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In this article we present the cosmological equivalence between the relativistic Finsler-Randers

cosmology and the dark energy and modified gravity constructions at the background level. Starting

from a small deviation from the quadraticity of the Riemannian geometry, through which the local

structure of general relativity is modified and the curvature theory is extended, we extract the modified

Friedmann equation. The corresponding extended Finsler-Randers cosmology is very interesting, and it

can mimic dark energy and modified gravity, describing a large class of scale-factor evolutions, from

inflation to late-time acceleration, including the phantom regime. In this respect, the nontrivial Universe

evolution is not attributed to a new scalar field, or to gravitational modification, but it arises from the

modification of the geometry itself.
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I. INTRODUCTION

Since the discovery of the accelerated expansion of the
Universe (see Ref. [1] and references therein), a lot of
effort has been made in order to understand the physical
mechanism which is responsible for such a cosmological
phenomenon. There are two basic directions one can
follow in order to obtain its explanation. The first is to
introduce the concept of dark energy (hereafter DE) within
the framework of general relativity (for reviews, see
for instance Ref. [2]), while the second is to modify the
gravitational sector itself (see Ref. [3] and references
therein).

From the DE viewpoint, the simplest way to fit the
current cosmological data is to include in the Friedmann
equations the cosmological constant [1]. However, the
disadvantage of the so-called concordance � cosmology
is the fact that it suffers from the cosmological constant
problem itself [4]. This intrinsic problem appears as a
difficult issue which includes many aspects: not only the
problem of understanding the tiny current value of the
vacuum energy density (�� ¼ c2�=8�G ’ 10�47 GeV4)
[4] in the context of quantum field theory or string theory,
but also the cosmic coincidence problem, namely why the
density of matter is now so close to the vacuum density [5].
Unfortunately, the alternative and more complex DE
scenarios, for instance quintessence [6–8], phantom [9],
quintom [10], etc., are not free from similar fine-tuning and
other problems no less severe (including the presence of

extremely tiny masses and peculiar forms of the scalar-field
kinetic energy).
The above problems have inspired many authors to pro-

ceed in the alternative direction of modified gravity, such as
the braneworld Dvali, Gabadadze and Porrati (DGP) [11]
model, fðRÞ gravity [12], fðTÞ gravity [13,14], scalar-tensor
theories [15], Gauss-Bonnet gravity [16], Hořava-Lifshitz
gravity [17], nonlinear massive gravity [18], etc. The under-
lying idea is that the accelerated expansion, either during
inflation or at late times, can be driven by a modification of
the Einstein-Hilbert action, while the matter content of the
Universe remains the same (relativistic and cold dark
matter). However, the majority of modified gravity models
are plagued with no physical basis and/or many parameters.
On the other hand, in the last decade the Finslerian

relativistic extensions have gained a lot of attention,
since Finsler geometry naturally extends the traditional
Riemannian geometry [19]. In this formulation, in general
one starts with the Lorentz symmetry breaking, which is a
common feature within quantum gravity phenomenology.
Such a departure from relativistic symmetries of space-
time leads to the possibility for the underlying physical
manifold to have a broader geometric structure than the
simple pseudo-Riemann geometry. Along these lines,
Finsler geometry is the simplest class of extensions, since it
generalizes Riemann geometry. Note that the Riemannian
geometry itself is a special type of the Finslerian one.
One of the most characteristic features of Finsler

geometry is the dependence of the metric tensor on the
position coordinates of the base manifold and on the
tangent vector of a geodesic congruence, and this velocity
dependence reflects the Lorentz-violating character of
the kinematics. Additionally, Finsler geometry is strongly
connected to the effective geometry within anisotropic

*svasil@academyofathens.gr
†akouretsis@astro.auth.gr
‡Emmanuel_Saridakis@baylor.edu
§pstavrin@math.uoa.gr

PHYSICAL REVIEW D 88, 123510 (2013)

1550-7998=2013=88(12)=123510(12) 123510-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.123510


media [20] and naturally enters the analogue gravity program
[21]. These features suggest that Finsler geometry may play
an important role within quantum gravity physics.

From the cosmological viewpoint, in a series of works
[22,23] it was reported that in the osculating Riemannian
limit, the cosmic expansion of the flat Finsler-Randers
(hereafter FR) gravity is identical to that of flat DGP,
despite the fact that the geometrical origin of the two
cosmological models is completely different. This means
that the flat FR model inherits all the advantages and
disadvantages of the flat DGP gravitational construction.
However, the fact that DGP gravity is under observational
pressure [24] implies that the flat FR model faces the same
problems [23].

Therefore, in the present work we are interested in
extending the results of Refs. [22,23] in order to derive
an extended version of the FR model (hereafter EFR), free
from the observational inconsistencies. To achieve this,
instead of using the osculating Riemannian limiting pro-
cesses [22], which is a metric-based approach, we use the
covariant 1þ 3 formalism [25], that under certain condi-
tions can be naturally extended in the Finslerian framework
[26]. In this less restrictive case, we can mimic all non-
interacting DE models and the majority of modified
gravitational constructions, and we are able to describe a
large class of cosmological evolutions.

The plan of the work is as follows: In Sec. II, we present
the metrical extension of Riemannian geometry, and we
discuss the evolution of the kinematical variables and the
Finsler-Randers geometrical structure. In Sec. III, we focus
on the isotropic expansion, and we develop the cosmologi-
cal model. We prove the equivalence between the EFR and
DE models, as well as some classes of modified gravity at
the expansion level, and we discuss some particular
examples. Finally, in Sec. IV, we draw our conclusions.

