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MOTIONS IN A CONTINUOUSLY
DEFORMED BACKGROUND.

By 1. ConstantorouLos and P. STavrinos,

Introduction. The purpose of this paper is to relate ideas on differential geometry to
the Kinematical concepts which are traditionally used in classical and relativistic particle
mechanics. This means that instead of hanging uncritically physical names on mathematical
objects we search for a suitable framework in which the various Kinematical entities of
classical and relativistic physics have a precise and explicit meaning. In this framework the
ambiguity which is inherent in the use of many physical terms, when they are applied to
curved space-time, completely disappears. In addition, it turns out, that the very concept of
an inertial frame as weil as that of 2 non inertial one can be also given a precise and natural
meaning. Clearly, the notion of an arbitrary frame of reference, introduced here, is much
more restrictive compared to the traditional one, [5]" [7], where the notion of an observer
is mixed with the choice of a particular, more or less, system of coordinates. However, this
is not a disadvantage. On the contrary, the mathematical clarification of the aforementioned
concept demonstrates explicity the subtle relation which exists hetween the underlying
manifold and the frames of reference (inertial and noninertial) which are admitted by this
particular manifold. In this sense our approach is essentially different from that of Wei-Tou
Niand M. Zimmermann, [7] as well as from that of B. Defacio et al, [2], [3] although terms
of common origin can be identified in all cases.

~ In this paper a general formula is obtained which relates accelerations and deformation
in various permissible frames of reference”. The implicit content of this formula is further
explored by Theorem 1, which enable us to define the curved spaces for which inertial
backgrounds exist, :

Throughout this paper, all data such as manifolds, mappings tensor fields ete. are
assumed to be differentiable up 1o necessary times and “space” always means a connected
paracompact manifold endowed with an affine connection;

The more interesting case where the underlying manifold is a Finsler space is alsc
discussed at the end of § 3.

§ 1. Preliminaries. Let M be any connected paracompact manifold endowed with a
symmetric linear connection {which is not necessarily a Riemannian one) and let G be a Lie
group acting effectively on M,
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1} Numbers in brackets refer to the references at the end of the paper.

2} This formula has been considered previously by the first of the authors in a different context
and by a slightly different approach [1].
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as a Lie Group of wransformations of M. According 0 our definitions @ is differentiable and
the restriction map ¢, M — M is a ransformation of M, i.e. a diffeomorphism of A into
itself, for any g € . For our purposes it is convenient to consider a coordinate system ()
in M and a suitable neighborhood U7 & M such that both U7 and ¢, (U/) are cavered by (),
for the action of the elements of G which are sufficiently close to the identity of G.

Suppose that g€ G is an arbitrary but otherwise fixed element of the aforementioned
kind, then the transformation g, deforms, in general, the geometry of M i e. the connection
which is defined in M. Strictly speaking we have a dragging along of the coordinate system
(z) as well as of the connection by the transformation g,%. This dragging along procedure
can be repeated for any geometric object which is defined at me U. Hence, if ¢ R — M,
is the orbit of a hypothetical pointlike constituent passing through the point m ¢ U, then for
the section of the transformed orbit g,°c, which lies in the coordinate systems (i) we have
the equations. :

(1.1 Tom {1)= ¢ (g, 2n (1)) ge G (i=1,2,, n}

where # i3 the dimension of M. In addition we have

{1.2) (a) zim=0zh (b)) @hm=68F us, (u,i,E da:,ct”‘ me M)

which define the dragged alorg coordinate system (') as well as the dragged along velocity
at the point ¢(m)€ M. Using (1.2){a}, (b) we can immediately verify the relations

(1.3) Toem = Ubimy = Ui my,
where
(1.3} (a) *tlpimy = Pox (Un)

is the derived velocity at g¢{m) induced by the isomorphism @geln of Th{M) onto
Toim (M}, The first of {1.3) restates globally the fact that the Lie derivative of the velocity
vanishes while the third one illustrates that the dragged velocity and the derived velocity are
simply a change of the point of view adopted. Here, wi(m, is the velocity, the hypothetical
particle should have at @{m), if it waced the deformed orbit g,°¢ instead of ¢.

The situation becomes more delicate if we attempt to reconsider the ascesleration of the
hypothetical particle since now, the coefficients of the connection are involved in the
definition,

_dzh . doh dot
(14) ri=LZe g 1 () G2 G2,

while the connection itself is also dragged along by the transformation g, Clearly, we may
introduce, in complete analogy to {1.2}(b} the dragged along acceleration and the dragged
along connecticn

(15) (a) 7m=08lrs (0 Ifulo(m))=6! 6485 Ii(m).

