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Abstract  The Hoearized form of the metric of & Finsler-Randers space is studied
in refation to the equations of motion, the deviation of geodesies and the geneoral-
ized Raychaudhari equation are given for a weak geavitational figld. This equation
is also derived in the lramework of a tangent bundie. By using Cartan or Berwald-
like connections we get some ypey “gravito-elechromugnelic” curvature, In addition
we Investigate the condittons under which a definiie Lagrangian In 2 Randers spuace
feads to Finstein feld cquations under the presence of elecironmagnetic ficld, Finally,
somne spphcations of the weak field in o generalized Finsler spacelime fur gravitational
waves are given,

Kevwords  Finster geometry - Weak gravitationat field - Ravehandhort sqguation

1 Tntroduction

In the framework of general refutivity, weak fields and gravittionsd waves have been
stuced by many authors decades ago e.g. [1-31 One of the lundamental problems in
goneral relativity is the study of gravitational waves. The existence ol gravitstional
warves I Hieur verstons of the theory was aleady known in Uy early days of general
relativity. Hirst Hinsteln considered in 1 Minkowski spacetime with a metric #g, a
sinall perturbation €, such that the induced field ay, = ny 4 60 with leg,| <)
obeys by perturbation in linearized eguations of motion. The Haearized theory of
Fravity 18 an important theary hecatse i can be otilized 48 a foundation for “deriving”™
generad refativity. By using the linearized fleld theory of gravitation scme observable
phenomena of our solar system snd the universe can be detected {4,531 The wenk field
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tomit at & Finsler space-time has been studied in {6,7] and in the tangent bundle of o
Fingler space by (#1061

in our study we consider a psendo-Finsler-Randers space—time of metric fune-
thost [ EE]

Fleyy = Jaglx)y' vyl + kA 0oy (5

in the weak field fimit whese a;; represents pseudo-Riemannian metrie, ¥ = %’i {in
applications ¥’ represent velocily), 4 a parameter nlonyg the curve and & a constant, A;
represents the elechromagaetic potential which is connected with the electromagnelic
field by ki = 5oF ~ 24

A Finsler~Randers space (FR} constitutes an imporiant category of Finsler spaces
from mathematice! and physical perspective e.g. [ 12151 1 a FR space the condition of
symmetry for the fundamental Tunction F (x, v) iy not sutisfied Fix, v) & Fix, -~y
Causal considerations in pieudo-Fiasler space-time that include only symmetries of
{fundamental functions [16] wre very restricled and exclude by studying pseudo-FR
spaces [12,15,17].

Pinsler-Randers space can play a sigmficant role in the theory of weak field and
gravitational waves sirce “a gravito-glectromagnetic Seld” is intrinsicadly incloded in
iz metre. Hinsteln's general relativity shows indeed that gravito-magnetic fleld may
be agsociated with mass corrents 18, 19} As well a gravito-magnetic force was postt.
bated as an explanation for the snomalovs precession of Mercury’s periielion {201 o
addition, previous works [21-25] showed how the electrie and magnetic parts of the
curvatare tensors were related to the electric and magnetic parts of the gravitationad
field as well as with gravitaiational waves {261,

This paper s organized as follows: we deal with the lineatized metrie form of
a pseudo PR speeetime in refation fo the deviation of geodesics and Raychaudhon
equation, In this spproach we extend 3 previous consideration which was given in
16]. By using Corlan snd Berwald JHke connections we gel “gravilo-clectromuagnstic
curvatires” for this space, We derive the equations of motion and the Raychaudhun
equation Tn the framework of a fangent bundle of 2 n-dimensionsl mamfold M. We
also give the lnearized connection coefficients as well us cxtablishing the Loreatz
equation of the wesk field. In scklition we atiribute some physical interprefations in
the geometrical concepts under contideration,

Morsover in the framewerk of the weak gravitational field of a generalized Fiogler
spacetine some apphications for gravitational waves are given.