II. RELATIVISTIC FINSLER GEOMETRY

Recently, there is an increasing interest in Finsler geome-
try since it has been reported within different aspects
of quantum gravity. The effective metric depends either
on velocitylike variables or on the tangent vector field of
the observers’ cosmic lines. A representative example of
the first case is the stochastic space-time D foam, where the
effective metric depends on the velocity of D particles that
recoil on the world sheet [27]. Another scenario where
Finsler geometry emerges, and the metric depends on fiber
coordinates, is the covariant Galilean transformations in
curved space-times [28]. On the other hand, dependence
of the metric on the particle’s 4-velocity arises in other
Lorentz-violating theories, such as the Hořava-Lifshitz
gravity [29]. Additionally, a Finslerian line element has
been encountered in deformations of Cohen and Glashow’s
very special relativity [30], as well as in holographic fluids
[31]. Moreover, bimetric constructions can be naturally
incorporated in the Finsler framework [32]. Finally, we

mention that Finsler geometry can be closely related to the
standard model extension [33]. Before proceeding to the
cosmological application of Finsler geometry, in the follow-
ing subsections we briefly present its basic features.

A. Finsler congruences

The main object in Finsler geometry is the fundamental
function Fðx; dxÞ that generalizes the Riemannian notion
of distance (see for example Refs. [34–36]). In Riemann
geometry, the latter is a quadratic function with respect to
the infinitesimal increments dxa between two neighboring
points. Keeping all the postulates of Riemann geometry but
accepting a nonquadratic distance measure, a metric tensor
can be introduced as

gabðx; yÞ ¼ 1

2

@2F2

@ya@yb
; ya � 0 (1)

for a given connecting curve with tangent ya ¼ dxa

d� . Note

that when the generating function Fðx; yÞ is quadratic, the
above definition is still valid and leads to the metric tensor
of Riemann geometry. The dependence of the metric tensor
on the position coordinates xa and on the fiber coordinates
ya suggests that the geometry of Finsler spaces is a geome-
try on the tangent bundle TM. In other words, the Finsler
manifold is a fiber space where tensor fields depend on the
position and on the infinitesimal coordinate increments ya.
Therefore, the position dependence of Riemann geometry
is replaced by the so called element of support, which is the
pair ðxa; yaÞ.
In relativistic applications of Finsler geometry, the role

of the supporting direction ya must be explicitly given. For
example, it may stand as an internal variable, as an explicit
or implicit violation of Lorentz symmetry, as an aetherlike
direction, or simply as the velocity of the fundamental
observer. In this article, we restrain our analysis to the
latter case, where the supporting direction ya is the tangent
to the cosmic flow lines. Using only variational arguments,
we can arrive at the deviation equation for the supporting
congruence ya. The deviation equation directly provides
all the information for the internal deformation of the
timelike geodesic flow ya. Following the same procedure
with GR, we can extract the propagation formulas for
the expansion, shear and vorticity of an infinitesimal cross
section of the cosmological flow.
The infinitesimal distance between two neighboring

points on the base manifold (position space) is given by
the small displacement along the connecting curve �ð�Þ,
which depends on the position xa and on the coordinate
increments dxa:

d� ¼ Fðx; dxÞ; (2)

where in Finsler geometry Fðx; dxÞ does not necessarily
depend quadratically on the dxa increments. The actual
distance traveled on the base manifold along a given
direction is
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I ¼
Z

Fðx; dx=d�Þd�; (3)

where the metric function Fðx; yÞ is homogeneous of first
order with respect to the displacement arguments ya ¼
dxa=d�. Applying the least action principle to the previous
integral, we arrive at the geodesic equation for the support-
ing direction:

_ya � yaray
b ¼ dya

d�
þ 2Gaðx; yÞ ¼ 0; (4)

where Ga are the spray coefficients with respect to the
Fðx; yÞ fundamental function, and they are given by

Ga ¼ 1

4
gab

�
@2F2

@xc@yb
yc � @F2

@xb

�
: (5)

When ya stands for the velocity of the fundamental observer,
then the dot operator in Eq. (4) is a direct generalization of
the time propagation of GR relativistic kinematics. In other
words, if the supporting direction ya ¼ dxa

d� is the observers’

4-velocity, then the affine parameter � is the proper time.
Note that we can recast Eq. (4) in the familiar form with
respect to the Christofell symbols, the only difference being
that the metric will depend on the supporting element.

The relative acceleration between two neighboring
observers is given by the second variation of the distance
module. Focusing the analysis along the ya direction, the
second variation leads to the Jacobi equation. The relative
acceleration between nearby geodesics is monitored by
an infinitesimal connecting vector (the deviation vector)
defined as

~xa ¼ xa þ �a; (6)

where the tilde stands for the neighboring reference frame.
Then, substituting the previous expression into the Euler-
Lagrange equations (4) and keeping up to first-order terms
with respect to the deviation vector �a leads to the follow-
ing formula:

€�a þH a
bðx; yÞ�b ¼ 0; (7)

where H a
b is a tensor field that incorporates the relative

displacement of nearby geodesics in a Finslerian frame-
work, given by

H a
b ¼ 2

@Ga

@xb
� yc

@2Ga

@yb@xc
þ 2Gc @2Ga

@yb@yc
� @Ga

@yc
@Gc

@yb
:

(8)

The first-order homogeneity of the metric function leads

to the constraint @gab
@yc y

c ¼ 0. The latter guarantees that for

most connection structures (for example Chern, Cartan or
Berwald), the Jacobi field in Eq. (7) remains the same (see
for example Refs. [34–37]).

The coefficients of the tensor field H a
b are directly

determined by the metric function Fðx; yÞ through the least

action principle that gives back the spray coefficients
[Eq. (5)]. As in Riemann geometry, expression (8) is
second-order homogeneous with respect to ya, but the
dependence is nonquadratic. Its eigenvalues correspond
to the sectional curvatures in the principal directions and
designate the relative motion between neighboring integral
curves. Equation (8) encloses all the relevant information
for Finslerian tidal effects on the ya congruence. The tensor
field H a

b is responsible for the relative acceleration
between nearby observers and will generate expansion
and shear on the timelike ya congruence. Apparently,
the ya-deformable kinematics will be modified due to the
nonquadratic dependence of H a

b on the velocity of
the fundamental observer.

