant dertvative in snalogy 1 the Ricmannian case, I
we Impose encrgy amd momontus conservation for o
setup, then we got

7o, w0 {51)

12402357



KOURETEIS, STATHAROPQULOE, AND STAVRINGS

with 79 representing mn hoperfect fluid, One can seareh in
the identitios of Finsler geometry for a second rank tensor
thut satisfies relation (31).

Keeping close to GR, the Bianehi identitics Tor the
Riemunn curvature {26) with respect to our covariant dif-
ferentiation arg

R #

2 pgle

+ RGP,

& & i &
+ Rli eold + R‘f dete + ﬁfdﬂ;)ﬂ}f‘f'

+ R Py = (52

The nearcst curvature theory fo general relativity s
achicved i the space-fime has the property P = 0
Then, after some short caloulations, we arrive o the fol-
lowing conservalion law:
fady o pleb] } ah) e y
(R + & 2Rg " & {33
whete R, = 259, .0 and R = g% R, sre the Ricel
fensor and sealar, respectively, Motice that due to the
tersion contribution in the curviature (26) the Ricel tensor
decompnses inte a symmeiric and antisymmetrie part
Furthermore, the P, = 0 restriction gives buck the
constraing [61 for the § curvaiure

Sabedie = O (54

As is naturally expected, the Tull set of the Bianchi iden-
tities For the Finslerian selup involves relations where the
verfical derivative appears, For the full setup of the strue-
ture equations, the reader {s referred to standard texthooks
of Pinster geometlry, eg., Refs. {2,458 The aim of our
analysis s o exiract some quafiiative mesulis about the
convergenee of neighboring particles falling along owr
restricted bundle. Then, enly the horizontal devivative is
imvolved i the expansion dynamics and the Riemann
curvatare is he ondy curvature that directly coniribates w
Raychandhari’s egquation (50
. The most trivial chodee i3 to assome that the Symmetric

and amisymmetric paris of the twice-contracted Bianchi
identities {33} are expicitly conserved. Consequently, rela-
thons {511 and (53) lead to the field equations

Regpy = %Rgaé; = KT ap (35)

where « is the gravitational coupling constunt, However,
there are the additional constraings for the satisymmelric
part of the conservation eguition (53)

Rletl = 0 (56)
sad for the S curvature piven by (54). The above field
eqlaakioms tepresent & subsel of the general Fissler problem
620311 Yoi, they wo compatible with the geomewric
assumptions we made (o derive the evolutiom eguation
for the espansion (301 Relative to the fundamental
observer, the energy-momentum tensor of a per}tec*t dugt-
Tike fluid is

PHYSICAL REVIEW Ir 86, 124023 (042)
Taw == Pty {573

with p = T,eun® standing for the energy densily of mat-
ter. Notice that relation (533 implics that the energy density
will depend on the element of support.

The conservation law (31) forces the mutter distribution
(373w move along geodesics and the d-aceeleration vector
€473 1o vanish. Thea, by virtue of elations (53) and (37}
andd assming that roatter falls along rrotational geodesics,
we recast Rayebaundhur™s equation () in the following
forny

o i N
o+ %@3 = owp - 20t - Tgutub. (58)

The sign in the right-hand side of {38 determines the
condition for the formation of 2 caustic. In particular, the
focusing of the world lines is provented oply if the ciht-
hand side of relation (38) is dominated by positive terms,
namely,

! e <t
Supt Dert e o T gt {393

2
The term that can resist the gravitational pull of 4 geodesic
cangruence comes from the coupling belween the Cartan
forgion fensor and curvalure. Tt fulfils the requiremenis
only i Tue%e® <0 On the other hand, the color-
wrvamm ci“}”u:t adds o the seli~attraction of the medium
when ¥ ,a% > 0. The more we deviate from the qua-
dratic restriction, the more woportant becomes. the Cartan
torsion, and the coupling term gets stronger. However, even
for slightly eolored regions {C . <€ ) the prevention of the
caustic becomes plaosible in highly curved conditions,
since the Riemann tensor enters the right-hand side of
refation (59).