2 Linearized fiedd theory of Randers spuce-time

The hehuvior of particles in a gravitational and electromagnetic field is expected to
inticate that the physical geometry in the divection of & geonnsdrical anification s the
Finsler geometry.

fn a Finsler space the metric function F{x. v} can be considered s8 a potential
function since the metric tensor {gravitatonal potential)
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is produced by this function, The metric of o Randers space is given by vistee of (2}
in the form [12,271,

2k k .
gij e o o y ‘eea A A B A; Aj ? A;m” {3}

where o = /as,,x U Wy = gy -0 “cfmafw* and Ay = g{fiq + A We
observe that the presence of an electromagnetic field tn a region of spacetime breaks
the isotropy and the description of spacetime s given by two metrics, one of which
has a psendo-Riamann structure a;; (x ) that corresponds to & motion of a particle with
mass m in the gravitational field and the second is metric of & chirged particle of mass
m that corresponds to a Finster space of metric gi;(x. v} which represents a dynamical
tield, Connection coctficients of psoudo FR space wre produced by those metries. Ina
FR space the second term ¥ b, can represeni a measure of a cosmological anisolropy,
s magnetic fold or s spinovelocity, This considerstion s anulogous (o Rosen’s (1940}
in which at each point of space-lime a Huelidean and psewdo-Riemanman metric
eorresponds in each pomnt of space-time {Bimetoe theory ).

Fingler spaces are endowed with Cartan, Berwald comnections and other differ-
ent types of connections, Cartan connection has very Importast properties {metric
compatibility) for medels ars ¢losely related o standard physies {28,2%9] Herwald
connection is not generally compatible with the, metric steueture on tota] space, since
it has “weak”™ compatibifity only on the h-space on the tangent bundle. However for
the case of a standard mode! extension a Berwald stracture can be used for Lorentz
vielation in relation to gravilutional waves c.g. [30].

The explicit form of Randers connection of Berwald-like coefficionts can be given
in the form {31

,{;;;. == cztgj 4 L’f!, {4)

where a'i. ; are the Riemanman Cristoffel symbols and If,’fj are given by
i = gt Fiug i iyt o {5
Y wz Wiy Ey b F g ﬁr/z;-a._,y “p o 3}

(g s

with ;= i, (6, ¥) = iy o s oy, ¥) = (s 003yd 9/ 3172 We note from () and
{3) that the electromagnetic field entery in the connection coellicient of this space.

The geodesics of the Randers space are produced by the first variation of the action
corresponding to the Lagrangian.

d (‘?“’?) A e (6)

(J ;‘_ ’3’”3 Ay
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Fptt .. »
fjx + L0 vy =0 ¢

Becausse of (7 we get the well known Loventz eguation

(%)

Bouation (8) represents the equation of motion of a charged particle in a gravitational
wid electromagnetic feld, where 4 represents an affine paranweter,
The equations of motion (8) under the perturbations fy; can be written in the form

d*xf_dxl da ol .
e T &

where &“}’; = %_n””g (e it + Bihim — By ;) ave the connection coefficients of the weak
mietric & ;. The B, (9 is sseful for siudying gravitational waves in a pseudo-FR space.

The curvature tersor of a Randers space can be produced by using Berwald-like
eonpection coefficients in analogous to the form |31] for & weak feld

¢ ﬁ;jfc = Ky o+ Ei (10}

where I{*j; i is the Riemamnian curvatme tenser and I*L e 18 wiven by

) ] ot N I
Epn = 5 Q1 (f‘ffﬁ;k g FTE, — Fy f“é)

+Q0um 1 (u;; Vi F; + vV Flogu iV f*;) a e ¥ g o A, f*,;]