B. Deformable kinematics

The observers’ timelike congruence introduces a unidir-
ection in the physical manifold. This asymmetry is encoded
in the metric function Fðx; yÞ and induces the 1þ 3
‘‘threading’’ of space-time [25]. In the covariant 1þ 3
formalism, the metric is not the central object, since we do
not use a particular coordinate system. Instead, we use
the kinematic quantities, the irreducible components of
curvature and conservation arguments, while Einstein’s field
equations enter as simple algebraic relations between cur-
vature and matter [25]. The deviation of geodesics is of
central importance, since it monitors the internal deforma-
tion of the cosmic medium in a covariant way.
From the Finslerian perspective, the space and time

decomposition is directly related to the first-order homo-
geneity of Fðx; yÞ. In particular, the fundamental observer’s
velocity ya defines a family of integral curves on the space-
time manifold. With respect to this 4-velocity, we can
decompose tensor fields along ya and on the perpendicular
spatial hypersurface. In fact, we can recast the metric
tensor in Eq. (1) in the following form:

gab ¼ F
@2F

@ya@yb
þ @F

@ya
@F

@yb
; (9)

where we have split the space-time metric into two parts by
using the quantities

la ¼ @F

@ya
; hab ¼ F

@2F

@ya@yb
: (10)

Using the first-order homogeneity of the metric function
Fðx; yÞ, we can prove that la is the normalized velocity of
the observers’ flow lines, la ¼ ya=F. In addition, the first-
order homogeneity of the fundamental function implies
that habl

b ¼ 0 and also that the rank is ðhabÞ ¼ 3.
Therefore, the tensor hab stands for the projection tensor
of relativistic kinematics.
With the space-time split [Eq. (9)] in hand, we can

decompose tensor fields to their irreducible parts, in direct
analogy to the standard gravitational physics, for example
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Xa ¼ ga
bXb ¼ ðhab þ lblaÞXb ¼ Xla þXa; (11)

where X ¼ laX
a is the timelike part and Xa ¼ ha

bXb is
the spacelike part. Using the 1þ 3 covariant formalism,
we will track the internal motion of the normalized
supporting direction la (the congruence la is considered
to be timelike, lal

a ¼ 1 [38]). Restraining the analysis
along the l timelike flow, the propagation equation of the
deviation vector at first order is given by

_�a ¼ Ba
b�

b; (12)

where it is straightforward to prove that Ba
b ¼ rbl

a—that

is, the tensor field Ba
b is the distortion tensor of the time-

like congruence. Following Eq. (10), we can decompose
the distortion tensor to its irreducible parts

rbla ¼ 1

3
�hab þ �ab þ �abc!

c; (13)

where for the 3D spatial derivative Da ¼ ha
brb, the

irreducible components are the expansion � ¼ Dala that
tracks volume changes, the shear �ab ¼ Dhblai

1 that

incorporates shape distortions, and the vorticity !a ¼
�abcD

blc=2 that accounts for changes of the orientation
of the infinitesimal spatial cross section, parallel trans-
ported along la.

Taking the time derivative of Eq. (12) and substituting in
Eq. (7), we arrive at the evolution equation for the internal
deformations of the timelike flow:

_Bab þ BacB
c
b ¼ �H ab: (14)

This propagation law reflects the effect of the Finslerian
curvature tensor H ab on the deformable kinematics of a
timelike flow. The irreducible parts of Eq. (14) provide the
evolution equation for the expansion (Raychaudhuri’s
equation)

_�þ 1

3
�2 ¼ �K� 2ð�2 �!2Þ; (15)

the propagation of shear (which describes kinematic
anisotropies)

_�habi ¼ � 2

3
��ab � �cha�c

bi �!ha!bi �H habi; (16)

and finally the propagation of vorticity

_!a ¼ � 2

3
�!a þ �ab!

b; (17)

where K ¼ H abh
ab is the scalar flag curvature of the

Finslerian manifold when H habi ¼ 0 [26,34].

The above system of propagation equations is very
similar to the analogous expressions in general relativity.
In particular, they are the same except that in the

Riemannian limit, the tensor in Eq. (8) depends quadrati-
cally on the observers’ 4-velocity. Thus, the key difference
is the nontrivial dependence of the curvature tensor H ab

on the velocity of the fundamental observer, which modi-
fies the way that curvature generates deformations on a
timelike medium.

C. Finsler-Randers metric function

In Finsler geometry, the form of the metric function
Fðx; yÞ is of central importance, since it generates all the
other geometric quantities. One of the most simple cases
after the Riemann limit is the Randers norm [39], which is
given by

F ¼ �þ 	; (18)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aby

ayb
p

is a Riemann metric function and
	 ¼ bay

a stands for an arbitrary 1-form. The fundamental
function [Eq. (18)] interfaces a Riemann space-time with a
Finslerian one in a simple way, since the Randers metric is
the limiting case of a large number of Finsler space-times,
when we consider small departures from GR. For example,
in a large class of ð�;	Þmetrics where F ¼ �
ð	=�Þ, the
almost Riemannian limit 
� 1 provides a Randers-type
geometry at first order for 	=�, when 
� 1þ 	=�.
Equation (18) has the important consequence that one

can separate geometric quantities into the purely Riemann
part, with respect to the � metric function, and the Finsler
contribution. In this case, for specific examples, we can
directly inspect the effect of nonquadraticity on the
space-time medium.
In particular, the geometric entity that accurately incor-

porates the nonquadraticity of the metric function is the
indicatrix Fðx; yÞ ¼ 1, which represents an arbitrary locus
on the tangent bundle [36]. This locus in the Riemann case
defines a quadratic hypersurface. In the case of a Randers-
type geometry [Eq. (18)], the hypersurface is still quadratic
but becomes eccentric [39]. In other words, the Randers
metric function in Eq. (18) assigns at each space-time point
a vector ba that describes the displacement of the center of
the indicatrix. This property translates to a disformal cor-
relation between the Finslerian metric tensor [Eq. (1)] and
the Riemannian aab given in Eq. (18). In fact, substitution
of Eq. (18) into Eq. (1) yields