We can extract further informaton about the Jast form of
refation (38} i we decompose the curvature tensor. n GR
the carvature tonsor decomposes (0 a purely antisymmetric
part (Weyl tengord, 0 2 symmetric second rank tensor
(Ricei curvanme), and 0 a scalar part. Although in
Fissler geometry the Riemann curvature is well defined,
w0 the best of our knowledge & simdlar meaningful decon-
pasition cannot be retrieved, since R4 does nof possess
the same symunetries. Nevertheless, we can impose par-
ticular svimmetries for the curvature @0 obiain farther
insight in the same lines with the Riemannian case. In
snalogy with GR, the relation which characterizes an iso-
fropic point in Space-time i%

ZdR_az‘m‘m - E}i{iégﬂc = LeBaph (6l

where T corresponds (o the Ricei sealar in the Riemansian
lizvait {23, This Hmit is widely used in isotropic scenarios of
gravitational collapse. Then the condition (39) fakes the
simphified form

:éxp 4 Zer® < RIC, 0t (613
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where €, = (2" ix the Caran torsion vector
Therefore, in the symmetric lmit (603 ondy the tmelike
part of the clement of support contributes 1o the aveidanee
of the caustic, Also, the focusing of the congruence can be
aveided either for negative or positive W depending on the
orfentation between Cartan's [omsion veotor and the tangent
o the flow Haes.

VH, OSCULATING RIEMANNIAN
FRW GEOMETRY

Ancther method 10 oxplore some aspects of Finsler
gemelry I8 the osculating Riemunpian approsch. This
Emiting process resiricts our analysis 1w & region of 7,
where the coordinate incremenis v depend om the position
x7 {see, For example, Refs, [2,32] and for the kinematios of
deformable media 331 In that case, relation (4) defincs a
purely Riemannian metric, namely,

#apleh = Fatrln, ¥ {07y

and the taposed metricity implies the Levi-Clvita paral-
telisn. Then o ow subregion we can use the Hingeln field
equations together with the energy-momentum conserva-
tion by following the usual argaments

Gl v(xh=wl plxyz)), V7 yxi=0 (&3

where Gy = R — 4 Rrgp stands for the Einstein tensor,
while the nabla operator Is the Heear connection ndeced
by the metric (623

Lo us consider the interesting class of Randers spaces

F=g+ A {64}

with o = s/;;ab}’“j*!’ standing for a psewdo-Rismanndan
metrie, while = b, s the Fipslerian contribution.
The vector field b, introduces a preferred direction in
space-time as & phenomenoiogical conseguence of 2
Lorentz invariance violation, The mettic function (64)
interfaces a Ricmanmian space-time with Fingler geometry
m a simple mammer, The sindy of such space-times gives
many new possibalities, since B monitors departures from
specific Riemannian cxamples. Concerning the process of
graviationsl collspse in gonerad relativity, the most char-
acietistic example Is given by a spherical synuneitic and
isctropic dust finid, In that case, the geometry of space-
tne s well described by dhe FRW metric

g = dia g(l* - @ ArE, - B sin? Q)A {653
Nole that K =, 21 s the spatial curvature for 8 fiag,
closed, and open model, respectively, This perlect dusiBke
configuration of the Rienmanoian Brdt can be transplanted
in a Finslerian setup by inserfing the metric wnsor (85 in
relation {64). Let oy assume the common Finsler case
where the vecloy field »* is identified as the velocity of
the congrence in question. Then the d-velocity u, of the

PHYSICAL REVIEW Iy 86, 124005 (2013

fuid fow stands for the anmsotropic variables v, By virtue
of refation (64), the vector field b, is written into is
irredicible parts

by = Big + B, (56}
where T, = & 25, stands Tor & preforred divection in the
instantaneous est space of the fundamental obsarver.

In onder o Keep close o the FRW gymnmetry, wo lmpose
homogencily and isolropy. This, assumplion switches off
the spatial part of &,. Also, our anslysis I8 restricted 1o
smonotonicalty decreasing fanctions of (e} to recover the
FRW limif for large vaiues of the scafe factor. We consider
the particular profile £ = ¢07", where ¢, stands for a
small constant. However, the following asalysis holds fore
large class of profiles. Projecting along the d-velovity of
the comoving obyerver nelations (63) gives back the evo-
jution lew for the scale Tactor

] i
& - é—x,oazfﬁ Ag)r K=~ oK (7

Bdf s

fogether with the Hnear indepeadent continuity equation

24
gm-)p = 0,

525 (68)

i
B+ (’3“4
i1

where £ remaing an undetermined Fonction of time.

The Newtomian kinematical analopue of relation (67) is
the motion of & point particls with kinetic energy X = 147
and iotal energy B o= — %_ K. We can directly inteprate the
frrst-order differential equation (68} to obtain the solution
for the energy density

a?