{in
Wifh iy Q([{’, '}*} mm (Wif«yé saj}wli
Redation (HD s rewriiten
Higit, 3) = Ajye () + Qi (Hf: Vel Vi, (12)

willh Ay = R b 3 Qe Py -+ o g V) and Gy s 30k ~ D)
Applying e condifion

Q“M (é&?fi Vi fﬁ’; e 0%"*”1){,‘@ Vk sz o Mjﬁ?-f: }~;) ¥ L gt H’;;ujgx“"":h;,}'k 1;;‘ e {y (1%
in (1) we get the Lagrangian of the classical gravitational and electromagnetic fiekls

Ao .e’&'j?j;as}‘j we B b B F BTk constant. {14y
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The variation of action's integral
Bl == § j A/ detay; d'x (15)

Yeads o the weak fiekl equations

} e . B 1 . w s .
(1\’,‘15}? e Tz“‘xm-n R) + & (i‘ﬂr }f,i;_ - Eﬁfﬁm P b7 ) a4 (16}

which are Einstein-Maxwell field equations of the “gravito-electromagnetic”™ of the
Randers space for the vacuum under the condition (133 These equations have the same
form as in the Riemannian ansatz in the presence of an electromagnetic field.

Frosm a physicad point of view the corvatere Hi i an be considerad as a “gravito-
clectromagnetic corvatine” of the space. We can say that it invelves a gravito-
eleciromugnetic “curtent” source, The melric of u weak gravitational field can be
decomposed into the flat Minkowskd metric plug a smal) perturbation

{}ﬂ}‘ g e iz,;j, ?!;\f‘ 1. (i

Under a linearized approach of the gravitational field, the Randers metric function can
b written in the form of a Srst approzimation of the Kicmanman meleic oy

Flx, vy \f{{’i{j k(e vy} vied kg (18)

where ' = dx'/d1 is the 4-velocity of the particle, ny; = diag(l, —1, -1, — 1} is
the Minkowski metrie, hy; <« | represents small perburbations to the flat spacetime
mietric and & Is @ constant, The finearized form of the motrie tonsor, as inlroduced by
(3, bacomes

24, o k
TR TR e = Vg Ay A AA; A v At s {19}
: ' ¥ T

where & = \/}%gj viod, =y — & ugn et and agp = %{a{; el
Congidering in (19) the case where 0¥ = {1, 0, 0, 0) we get the Fiuslerian pofential
2o of the Randers space for a test muterial point in the static case

g0 = 1+ hoo + k'™ -+ 2kep (20}
with ¢ == Ag. In the case of ¢ = 0 we get gay == | -+ figo. This relation ix meeful in
order 1o derive the Riemannian or Newdordan Timit from: the equation of motion in 4

Randers space, In this case the equation of motion has the form

b gt = 0 b Ly = 0 2n
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with

i
Lb = — gﬂ’“;”?hf}@g. 22

The full interpretation of £f j is given by {4y

The Finsterian potential zop takes the value 1 for the values of eleciromagnetic
vector potential

Py (-—1 {1~ f‘!-cm)m) eyt {233

‘The Cristoffel symbols and the curvature tensor of the finearized Randers space will
fike: the following form. By using (4 and (10) we get

Ly s éify + i (24)
Ha';z = *i*s,u: +Hiy (25}
where
o boisfa2 / o ' I
lek e ;}fft (fjiix’-f '1),;11 . 4§[j;§f?,;k§) L“f;)

a%, are the linearized Riemannian Christoffel symbols and the curvature tensor. From
(243 st (25 the rest toems will be given m the form

K s = 3 ( et B T g 1—'{”) nh 5 HiH v F (27
;ifuk Q!;‘? (‘L;;};jk + ﬁisfag::;n Fay = I"ff‘igé)
+ Qi (;zké’%g F§ + v il F, ~§~£r i Fh) r g 3 me (283

By using Cartan covariant differentiation in « Randers space we can expross the
third curvature teasor of Cartan R ki in the form [32]

f\i_j’j}gk w ﬁ;’f!& 4 L)&i} P I}f“'*‘if! 4+ f kk I}a?eiif e;;i
w%w(“f’“ (Ag;f* + Dl — Dy :31 Ly~ DL w:) 29

where B e 18 the Riemaimian cuirvatiire, the symbed | represents the Cartan covariant

darivative and ‘U}k i the difference tensor of the Finglerian gravitational Seld given
by
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+f