gab ¼ F

�
ð�ab � �la �lbÞ þ lalb; (19)

where �la ¼ @�
@ya is the normalized velocity on the Riemann

sector. The disformal relation [Eq. (19)] introduces an
explicit dependence of the space-time metric on the veloc-
ity of the cosmic flow lines. Note that similar behavior of
the effective geometry is commonly reported in investiga-
tions of anisotropic media [20].
Concerning the signature of the Finsler-Randers space-

time, it is useful to introduce the nonholonomic frame on
TM, namely

1Angle brackets stand for the projective, symmetric and trace-
free part of a second-rank tensor Xhabi ¼ hcðah

d
bÞXcd �

1
3Xcdh

cdhab.
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Ya
b ¼

ffiffiffiffi
�

F

r �
�a

b þ
ffiffiffiffi
�

F

r
lal

b � �la �lb

�
; (20)

and it is straightforward to prove the identity Ya
cYc

b ¼
�a

b. Then, using Eq. (20), we can recast the Finslerian
metric tensor in the following form [40]:

gab ¼ Ya
cYb

d�cd: (21)

Thus, from the definition in Eq. (20) and the above relation,
we conclude that the Finsler-Randers metric tensor and the
Riemann metric �ab have the same signature. Taking into
account that the metric tensor [Eq. (19)] must be real, we
deduce that the timelike ya congruence is positive definite,
or equivalently, the signature is ðþ;�;�;�Þ. This restrains
the ya bundle of geodesics to be timelike [32]; however,
we can define first-order Finslerian tensor fields as spacelike
[Uðx; yÞaUðx; yÞa < 0], null [Uðx; yÞaUðx; yÞa ¼ 0], or
timelike [Uðx; yÞaUðx; yÞa > 0] [41].

As a first attempt to examine the physical impact of
nonquadraticity, we assume that the Riemann sector of
Eq. (19) represents the ‘‘gravitational’’ geometry, while
the Finsler manifold describes the ‘‘physical’’ geometry
[42]. This provides an effective geometric setup to model
possible implications of nonquadraticity on the expansion
dynamics.

We consider a Randers-type ð�;	Þ metric, and we as-
sume that the velocity of the fundamental observer is given
by the normalized vector la ¼ ya=F. Then, if ba is a closed
form with respect to the Riemann covariant derivative of
the � metric, b½a;b� ¼ 0, the spray coefficients [Eq. (5)] for
the normalized velocity la take the simplified form [34]

Ga ¼ �Ga þ 1

2
�la; (22)

where bars denote the Riemann parts with respect to the �
metric, and we define � ¼ ba;bl

alb. Substituting Eq. (22)

into the covariant expression [Eq. (8)], the curvature tensor
takes the simplified form

H a
b ¼ �H a

b þ 1

4
ð3�2 � 2�Þhab; (23)

where the last two scalars are given with respect to the
Riemann covariant derivative of the � metric,

� ¼ ba;b;cl
alblc; (24)

and we have defined �H ab ¼ F�2 �Racbdy
cyd for the part of

the curvature coming from the Riemann metric function �
of Eq. (18). The second-rank tensor [Eq. (23)] clearly
incorporates the relation between a part of the Riemann
curvature and a part of the actual curvature of the fore-
ground manifold. As we have already mentioned, the
latter curvature generates deformations in the assumed
‘‘physical’’ space-time which is of Finsler type, while the
Riemann curvature represents the gravitational sector.
Note that �—that is, the nature of the Finsler-Randers

contribution to the curvature—is defined on a geometrical
basis, since it directly originates from the curvature of
the Finsler-Randers geometry [Eq. (23)]. Therefore,
from Eq. (23) and the deformable kinematics given in
Eqs. (15)–(17), we conclude that the Riemann curvature
of the gravitational sector generates deformations in the
foreground space-time in a modified way.

III. FINSLER-RANDERS COSMOLOGY

In this section, we investigate the conditions under
which the Finsler-Randers cosmology can provide a cos-
mic acceleration equivalent to the traditional scalar-field
DE or classes of modified gravity. We assume that the
‘‘physical’’ geometry is represented by the nonquadratic
metric function [Eq. (18)], while the gravitational geome-
try is given by its Riemannian part. Thus, in a FRW-like
scenario, the Riemann curvature �Rabcd is related to the
energy-momentum tensor of a perfect fluid through the
Einstein field equations

�Rab � 1

2
�R�ab ¼ Tab ¼ ��la �lb þ p �hab; (25)

where we define the projection tensor of the Riemannian
sector as �hab � �ab � �la �lb, the overall energy density as
measured in the �la frame as � ¼ Tab

�la �lb, and the total
isotropic pressure as p ¼ Tab

�hab=3, while we impose the
usual convenient units, setting 8�G � 1. Furthermore, for
our setup it is natural to assume a homogeneous and isotropic
Riemannian sector for the gravitational geometry. Hence,
we can neglect the nonlocal gravitational degrees of freedom,
and the Weyl curvature becomes negligible. In this case, the
Riemann curvature depends only on its local parts:

�Rabcd ¼ 1

2
ð�ac

�Rbd þ �bd
�Rac � �bc

�Rad � �ad
�RbcÞ

� 1

6
�Rð�ac�bd � �ad�bcÞ: (26)

We consider shear- and vorticity-free evolution for the
cosmic fluid, which is in agreement with the tight con-
strains of the cosmic microwave background (CMB)
anisotropies (see for instance Ref. [43]). In fact, using
Eqs. (23), (25), and (26), we obtain that H habi � bhabbi,
and the source term in the propagation of shear [Eq. (16)] is
negligible if ba tends to be purely timelike. Thus, our
kinematical setup is consistent with a shear- and vorticity-
free bulk flow, since there are no source terms in Eqs. (16)
and (17). Then, keeping up to first-order terms with respect
to ba in Eq. (23), and using the field equations [Eq. (25)]
and the decomposition [Eq. (26)], Raychaudhuri’s formula
[Eq. (15)] acquires the simplified form

