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TIDAL FORCES IN VERTICAL SPACES OF FINSLERIAN SPACE-TIME
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The classical equation of geodesic deviation is extended in the case of vertical geodesics
associated with a Finslerian space-time. It is shown that the deviations can appear only if the
vertical component of the energy-momentum tensor differs from zero.

1. Introduction

The equation of geodesic deviation plays an important part in the Riemannian geo-
metrization of the gravitational field because the equation describes observable phenom-
ena and involves the full curvature tensor [4, 6, 8, 10]. The deviations of .geodesically-
moving particles are caused by the curvature of the space-time and can describe the tidal
forces. These forces can vary the relative velocity, giving rise to approaching or diverging
of the particles. In general, the relative accelerations D?*n’/ds? will not be zero, unless
the Riemannian curvature tensor vanishes.

In the Finslerian approach, there are various ways that can be used in order to derive
the equation of deviations from the background geodesics [7, 9]. Following the convenient
method described in Section 4.4 of [7], the derivation starts by considering a two-parameter
family z* = z'(u,v) of geodesics, where u is the parameter of the arc-length. Then, if
z* denotes a vector joining two corresponding points on nearby geodesics, the deviation
equation can be found in the form | |

82" /607 + Ripi(z, )& Eh2F =0 (1.1)
(see p. 116 of [7]). Here, &' = 9z7/0u, 62°/6u = 2}, £", where
oy = 027/02" + Fri(e, )2
F}\. are the Cartan connection coefficient, and R:j, is the Cartan curvature tensor of the

background manifold. Thus, thk = ( would imply the vanishing of the Finslerian tidal

forces represented by 6%z¢/u?. In this respect, it will be noted that in (1.1) the extension
of the Einstein equations to the Finslerian case was proposed in the form,

Rmn - %anR et kTmn; : (12)

where R, = R ., and R = g™ R,.,. Accordingly, the solutions of such equations
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would govern the behaviour of the Finslerian tidal forces through equation (1.1). Inter- =

esting physical applications of the deviation equation (1.1} were considered in [1].

However, the curvature of a Finsler space is characterized not only by the tensor‘_{g
[2, 5, 7). Thus, the question arises.” |
if it is possible to find a full interpretation of the curvature of a Finsler space in terms

P/ and K/

Tt 3T v T

R?  but also by the tensors S7

T T

of geodesic deviations. To this end it will be noted that from a general viewpoint the
Finsler space is a fibered space, so that, on introducing the generalized element of length
in accordance with,

do* = gij(z,y)da'da’ + g,;(z,y)Dy Dy’ (1.3)

where Dy’ ‘= dy’ + N7 (z,y)da’, the paths of free particles are primarily defined on all
the tangent bundle. Deviations of such curves {(x*(t), y*(¢)) will be examined in a separate
paper. Besides, the geodesics inside the tangent spaces can be introduced in a natural
way, and our aim will be to derive the deviation equation for such vertical geodesics.

2. Deviation of vertical geodesics
If we consider the tangent Riemannian space M (x) defined by the metric

ds? = gii(z, y)a’yid,yj, (2.1

where z* are assumed to be fixed and y* are arbitrary, then we can introduce the geodesics
on M{z) by means of the variational principle

5 [ds=0 | (2.2)
which entails the geodesic equation
d2yt fds® + C (x,y)dy™ /dsdy™ /ds = 0, - (2.3)
where
Crmjn = 30Gm; /0y™

is the so-called Cartan torsion tensor (cf. p. 29 of [2]). Let F? be a two-dimensional
geodesic surface in M(z), so that any point of F can be represented parametrically by
the equation

y' =y (u,v)
(of class C*). These u and v are Gaussian parameters of the surface. The vectors tangent
to the parameter lines u =const and v =const will be defined as

¢ = Oyt(u,v)/0u, 7' = dy'(u,v)/Ov ' (2.4)
so that
o9& /Oy = dn'/Ou. (2.5)
The infinitesimal deviation vector between two nearby geodesics will be given by

2F = (8y"* /Ou)du + (By" /Ov)dv (2.6)
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according to the definition of the covariant derivative in M (z), we have

D&t = 8¢ 0y’ + Ciré” 2.7)
which entails directly that
(DR€Y* = (Din')e". (2.8)
Using the commutation relation
DD~ DDy = F 28,65, 2.9)
where
F28i . =CL . CP" —Cp Cf (2.10)
is the curvature tensor of M(z), we get
(D; D€’ — D DyNeIn™ = F255, 656y 2.11)

From the last relation it can readily be concluded that, using the arc-length s defined by
(2.1) to be the parameter » and choosing the deviation vector z* to be related to the case
du = 0, so that 7*||2*, the sought equation of geodesic deviations reads

D' /ds? + F2 8l pm& & 0™ = 0. o (212)

It will be noted that this equation can be related to the so-called Einstein equations in
the tangent space ' '

Sij - %Sgij = k‘tij ‘ (213)

discussed in [3, 11], where t;; plays the role of the internal component of the energy-

momentum tensor. In the physical four-dimensional case, the vamishing ¢;; = 0 would

3 imply 5/ = 0, for S;; = 0 is equivalent to 57 = () because of the special structure

I LI

(1.129) of [2] derived for the tensor S’

Tt

3. Discussion

Similar to the Riemannian approaches, the Finslerian curvatures of the space-time re-
veal themselves in the behaviour of deviations of test particles following nearby geodesics,
giving rise to the relative accelerations towards or away from each other. At the same
time, the deviations of the vertical geodesics are peculiar in that they imply the existence
of the vertical component of the energy-momentum tensor, so that in case of “the empty
vertical space”, the vertical geodesics are free of any deviations. _

An interpretation of the horizontal-vertical curvature tensor in terms of geodesic de-
viations will be presented elsewhere. '
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