. P .

f}';k e &"ff.{ﬁu‘g} 2 ;;k (wi; A{kg; e {a’:'}z,‘f%(ij - 4 ﬁ{}!@-gl"") - C”jk
&

+§3h (fih i fi 4 Ak ’f};) + o Q’W [2’”(&’2({“!} + Ay ﬁ}r)pjﬁlﬁi

— Cp (Ap s+ Apaip ) — C‘}m(»’ium + Aoy f)] (30}

where ey (v, ¥] = ©{a; - FAAD, v = Fla' and # =y /F, In a Hincarised
form the Cartan curvature ensor is oxprossed by

-K;;;,e;. = ;:,jv‘hk + Hiﬁ'ﬁ-[k . i}}kga + ("‘;m' {Rfﬁ;& + ‘E)g;gi; . ”g}q;;) (31
where R jne 8 given by (26) andd DL e el . ruprc,stinzi the weak difference tensot and

the weak Cartan conneetion coefficients, C; ke ,-i~

T {31) we have ignored terms [ [ because of the condition Ay« 1 The Riced
tensor of the weak ™ ;’w110-51&“‘{31;1&:1&!sc fieded 15 given by
S ATy
== K}jf (32}
For a perfect fluid moving in a Randers space with Cartan curvatare £ ; i Finstein's
equatians can be given in the form of weak feld

. !
Kip =k (i’iz{x, Yix)) ~ ;;-?;é‘gm) (33}

with Ky = 8y + fsm where Ky is the Ricel tensor, Ry Is the Riemasnnian one, Ej

is the contraciion of £ e by (107 and T} the energy-momentun tensor of FR spuce,
Runders type space-{ime in cosmological considerations for a weak anisolropic field
w® wih ™« 1 hes been studied in [13].

3 Weak deviation of geodesies: Ruychandheard equation

‘The deviation of gendesics plays an important role in gencral relativity and gravitation.
Tn the Finslerian space—~time it has been studied from mathematical and physical point
of view [33-36], In a psendo-Randers space the deviation of geodesics can be expressed
by using *gravito-eleotromagnetic” carvatire (1D

A,_.M:f:ﬂ e H‘M(r ?é}{-f i f = 0 {34}

oy, BEE # & " -
where ¥ = imv and & ;,,5,, e -M o R, v3E", with A affine parameter. Rl are the
Curtan connection coefficients, £ represents the deviation vector and o¥ the tangent
veetors of a geodesie sarface included in the Randers spacetime. We note from (345 that

the deviation equation has twe terms. The first term corresponds to the gravitational
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deviation, that will be ohserved i thers 15 ne slectromagnetic field and 1t i associated
with the 333;.;;(- part of the curvature tensor. The other term corresponds  a wixed
geometrical and electromagnetic deviation and is associated with the fz; i part of the
curvature tensor, The second term of deviation is connected o the force that bwo freely
failing charged particles would exert 1o sach other. Studying this case in a Riemannian
spacetivie fins the consequence that the foree does not necessarily resull as a natoral
geometric effect as it does in s Finsler spucctime. Hithe E} hit vanishes then the deviation
equation is reduced to the well known one of the Riem&nmmi spaceiime, namely

8 :
E%ﬁ %‘R 8 U = £ (35)

Physicaily this means that we have two freely falling pasticles in the tdal fiekd
jx’k . of spacetime. In the case where R, 4 vanishes, we infer that the first term of
he Randers metric corresponds 0 4 Mmkcm ski metric and the Fusler-Randers gpace
hecomes v-locally Minkeswski {371

Fix, vh = \;’f ;i;";u,;:{;ﬁ\ré}i; kA {36}

The only force that influences the two charged particles s due 1o the presence of the
charged electromagnetic field. The deviation equation takes the form

ézai
o) + Wz’r s (37
where K& ik is given by (110, In this case the geometrical properties of the field are
dmmﬂamui by 4 homogeneouy and anisotropic space. The metric fundamental ten-
sor depends only on the veloctiies, which pmdum the anisotropic properties of the
curved Fingler spacetime. Consequently there exists 3 frame of reference, where f
vanishes, Under these circumstances the geedesic coordinates can be introduced fc»r
particles moving along these geodesics.