_�þ 1

3
�2 ¼ � 1

2
ð1� 	Þð�þ 3pÞ � 3

2
�; (27)

where we have used the auxiliary relation �H abh
ab ¼ 1

2 �ð1� 	Þð�þ 3pÞ. Raychaudhuri’s equation [Eq. (27)] is the
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fundamental equation that describes the cosmological
evolution. The crucial point is the sign of its right-hand
side. In particular, negative terms alignwith the gravitational
pull, while positive terms accelerate the expansion. The
Finsler contribution in the first term of the rhs of Eq. (27)
acts as an effective coupling constant. As an example, if we
neglect this term, then the significant term that incorporates
the effects of nonquadraticity is the last one, and when
�< 0, it can drive an accelerating phase; while
for �> 0, it increases the gravitational attraction; and for
�¼0, the current scenario reduces to the Einstein–de Sitter
model in the matter era. In other words, the adoption of a
nonquadratic measure affects the local structure of space-
time, since the SOð4Þ symmetry is broken, and hence it
implies new kinematic effects for the bulk flow of matter by
modifying the curvature theory. Apparently, by discarding
the local flatness of general relativity, we acquire long-range
modifications in the Finslerian geometrodynamics.

Let us discuss here the energy conservation in the sce-
nario at hand. The energy density and the isotropic pressure
as measured in the Riemannian frame �la are related to the
‘‘physical’’ frame la by the following relations:

� ¼ F2

�2
�ðfÞ; p ¼ F

�
pðfÞ; (28)

where we have defined �ðfÞ ¼ Tabl
alb and pðfÞ ¼

Tabh
ab=3 for the total energy density and pressure, respec-

tively, in the Finslerian frame. Hence, taking into account
that at late times F=� ¼ 1þ 	=�� 1, we obtain that at
first order in the two frames, the energy density and pres-

sure are the same, namely �� �ðfÞ and p� pðfÞ.2 At early
times, our first-order approximation is no longer valid,
since the two frames will start to diverge, having a direct
impact on the effective equation of state. Additionally, in
the presence of pressure, the spatial part of the energy-
momentum conservation ha

crbTcb ¼ 0 yields

ð�þ pÞlbrbla ¼ �Dap: (29)

However, by construction, the la congruence is geodesic
[Eq. (4)], and the previous relation implies that Dap ¼ 0.
The latter condition is valid in an isotropic and homogeneous
background, but considering cosmological perturbations,
nongeodesic congruenceswill be involved in the calculations
(for a 1þ 3 treatment of nongeodesic flows, see Ref. [26]).
Hence, our model is consistent at late times of the cosmo-
logical history (for example, in dust- and radiation-
dominated eras) and for vanishing gradients of pressure.

On the other hand, taking the timelike part of the energy
momentum conservation, larbTab ¼ 0, and decomposing
it to the irreducible parts with respect to the la congruence,
we obtain

_� ¼ ��ð�þ pÞ (30)

for the total energy density. Here we mention that the above
relation is valid for the first-order approximation, where
the energy density is almost the same in the Remannian
frame �la and in the Finslerian one la that represents the
bulk flow of matter. Introducing the characteristic length
scale a (scale factor) of the spatial volume by dV / a3, we
extract that for the expansion we have � ¼ ðdVÞ�=dV ¼
3 _a=a. Using this expression, we can recast Raychaudhuri’s
formula [Eq. (27)] in terms of the scale factor for late times
of the cosmological evolution as

3
€a

a
¼ � 1

2
ð�þ 3pÞ � 3

2
�; (31)

where the total matter fluid itself is in general a mixture of
relativistic matter (i.e. radiation, �r with pr ¼ �r=3) and
nonrelativistic matter (i.e. cold matter, �m with pm ¼ 0)
components, implying � ¼ �m þ �r and p ¼ pm þ pr ¼
�r=3. Now, using the continuity equation [Eq. (30)] to-
gether with the Raychaudhuri’s formula [Eq. (31)], we
retrieve the modified Friedmann equation:

H2ðaÞ ¼ 1

3
�� a�2

Z
a�ðaÞda� C1

a2
: (32)

In the above expression, C1 is an integration constant,
which in the FRW limit coincides with the spatial curva-
ture, and thus without loss of generality, in the following
we set it to zero. For the rest of our analysis, we focus on
the matter-dominated era (well after radiation-matter
equality) in which the radiation component is considered
negligible, and thus we use � � �m.
Equation (32) incorporates the effects of Finsler-Randers

geometry in the expansion of the Universe. We remind the
reader that�ðaÞ, which is the nature of the Finsler-Randers
contribution to the curvature, is defined on a geometrical
basis, since it directly originates from the curvature of the
Finsler-Randers geometry [Eq. (23)]. Since from first prin-
ciples the evolution of � remains unconstrained (this could
be achieved by relating the Finsler structure to a particular
quantum gravity scenario, which lies beyond the scope of
the present work), any �ðaÞ profile is possible. Thus, from
Eq. (32), one can deduce that a large class of scale factor
evolution can be realized within the context of Finsler-
Randers geometry.
Let us examine the condition of a local small departure

from quadraticity, in relation to the accelerated cosmologi-
cal expansion. In a first approach, we may write

� ¼ ba;b;cl
alblc � 	

�2
F

; (33)

where �F is a characteristic length scale related to the

variation of 	. A small value of 	 corresponds to a sort
length scale of the modification. Using the approximationR
a u�ðuÞdu��a2, together with Eq. (33), the Friedmann

2In relativistic cosmology, a similar limiting process between
relative frames is used to study ‘‘peculiar’’ frames and the
Zeldovich approximation (see for example Ref. [44]).
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equation [Eq. (32)] for an accelerated phase leads to the
approximate relation

j	j �
�
�F

�H

�
2
; (34)

where �H ¼ H�1 is the Hubble horizon. The above rela-
tion is a rough estimation of the 	 parameter, with respect
to the Hubble horizon, in order to obtain an accelerated
expansion. Thus, the length �F represents a characteristic

scale above which the gravitational physics is affected.
The condition j	j � 1 can be easily fulfilled if �F is

orders of magnitude below the Hubble horizon. For ex-
ample, if we assume that the gravitational sector is modified
above galactic scales (kpc) and take into account that
�H � 1010 pc, Eq. (34) leads roughly to j	j � 10�14.
Hence, interestingly enough, even small departures from
Lorentz invariance can lead the cosmic flow to the accel-
erated phase.