L e 58 B9

in that case, our hypothetical particle falls in the poteatial

+
£F e E K g -1 .Ew.w.wiif% - K’ﬁ'

6 T a0

The modified FRW potential (70} corresponds to a collups-
ing dostdike fluid I the scale factor ¢ is a decreasing
fanction of time. On the other hand, It {x natral 10 expect
that the Finslerian contributiop fades out as the fluid
expunds. Then, to recover the FRW behavior for farge
values of the scale factor, we must Impose that # decrease
faster than ™' (1 == 1 for our profile). In that case, for late
times of the collapsing process the B contribution in the
right-hand side of {70} can play the role of a gravitational
repeller, The main offect comes from the coupling tam
with the spatial corvature and depends on the Ricmannian
AD geomelry (K =0, 1, — 1) In the same Hoe with
Raychandhurt™s eqoatiom (307, we retrieve again 4 color
curvature contribution, since # is the quantity that broaks
the guadraiic resizicgon (64 Moreover, to resist the pravi-
fatonal pull of malter, the spatial curvatare & and the
Finslerian contribution f must be of the same sign
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Netice that the main effect fades out in the case of 2 fay
spatial section,

Consider a contrpeting region of our hypothetical space-
tme where initially the scale factor Hes i the standard
FRW segion of the potontial (7). Because of the self-
sitvaction of matfer, the costraction will be in an acoelerm-
ing phase as in standard gravitationsd physics. As the
region shrinks, the coupling term between the spatial cur-
vature and color starts 1o dominate and acts a8 an effective
pressure agairst the puil. Eveatually, It forces the collapse
to a decelerating phase, untd the fuid bounces o the
pertential af the tarning poin

AT IR oy
where the subseript & dencies the value a¢ the bouncing
point. Adier the bounee, the medium expands in an accel-
erating manser that {rns o & deerleorating phase until the
gravivy dominates again. Then, the Huid recollupses, and
the process repeats itself to infinity revesling an oscillatory
behavior for the seale factor (see Fig. 2. A similar behav-
ior s rewrieved in the context of very spacial relativity for
the Bogoslovsky line element [34] and on tangent Loronty
bundles {35]. The bounce is also possible in an open model
i g <0, but an expanding phase will never recollupse.
Fimally, in the case of flat spatal sections the singuler Fa
of & collapsing dustlike fuid is unavoidahle.

7
Bourcing point

£k

B e ol
i

% 2

Recolizpse

FIGE 20 A skewh for the oechanical sndogee of 4 test particle
moving in the potentisl (70) for & closed spatial goometry with
B> G and p > L The stradght Boe epreseris the sofal energy,
the diashed Hne in the siaadard FRW potenifal, and the solid fine
stagnds for the modified case (70}, An inltially contracting region
starting froen the dght of U, will acoelerate uad then decelerate
watil the bouncing point. After the bounge, it enfers an sccpl-
erating expanding phase watil it crossey Uy, Then, the reglon
decelerates untl] the self-geavity of the Auid dominates. The dust
Ball recollapses, and the provess stans over revealing an oscil-
{atory behavior for the 3-vohume clement.

FHIYSHCAL REVIEW D 86, 124003 (3012

VIHL DISCUSSION AND CONCLUSIONS

n summary, the Wtrinsic anisotropy Imposed by the
noaguadratic metric Numeiion #(x, ¥) gives hirth o varioes
kinomatical complications. The evolulion of the devialion
vector along the miediem’s Bow Hnes monitors the inferaal
deformation and involves up 1o second order terms of &%,
Combined with the three distipet Riced identities (2680028}
that we get from the two types of covariaat dertvative, the
evolution equetions for the expansion, shear, and vorticity
of the flow seem difficult o be given in closed form
expressinons. AL this point, one cun either treaf the tangen
bundie as his base manifold wnd split bis tensorial quanti-
ties to vertical and horizontad coraponents (for texthook
reatment, see Refl {61 or procesd o farther geometric
assumpiions € get some apalyiical or awmerical resulis.
The fiest approach ghves anslogue relations with GR inthe
horizontal and vertical subbundles of T 7 M providing s
way o siudy focusing of congruences in the total space of
the manifold 127] However, one bas o “tramslaie™ the
covariant T T M expressions back to the actual deforma-
tion of 3 medium’s cross section.

Un the other hand, 8t a first “hrute-foree™ atlempt we
may iry to solve the global problem for the congraence and
its comnecting vector for particular geometric conditions,
Then we can frack Back the deformation of 2 cross section
throwgh the svolpiion of the deviation vector with respect
{o the arclength, The latter is given by the absolute differ
entiation along the mediuny’s fow laes and invoives two
distiner covariant derivatives. The first one is along the
tangent 1o the flow lines #® = &5 while the sther is along
the evolusion direction of the element of support, £ = %% .
I the main bulk of this paper, we restrict our analyyis for
sizrpheily to nonmatized dmelike congruences that depesd
solely on the position coordinutes, #* = #7{x). This par-
ticnbar class of Phmlerian integrable curves is widely used
to retrieve stivpler Formulas and tsolate particular proper-
tes of the manifold (2] They ae closely related wy the
Riemansian oncs, and we can Lie drag a temsor field along
them in & sinpde and straightforward way, However, the »”
bupdle stll “eels” the color of fhe struchure mainly
through the Cirtan tensor. In fact, this is elearly depicred
in the constraint relation for the Killing vectors (37}, where
thie bundie can anisofropically expand in contrast (o GR,