Ini a cosmological consideration the formula (363 can be givcn by Fila, ¥} =

s VIV 4 Wi )V where Vo Hd represents cosmological velocily depending
on the cosmologicat Hubble purameter 1 which iz dofined in the anisetropic Randers
space-time with /1 = H? 4 Hz, of [13], W, represents an anisotropic field, Z; the
variation of anisotropy ad ¢ the distance, Such a consideration can be provided by a
Finslorian vsculating geometrical framework I this fivld W; comes from by a curl the
geodesies of this model are Riemannman, Gravitational waves in locally anisotropic
spaces generale polarization peiterns of the cosmic microwsve buckground.

Bt is well koown that the gravitational waves are connected 1o the devistion of
geodesies. In order to study the weak field Hemit of a Randers space related to the
deviation of the charged p‘urt}elm it is pecessary to take into account relations (25)
and {34}, This is reasonable since in order to detect a gravitational wave at Teast two
particles ave needed.
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Kiier
Thus the deviation of geodesics of the weak Randers space is written in the form
d¥ . did del dx®
= e fr i e o - {ng}
dr= dr dv dr
{Z{.E 21

et i dx:{ {fﬁf d)im

dr dv 39
dr v dr (3}

I we constder our test pacticles to be moving slowly then we can express the
d-velocilies as & unit veolor fin the tme divection. Hence we wiile

(403
In crder to compute the Riemannian tengor in & first approximation we get from (3%9)

. -
F
4 = "Zf-?‘?-i {€6,00 — €0j.40 — €ok0j + é(;ﬁ:f,kj_\}

41
Ty our case 6g = 0 and the Rlemanmian tensor takes the form
e p—— {42)
REFLE REAL =
The second term of (389) sz . because of () and (28} becomey
kg}j{}' B 2{'6 f-"";‘} L ?éjs%;{.)f”‘é‘ (43}
Vurthermore {39) will tade the form because of (42) and (43)
8k G qed
gz algy s ,
s i N TR L = {3 44
e TR “4)

The Fq. (44} coincides with the corresponding equation for a weak fleld Himt of the
Riemannian case, which is given in its Tull form by

12 \
i% o+ RE P e Bl {453
T :
with

1 fsib
¢ 3(?;5 . i ore .
: P («;}w OO BRSO ko constant. (46)
s
In general B represents & non-gravitattonal force, for instance aspring. The difference

between {45} and (34) is that in (43) the electromagnetic field has been added ad hoe.
This means that the term &7 plays the role of the interaction external force between two
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nearby charged masses, moving in pon-geodesical paths. In the Eq. (34) of the Randers
space the electromagnetic field is incorporated in the geometry. [n this approach the two
charged masses move in geodesies of the Finsler space und their relative scceleration
is determined by the curvature of the gravifalional and electromagnetic fields, which
is produced by the energy momentum lensor. Randers-type spaces besi express a
profound relation between physics and geometry,

An extension of the geodesicdeviation cqualions constijutes the Raychadhurt equas
fon. Rayehadburt squation is of importut significance in relativity theory and cos.
mology because of its connection with singularities e.g. | 35401 Ja Hinsler-Randers
space—time this equation hay been studied in a previous paper [43]. its form in the
weak Finsleran limit is given by