Let us make a comment here on the Lorentz invariance
violation. The effective geometric formulation of the present
work stands for the geometry of space-time as measured
by the comoving observers of the self-gravitating cosmic
medium. Thus, the 	 variable parameterizes possible depar-
tures from Lorentz invariance in the gravitational sector.
The most stringent constraints of Lorentz violation in the
gravitational sector arise from parametrized post-Newtonian
(PPN) analysis using Solar System data [45], and the most
recent results from Gravity Probe B put an upper bound at
10�7 [46]. Therefore, the above representative example lies
far inside this window. Note that during the last few years,
PPN analysis in Finsler geometry has been developed in
Ref. [47]; however, to the best of our knowledge the metric
functions that have been used are not of Randers type.
Furthermore, the study of Lorentz violation in the gravity
sector involves possible future detection of gravitational
waves and possible Lorentz violation corrections (see for
example Ref. [48]), constraints on the inverse square law
and gravitomagnetic effects, CMB anisotropies, and black
hole physics [49]. This detailed analysis eventually will also
constrain the ‘‘Finslerity’’ of the gravitational sector but lies
beyond the scope of this work.

A. Analogue to dark energy and modified gravity

In this subsection, we show that the above Finsler-
Randers-modified Friedmann equation [Eq. (32)] can mimic
any dark energy scenario, through a specific reconstruction
of the �ðaÞ—that is, of the Finsler-Randers contribution to
the curvature. For this sake, we write

�ðaÞ ¼ �0XðaÞ=3; �0 < 0; (35)

HðaÞ ¼ H0EEFRðaÞ; (36)

and using also the fact that �m ¼ �m0a
�3, the Friedmann

equation [Eq. (32)] is written as

E2
EFRðaÞ ¼ �m0a

�3 þ��0
a�2QðaÞ: (37)

In this expression, we have defined

QðaÞ ¼
Z a

0
uXðuÞdu; (38)

while the density parameters read as�m0 ¼ �m0=3H
2
0 and

��0
¼ ��0=3H

2
0 , with �m0 þ��0

¼ 1.3 We mention

that for mathematical convenience, QðaÞ is normalized to
unity at the present time.
Now we can return to the aforementioned basic

question: Under which circumstances can Eq. (37) re-
semble that of dark energy? In order to address this crucial
question, we need to calculate the effective equation of
state parameter (hereafter EoS) wðaÞ for the EFR cosmol-
ogy introduced above. We proceed as though we would
not know that the original Hubble function is the one given
by Eq. (37), and we assume that it behaves according to the
typical expansion rate of the Universe where the DE is
caused by a scalar field with negative pressure, namely
PD ¼ wðaÞ�DðaÞ. Therefore, for homogeneous and iso-
tropic cosmologies, driven by nonrelativistic matter and a
scalar field DE, the first Friedmann equation is given by

E2
DEðaÞ ¼ ½�m0a

�3 þ�DE0fðaÞ� (39)

with

fðaÞ ¼ exp

�
�3

Z a

1

�
1þ wðuÞ

u

�
du

�
; (40)

where �DE0 ¼ �DE0=3H
2
0 is the DE density parameter at

the present time, which obeys �m0 þ�DE0 ¼ 1.
The next step is to require the equality of the expansion

rates of the original EFR picture [Eq. (37)] and that of the DE
picture [Eq. (39)], namely ERFðaÞ ¼ EDEðaÞ for every scale
factor, and by doing so, we extract the integral equation

QðaÞ ¼ a2fðaÞ: (41)

Differentiating the above equation, and using Eqs. (38) and
(40), we obtain the function XðaÞ [and thus�ðaÞ] in terms
of the EoS parameter wðaÞ, as

XðaÞ ¼ �½1þ 3wðaÞ�fðaÞ: (42)

In this viewpoint, if we know a priori the effective EoS
parameter, then we can obtain via Eq. (42) the Finser-
Randers function XðaÞ and vice versa. Finally, inverting
Eq. (42) and utilizing again Eqs. (38) and (40), we find
after some simple algebra that

3Practically, defining �m0 and �r0 as the standard nonrelativ-
istic and radiation density parameters at the present time, we can
find that the complete Hubble function reads as E2

EFRðaÞ ¼
�m0a

�3 þ�r0a
�4 þ��0

a�2QðaÞ in the limit of F=� ¼ 1þ
	=�� 1 (see Sec. III). Note that at the last scattering surface
(zCMB), the Hubble horizon is �H � 2:5� 105 pc, which implies
that j	j � 1 [see Eq. (34)]. Finally, as usual, the above density
parameters satisfy the extended sum rule�m0 þ�r0 þ��0

¼ 1.
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wðaÞ ¼ �1� a

3

�
� 2

a
þ d lnQ

da

�
: (43)

Equation (43) is one of the basic results of our work. It
provides the relation of any EoS evolution with the neces-
sary form of the Finsler-Randers geometry. In particular,
for a given desired form of wðaÞ, we use Eq. (43) in order
to find the corresponding QðaÞ. Then, through Eqs. (41)
and (42) we calculate XðaÞ, and using Eq. (35) we obtain
�ðaÞ. Finally, with the profile of �ðaÞ in hand, we deter-
mine the Friedmann equation of motion [Eq. (32)] that
together with the continuity equation [Eq. (30)] fully de-
termines the cosmological evolution.

We stress here that there is not any restriction at all—
namely, the above procedure can be applied for any wðaÞ,
as long as the corresponding Hubble function is given by
Eq. (39), for instance including the quintessence and phan-
tom regimes, the phantom divide crossing from both sides,
etc. In the following subsection, without loss of generality,
we reconstruct XðaÞ of the Finsler-Randers metric function
for the most familiar cosmological scenarios.