The Lie derivative plays g central role, since we define
the deviation vector os a Lie trunsported spatial congruence
along the How, L,.8, =0 [28] Bven in the case of a
devition vector thul depends solely on the position, the
evolution of a cross section invelves up 10 second order
terms with vespect 1 £°. Fara given dircction 7, the first-
order deformation is given by (he hortzontal derivative of
# and the second-order by the Cartan tensor (413 The
example of an isotropically evolving volume slement is
given where the sxpansion of the flow canpot be deter-
mined ab nitie. In 2 simplistic scenario, we solve for
the volwme of the congruence and demoastrate how an
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exponentially expanding region deflates or reaches a caus-
the due to the Finslterdan contribution. This ssgoests that
cmorgent effeets of QO may have s crucial kinematio
reaction to nflationary models of the early Universe and
deserves forther investigation,

Possible GR modifications are more Hkely o sppearin
highly curved regions whese QU physics may emerge. [n
(3R, such conditions favor the formation of a singularity
and/or a caustic of the congruence. Henve, the breaking of
thee Yocad symmetry of GR opens up the possibility m evade
the focusing of neighboring panicles and the space-time
singuarities fsee, for exumple, Refs, [2236]1) From a
kinematical perspective, any modification of the curvature
theary will directly affect dhe deformation of the #° bundle
{22} That {s the case also in Finsler geomeny, where the
curvature theory is extended with the intodaction of colon
The iatter monitors departures Trom the Lorenlz symmelry,
since it reflects the breaking of the quadratic restriction on
the distance module. Hence, In Fingler zeometry the inter-
nal motion of & timelike flow is sffected by the color (LV)
el g variations,

We concentrate our analysis iy the expansion of a time-
Hke flow. The complexity of the general problem forees ny
te pick a puticalar clase of congraences along which the
prefemed direction imposed by the element of support is
parallel displaced. Then, for a position-dependent timelike
bondle, Raychaudhurt's formuda can be retrdeved. In that
case, geoeral conclusions for the expansion dynmmics can
be derived. The more Interesting Finsterian effect is a
coupling between curvature and color, This term is movre
likely o become doninant Ta high corvature environmens,
exactly where we speoulate that QO effects may become
important. Under certain conditions, it can reproduce &
repatsive effect to nelghboring panicles or add to the
gravimational pull. The focusing theorem for our restricted
congraence is given where irrotational geodesics of dost-
like matter can avoid the caustie. Neveribeless, the caustic
prevention does not pomantes that the real space-tme
singukarity vanishes. However, # polmts onl a possible
QG mechanism that can slow down or even stop

PHYRICAL REVIEW D 86, 124025 (3012}

gravitstional collapse. The formalism can be extended w0
study the offect on the shear and vorficity ol the medivm, In
the swmwe context, the covariant perturbations over an
atmost FRW model can pive back some imprints of color
in the spatial distribution of the cosmologioal Huid {26]
Also, Raychandhnui’s eguation for null geodesics {37}
would be desirable, since it is of central Imporance in
gravifational lensing and distance measurements {381

One of the most femons solutions of Einslein’s theary
of gravity is the FRW space-time, It deseribes an iso-
opic snd homogeneous Quid, and i 13 2 good approxi-
mation for the cosmological medium and for the interior
of a star. I GR, it clearly monitors the gravitationad pull
of matier through the evolution of the scale factor. The
contracting phase tv always accelerating and leads to the
mig-bang singalarity g - O, In phenomenological mod-
el of quantm gravily and for nonstandard matter fields,
the big-bang singularity is avoided in varions examples
1397, Usuaily, the medium belore i reaches the singular
point boumes back and enters an expanding phase.
This models are candidate aliernatves (o inflation, and -
thay cun also prevent the formation of the black hole
horizon 140]. We recover the same behavior for an
almost FRW model using the Randers metric in the
oxguisting Riemmnnian Hmit, Moreover, the bounce
poours only when the space-time s spatially corved.
The mechanism that prohibits the formation of the sin-
gulsrity is 4 coupling between the spatial curvature and
the variable that breaks the Loremiz symmetry. Thiy
resuft s in sllisnee with Raychasdhuri's equation and
reveals from # geometric porspective that departures
fromn the local symmetries of GR may lead 0 nonsingu-
lay space-times,
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