1 lag . o ‘
{im ets ) & e é};;{(r e mi;,w w K VIVE 4 -V 47
dr ; o

whare Ky represeots the weak Cartan tensor, 8, oy, &;; are the expunsion, vorticity
and the shear are defined by the following forms:

B = Arph e VE e OV {48a)
G = Ay + ViV — Vi ¥ {4%by
' . . :
Fig = Agay -~ ".g’f}}?-r"}: o L Vo Vi Vi - Vi Vi {48¢3
where Agyy = Vi is the covariant derivative of the oscullating Riemannian space

Y a anit vector Sf“ Vi w1 ln the case of geodesics the last ferm W vanishes n (47}
and (48 the introdnction of Cartan tensor in {48) assigns an amsmmpm structure
For the Rayehaudhuri equation. The linearized Raychandhuri equation in a Ramders
spacetime in a first approach is expressed without vorticity and shear by

i T
E-?; s m%{}z K{ﬁ iyl (49)

1n the case that § == 0, 67 == 0, &y = constant, from (47} the tidal field KV v is
due o the vorticity @ which plays the role of vacuum encrgy (cosmological constant),
1t is analogous (o a centrifegal fold of the Newtoniun theory, It counterbalunces the
tidal fickd,

Remark The tundamenal sense of photon surfsces and their geometry has been
defined mad developed in [41,42] for a tmelike surface in a spherical symmetric
space with determined properties.

b a psendo-Finsgler space-time M with spherically symmetric metrie [35] in which
o= 0 and &y = 0, we can analogously consider a Finslerian photon surface 3,
where § represents « timelike surface of M. Here the Raychaudhnrd equation takes the
form
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e 1.9 ) oi o
e ) M\’E(}i»‘) e K;ﬁf }}{zx , (f,(}}

where iy denotes the expansion of a vector field X in the surface §, 7 the affine
parameter and K f: ! the Ricet tensor of Cartan curvature.

i a physical viewpoint the seisotropic Cartan teasor is introduced in the geomelry
of spacetime because of a primordial vector field in the Finsles-Randers spacetime.
Such a case has been studied in {131 where the lincarized Raychaudbut equation
slands

L

Pan I .
fifi“”g = dr Glg 4 3P ) b Fla b, &, 243 &1

#H
where §, g, p, ., 2p represent the deceleration parameter, the density of matter, the
pressure, e seale factor and the variation of anisotropy, which is conneeted o Cartan
coppection component 7 = Com.o.

The Raychaudhuri coustions can also be derived in the Tramework of a tangem
pundle ‘I™M of a g-dimensional manifold by using of deconnection and the Riecl-
whentitios, In this case we consider the d-curvature l?i»é{ arch the Ricel identities for a
tangent horizontal vector field X = X = X/4/8x7 along a congruence of geodesics
on TM {371. 80 we have the relation

‘ { Py ol s i )
Ky = Xy = Ry X — T Xy — BEX o, (54
Or
KIX'K_ - Xa“ Xi - ‘y‘af 5{} x‘} . af:‘ixé Xﬁ 41 Xi; XI {33
A A Ay R g T Ry dla A -
Bevanse of geodesics the refation (X' X f;):k 2 () is valid so we have
Xkl = =X Xl + R XX - 1l X R XX (34)
Taking the trace of the previous eguation we have
XUREX Gy - XL XA 4 R X XTRE — i X, XORE — REXT 2X'BE. (58)
We decompose the k-covariant derivative with kinematioal terms

; T "
X;; by ;?:“::""i ("‘gh; "?‘ (f; -+ ’fl);'g (5{3}
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where €, &, & represent the expansion, shear and vorticity for the extended congruence
of geodesics on TM, which are defined as

B == X, (57
By = Xy + Xpy ~ %@ém {58)
Gt = X — X, (59
with
Biy == gig = Xi Xy (60}

the projeciion operator, fiy gives us Ay X' = 0 for o nommadized X5, In the shove
mentioned relations, (58), {573, we used

B = gy {6H

We finatly et from (55}

. e , . X
Xiéy, mfg; o R XXt XL X REXTG XD e XL XE = Ry XX

s (ﬂ !