B. Specific examples

In order to proceed to specific examples, the precise
functional form of XðaÞ has to be determined. However,
note that this is also the case for any dark energy model, as
far as the equation of state (EoS) parameter is concerned.
Potentially, in the current work we could phenomenolog-
ically treat XðaÞ [and thus QðaÞ and �ðaÞ] either as a
Taylor expansion around a ¼ 1 [XðaÞ ¼ X0 þ X1ð1� aÞ]
or as a power law XðaÞ / a. Instead of doing that, we
have decided to mathematically investigate the conditions
under which the Finsler-Randers cosmological model can
produce some of the well-known DE models. Below we
provide some specific examples along the above lines. In
particular, we first consider some literature scalar-field DE
models that emerge from FRW cosmology with general
relativity, and for these models we reconstruct the func-
tional forms of �ðaÞ ¼ �0XðaÞ=3 of the equivalent
Finsler-Randers cosmology.

(1) Cosmological constant:
Inserting w� ¼ �1 ¼ const into Eq. (43), we obtain
thatQðaÞ ¼ a2, which leads to fðaÞ ¼ 1, and thus to
XðaÞ ¼ 2.

(2) Quintessence and phantom models with constant w:
In these constant-w scenarios [2,7,9], DE is attrib-
uted to a homogeneous scalar field, with a suitable
potential in order to keep the EoS constant, which
requires a form of fine-tuning. Specifically, the DE
models with a canonical kinetic term of the scalar
field lead to �1 � w, while models of phantom DE
(w<�1) require an exotic nature, namely a scalar
field with negative kinetic energy, which could lead
to unstable quantum behavior [50]. Substituting
wðaÞ ¼ w ¼ const into Eq. (43), we find

QðaÞ ¼ a�ð1þ3wÞ (44)

and thus

XðaÞ ¼ �ð1þ 3wÞa�3ð1þwÞ: (45)

In other words, if we desire to construct a quintes-
sence or phantom look-alike Hubble expansion
(frequently used in cosmological studies), we need
to write XðaÞ as in Eq. (45).

(3) Chevalier-Polarski-Linder DE:
We consider the Chevalier-Polarski-Linder parame-
trization [51], inwhich the dark energyEoSparameter
is defined as a first-order Taylor expansion around the
present epoch:

wðaÞ ¼ w0 þ w1ð1� aÞ: (46)

In this case, we straightforwardly obtain

QðaÞ ¼ a�ð1þ3w0þ3w1Þ exp ½�3w1ð1� aÞ�; (47)

and therefore

XðaÞ ¼ 3w1ða� 1Þ � ð1þ 3w0Þ
a2

QðaÞ: (48)

Similarly to the previous example, if we want to
build a CPL look-alike Hubble expansion in the
context of Finsler-Randers geometry, then the cor-
responding functional form of XðaÞ needs to obey
Eq. (48).

(4) Pseudo-Nambu-Goldstone boson scenario:
In the pseudo-Nambu-Goldstone boson model [52],
the dark energy EoS parameter is found with the
aid of the potential Vð
Þ / ½1þ cos ð
=pÞ�, and it
reads

wðaÞ ¼ �1þ ð1þ w0Þap; (49)

where p is a free parameter of the model. Based on
this parametrization, the basic ERF functions are
given by

QðaÞ ¼ a2 exp

�
�3

1þ w0

p
ðap � 1Þ

�
(50)

and

XðaÞ ¼ 2� 3ð1þ w0Þap
a2

QðaÞ: (51)

(5) fðTÞ gravity:
Let us now give an example of how we can recon-
struct the functional forms of XðaÞ and QðaÞ of the
equivalent Finsler-Randers cosmology in the case of
a modified gravitational model. As a specific case,
we choose the fðTÞ construction, which is based on
the teleparallel equivalence of general relativity. In
this formulation the gravitational information is in-
cluded in the torsion tensor and the corresponding
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torsion scalar T, and one extends the Lagrangian
considering arbitrary functions fðTÞ [13,14]. Within
such a framework, the Hubble function is written as

H2 ¼ 8�G

3
�m � fðTÞ

6
� 2fTH

2; (52)

where T ¼ �6H2 is the torsion scalar and fT ¼
@fðTÞ=@T. Based on the matter epoch, defining
E2
FTðaÞ ¼ H2ðaÞ=H2

0 and using �m ¼ �m0a
�3, the

above equation always becomes

E2
FTðaÞ ¼ �m0a

�3 þ�F0yðaÞ; (53)

where �F0 ¼ 1��m0. The function yðaÞ is scaled
to unity at present time and is given by

yðaÞ ¼ � 1

�F0

�
fðTÞ
6H2

0

þ 2fTE
2ðaÞ

�
: (54)

Comparing Eqs. (53) and (54) with Eq. (37), we find
that

QðaÞ ¼ yðaÞ
a2

(55)

and

XðaÞ ¼
dy

d ln a � 2yðaÞ
a4

: (56)

As an example, we use the power-law model of
Bengochea and Ferraro [13] with

fðTÞ ¼ �ð�TÞb; � ¼ ð6H2
0Þ1�b �F0

2b� 1
; (57)

where b is the free parameter of the model, which
has to be less than unity in order to ensure a cosmic
acceleration. Inserting Eq. (57) into Eq. (54), we
arrive at yðaÞ ¼ E2bðaÞ ¼ a2QðaÞ. Obviously, for
b ¼ 0 the power-law fðTÞ model reduces to the
�CDM model, while for b ¼ 1=2 it reduces to the
DGP one [11], which implies that potentially we
have a cosmological equivalence among the EFR,
DGP, and fðTÞ power-law gravity models. Note that,
as we said in the Introduction, the equivalence of
DGP with Finsler-Randers cosmology was already
found by some of us in Ref. [23].