P
G + &} + wﬁ) X'~ R (;:,f“‘;j‘"'g @l -+ 0, -+ w;)

I
EM -ofof — whet {(62)
e
whers we put
i !
Xy m — }(w)fxa A F { a:e
with A%, = BO8L8E, of v aP8L8E, o, v w8185 and 5% represent the generalized Kro-

necker symbaoly wnﬁeumg wath h-bases and v-bages. The Ha. (62) is the Raychadhud
eatiation for the horizontal space of the tangent bundle.

o AN any .
= T *

sepresents the curvature of non-dinesr conneciion.
By using of d-cwrvatwre 57, the Ricei identities are written

X — X == 85, X — S8 X9, (643

where the veotor field ¥ w X9 )*’; belongs to the vertical space Sj, = () ~ CF

represent the torsion and C, the d-connection coefficients of the vertical apaw:. In
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analogy to the consideration of Finslerian fuids of. [43] we can get the Rayehaudhuri
gquations. For the definitions of the decomposition of vertical covariant derivative of
vertical geodesics expansion, shear and rotation we use the refations

i o o -,
PR ;g@}i; 4 f’Fg -+ (,;e)f,i (653

where the expansion 6 15 given by
& = X% kg = X9, (66}

hapls, ¥Y represents the v-metrie on TM which is conpected with the h-metile
2ij{x, ) = gs‘fé':?ﬁzm,.{x, Vit and egy. We define the shewr and rotalion by

Ogp == Xalp 4 Xply ?;f'-‘}]if!f)v LT
k= Xalp — Xala. {68y

Becanse of the shove mestionesd relations one obiging an expression lor the Ray-
chamdiund equation in the verfical space in the Torms

- Si{{;}{ﬁ ¥e Sfizxa ;gXC . Xﬂé,f;xb:{;

i
i

N | .
~ 88 x¢ (;:m; GRS 4 o -+ f;f;;) (69)

o ; . .
3 6% ool wlal 4 Se XX

The Raychaudhur equation can also be derived on the tangent bundle of a Finsler—
Randers space-time as well s for its weak fleld Himit by considering the analogous
curvature i the rel. {623

4 Applications
T.odnthe (% 51, 22, 5% coordinates of an inertial frame gentralized Fuster mel-
r1cs that are very close fo the flat metric can be wrilion

BretX. ¥} = e b f;ﬂ,,{x, ¥l (i
where ¥ = ‘é;‘ and frop (X, ¥} are small anisotropic perturbations to the flat space-

tirne, These meivic perturbations desoribe o gravitational wave, The line-element
for a plane gravitational wave spacetime can be expressed in the form

ds? s di® — (i + Fllxg, x3) ¥ id.xf) — (I — F1xn, X3}, yiff:z‘»f) +££3¢%
(71}
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where the function 8., F (. ¥) = g, (e, vl with
Aot =%y« (72)
If the wive bas a definite frequency o, smplitude o and phase § we can wiite
FE" - %, e e sinfw (0¥ - 1) 5 B {73

In the case of the weak feld Hmit of a Finglerian or generalized Finslerian spave-
time the vacwum field equation holds analogows form o Newton's gravity and
general rolativiey. _

We specily 8 gauge snder 1 coordinate tunsformation x# e I = 2% &
vy 5 it i I8 - - = . .
LU axx where QF y ~ LF o~ e, LY represent the Tincarized Christolfel

symbols given by (233, We choose a Lorenty gauge 77 L7 0 = 0.
- e . srw o #
In the weak field Bmit the connection coeflicients £, must he gero, so we huve
g - . . .
L2y = &0 which Teads to the equivalent Lorentz gavge

1
+ £ . g
Bueh’ (. y) — :i&;sﬁ = 0, {14y
By weing the Hnearized Hinsteln equations for the vacoum (27) with i?;w s ) we
zet the equivalent form of the wave equation in the new system of coordinates
gy, y) =0, {753
A sodation of {75) is a gravitationad wave
}-";mf{-’i’e };} = ﬁf?{ﬁfﬁfr} {}x}x‘ﬂ:;{:ﬁ.p {?{)}
with Cyy == Cyy a constant polarization tensor and the wave vector ku(v) is a
funcilon of v because of aniscropie metric (71
By inserting (76) to (73) we derive
Wk (73 s 87 = O (rh
with ky == {w, kv, ko, &3). The plane wave (76) is therefore a solution to the
leearized equations if the wave vector is pull,

A hineurized form of the curvature #' 1t {refation (26} can be produced by the

linearized cocfiicients L¢ | Inorder to get gravitational waves the harnwonic gange

e Ha
conditinn s chosen as
o TR
i,
az () (78}
dyit i

-
and traceless Y, = 0.
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The traceless and teansverse (1) gauge condition for the saution of motion 18
given by

e F Y s :
LI e, ) = O (79)
A paricular srefidl set of solutions to this wave equation are the plane waves
T FGe, 3 e Ol expliky (¥)x®) (80}

with 7, a constant symmetrie tensor. The plane wave £7] is a solution to the
linearized wave equation if the wave vector is null 29 (v () = 0.
The geadesic deviation equation with the curvature . for two particles with

- 4 . 2. E v . . "
v o= (1,0, 0, 01 4ovelocity and separation vector £ in the x3-divection fplies

870 18
G T gt e (81)
LA R

ar = Eat oa ®2)
These cquations are bmportant fo deseribe a polarization of the gravitational wave
iny = (b 27y divection in the framework of the anisotropic metric (71},

2. In the previous application the coordinates &' 7 == 0, 1,2, 3 are independent,
of time. Biistances between tost nvssses in Buclidean plase can be calculated from
X{ry, Y1) coondinates by uimg a Randers metric. We can pit the courdinates in
the form

¥ = ({ 4 ;i;w sin mi‘) ¥t (83a}
1, 4 oy
Yoo fl o sasinwl | x” {B3h}
then
d 1

= % - ﬁ-(gaums; wi oy {84

. dY i 4
F s e 5 e o GO 2 ‘
57 5 e COR f ¥ {Bdh}

A plane gravitational wave of the Form (71 with £10e% < 0M), 73] o sinfer (0 -
) vhand v s (0,0, 1, 0) propagates in the y° direction. Some test masses in
the x — v plane are s rest in g cirele ahout a central test mass. After the gravieational
wave passes in ime the chiele is squeezed in the Y-direction and expanded in the
Xodirection, therefore the circle is rransforaed 10 an elliptic shape.
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We define the indicartix curve {, to be a cirele with center § and rading
SJTHETRY] OF where #{x, ¥) isan arbitary pointand £x, v} is a positive valoed
function. We can apply the Randers metric in order to calculute the distances between
the masses [13] Therelore we have

£, vy (83)
f (:x-, ¥}
where
L XPayd XX 41y .
®omm e w A £
Py PERE (#6)

3 Conclusions

We stadied the behaviour of particles moving in a gravitationad and electromagnetic
field with the physical geometry of a Finsler—Randers (FR} space. Cartap and Berwald
connections are applied for studying o linearized version of & weak field lmit in B-R
SPAGES,

in virtue of crrvature lensors of the space of considerations some phvsical charse-
erizations and interpretations m the sense af a “gravito-electromagnetic curvature”
are given. Such o concept could play a role in the bonding of light geodesics and
gravitational lsnking in a region of locally andsotropie space~dime.

[r: parsgraph 3 the Raychandbort equations sre extended and they were derived n
the Framework of & tangent bundle, This consideration can give ar additiomd interest
to a string theory.

Binally, some applications of Randers merric for gravitational waves are presented.
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