In summary, from the above analysis and the specific
examples, it becomes clear that the DE scenarios (includ-
ing some modified gravity models) that satisfy Eq. (39) can
be seen as equivalent to the geometrical EFR cosmological
model.

Finally, in a forthcoming publication, we attempt to
physically derive the precise functional form of XðaÞ, as
well as to provide a full perturbation analysis, which can be
used in order to distinguish the Finsler-Randers scenario
from other DE and modified gravity models [53].

IV. CONCLUSIONS

In the present work, we investigated an extended form
of Finsler-Randers cosmology, and we showed that it can
mimic any noninteracting dark energy scenario, as well as
modified gravity models, at the background level. In par-
ticular, we started from a small deviation from the quad-
raticity of the Riemannian geometry, and we extracted the
modified Friedmann equation that determines the Universe
evolution.
The effect of the Finsler-Randers modification is to

produce correction terms to the Friedmann equation that
can lead to a large class of scale factor evolution, including
the quintessence and phantom regimes, the phantom divide
crossing from both sides, etc. As we showed, for a given
dark energy equation of state parameter, we can recon-
struct the corresponding functions of the Finsler-Randers
space that indeed give rise to such a behavior, and vice
versa. Therefore, the present work is a completion of the
previous works of some of us [22,23], wherein we showed
the equivalence of Finsler-Randers cosmology with par-
ticular modified gravitational models as the DGP one,
since we now show that the extended Finsler-Randers
cosmology can resemble a large class of cosmological
scenarios.
In this respect, the nontrivial Universe evolution, and

especially its accelerated phase either during inflation or
at late times, is not attributed to a new scalar field, or to
gravitational modification, but it arises from the modifica-
tion of the geometry itself. In particular, even a very small
nonquadraticity of the Finsler-Randers geometry, in which
the local structure of general relativity is modified and
the curvature theory is extended, can lead to significant
implications for the cosmological evolution. One should
still provide an explanation for the origin of the Finsler-
Randers geometry itself, and the small departure from the
Riemann one. Although there are indications that this must
be related to quantum gravity effects [21,27–33], this issue
lies beyond the scope of the present work and is left for a
future investigation.
We close this work by making two comments. The first

is that, as we discussed in the text, our analysis is valid at
intermediate and late times, including the radiation era,
where all the energy conservations hold as usual. The
second is that the above equivalence between Finsler-
Randers geometry and dark energy and modified gravity
models has been obtained at the background level—that is,
demanding the same scale factor evolution. However, a
necessary step is to proceed to a detailed analysis of the
cosmological perturbations and see whether the aforemen-
tioned equivalence breaks, which would allow us to dis-
tinguish between the various scenarios (this was indeed
the case in the equivalence of the simple Finsler-Randers
geometry with the DGP model [23]), or whether it is
maintained, in which case the degeneracy of the above
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constructions would be complete. This complicated and
detailed investigation is in progress [53].
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APPENDIX: THE 1þ 3 COVARIANT FORMALISM

We briefly summarize the 1þ 3 covariant formalism as
developed by J. Ehlers and G. F. R. Ellis [25]. The notation
in this appendix is for the Riemannian limit that will serve
as guidance through our calculations to the Finslerian case.
The covariant approach employs a timelike vector field ua

with uau
a ¼ 1. With respect to this normalized vector

field, we split space-time into time and space. The 1þ 3
split is a particular case of the tetrad formalism, where the
ua congruence represents the frame of comoving observ-
ers. With respect to the 4-velocity ua, we can decompose
all tensors to their irreducible parts. In particular, using the
projection second-rank tensor hab ¼ gab � uaub, we can
covariantly define the time derivative and the spatial gra-
dient of an arbitrary tensor field, namely

_Sab::
cd:: ¼ uereSab::

cd::; (A1)

DeSab::
cd:: ¼ he

sha
fhb

phq
chr

d . . .rsSfp::
qr::: (A2)

Instead of writing the metric to a particular coordinate
system, the geometry as measured by the ua family of
observers is described by the irreducible parts of the
following tensor field:

Dbua ¼ 1

3
�hab þ �ab þ!ab; (A3)

where we define the kinematic quantities as follows: the
expansion � ¼ Daua, the shear �ab ¼ Dhbuai, and the

vorticity !ab ¼ D½bua�. The projective symmetric and

trace-free part is defined as

Xhabi ¼ hcðah
d
bÞXcd � 1

3
Xcdh

cdhab; (A4)

where indices in squared brackets indicate the symme-
trized part.
In case of a shear- and vorticity-free expanding congru-

ence of geodesics, the evolution of the deviation vector that

connects nearby observers is _�a ¼ 1
3��a [25]. Taking the

time derivative of the previous expression, and substituting

into the deviation of geodesics €�a þ Racbdu
cud�b ¼ 0,

gives back Raychaudhuri’s equation

_�þ 1

3
�2 ¼ �Rabu

aub: (A5)

The energy-momentum tensor of pressureless matter is
Tab ¼ �uaub, and the contracted Einstein’s field equations
along the observers’ 4-velocity give back the auxiliary
expression, Rabu

aub ¼ 1
2�. Moreover, an important

geometric entity is the characteristic length scale of the
expanding 3D cross section, namely the scale factor a
given by dV / a3. The reader should notice that the scale
factor is covariantly defined, in contrast to the metric-based
approach, where it is introduced through a particular
coordinate system. Thus, for the expansion we obtain
� ¼ ðdVÞ_=dV ¼ 3 _a=a, and therefore we can rewrite
Eq. (A5) in the form

3
€a

a
¼ � 1

2
�: (A6)

The physical requirement of pressureless matter implies
that for a conservative system, the matter energy density
scales with the volume element—that is, �dV ¼ const.
Furthermore, using the definition for the scale factor, we
acquire ð�a3Þ� ¼ 0. (Alternatively, one may decompose
the energy momentum conservation law rbTab ¼ 0 to its
irreducible parts [25].) The latter, together with Eq. (A6),
fully determines the evolution of the dustlike medium (for
further details, see for example Ref. [43]).
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