Changing from the coordinate system (x') to the coordinate system {x) we have

3} see also, {8), [9].
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i - & T 2 a0
(1.6) Ditom) G2b= Pl arim) 265 065 5

which relates the dragged connection to the original one. We may now consider the
possibility of defining a new vector at the point @ (m), after the action of the transformation
Pg. namely
=i dzl‘i all d:ZJ m d‘rk

(1’7) 7 etm) = d;i(m +Bk (xmm))'—j’;—-l« - _;;m),
as an alternative definition of the “deformed” acceleration at the aforementionsd point.
However, using {1.6), (1.7) and differentiating (1.1) twice on the one hand, while using the
definition (1.5) and changing from the coordinate system (x7) to (x) on the other hand, we
can easily verify the relations

(1.8} ' ot =*Fm = Fhim,
where
(1.8) (a)  Frem = o ¥m)

is the derived acceleration at @(m), induced by the isomorphism: gn |n of T, (M} onto
Toim (M). Equations (1.8} are important in the sense that they demonstrate the self
consistency of the definiton (1.4, as the acceleration of our bypothetical particie, during the
dragging prosess,

Differentiating twice (1.1) and using the definition (1.4) and the relation {1.6) we have

(1.9} Toim = Fhim— arfe {Totm )l (m) Uimy,
where,

is a tensor which involves the deformation of the geometry due t¢ the transformation @y,
g€ G. Equation {1.9) reiates the deformation of the acceleration and the deformation of the
geometry, caused by the action of the element g% G on M, through the deformasion tensor

@i

§ 2. Kinematics in a continuously deformed background. We consider now the
action of a 1-dimensional subgroup of G, Gi={g(s)¢ G, s € R}. We may always choose the
parameter § in & way such that s =0 corresponds to the identity of the group {4]. For this
particular choice of the parameter the group operator reduces 1o

(2.1) 9(8) g (s)=g(s+s5)

while {1.1) can be now replaced by the more general expression

(2.2 Toem (5, 1= @' (g{5), zm (D)),

for every me U and se¢ V=R, Now, the fundamental differentjal equation for the afore-

mentioned subgroup can be written in the form (see also [4])

23) L = £ (i)

e L e e g
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where £' is the generator of the particular subgroup under consideration, namely

(2.3} (a) Ex)=a"Ela(z) (=1 n a=1- k)

Here £i,(x) are the generators and & is the dimension of the Lie group G while o’ are

arbitrary constants.
So far the group-parameter 5 and the time-evolution parameter f are quite independent,
However, we are mainly interested in the case where there is a one-tc-one relation

(2.4) s=g(t), (EVER

between the aforementioned parameters such that ¢ (0)=0. In this particuiar case differentiat-
ing (2.2} with respect to time and using (2.3} we have

{2.5) tthom = Bpemy + 68 (Zotm)-

Equation (2.5} can be interpreted as describing the total velocity at the point ¢{m). This

- velocity is nothing more than the velocity of the particle, ptus the velocity of the background

manifold at the aforementioned point. Here the motion of the background is well defined
being the result of the action of the subgroup Gy, generated by (2.3)(a), on M.

In complete analogy substituting (2.2) in the definition (1.4) and using equations {1.6),
(2.3) and (2.5) we obtain

do° dirlm, . o' dxlw dzl

(2.6 Yom (1) = BT T di T Arart  di dt +ﬂi(1‘w(m>)”écm>u§(ma
Lo el dalm ol o 0,
T e ral A T

= Fim () afe (Zotmyr 0V FyomUgimy

+20< aaf +Bk(-r¢7(m))$ (;rq,{m}))u“m)
Mz(aafm + T (o) (ot g ) 8 (Zm)

= Foom (1) — et (Iwmn ) lipmy B gimy
+ 265 Zoim)) Hhimy + L (Toem) & (Loom) + G (Toem b
where * : * indicates the covariant derivative with respect to the arbitrary, but otherwise fixed,
connection of the manifold M.

Equation {2.6) is our main resuit. It is quite general including a deformation term a
generalized Coriolis term 2nd a generalized centrifugal one. Besides in the oversimplified
case where M is the three-dimensional Euclidean space and G is the group of rotations
squation (2.6) reduces to the familiar form

(2.6) (a) Y= Tt 20X A4 QKO K P+ @ X,  mEE
where the scalar factor & has been absorbed in the definition of the vector
(2.6) (b} g=s(a', o w®), (m={z" 2%

In physical terms, 7 and # in equation (2.6)(a) are the acceleration and the velocity of the
particle relative 1o the rotating frame of reference while @ given by {2.6)(b) is the angular
velocity of the aforementioned frame.
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§ 3. Inertial and non-inertial backgrounds. So far the group & and the geometry of
M are quite arbitrary. Now, we specialize to the case where G is the group of affine motions
of M. Although this assumption is rather severe, restricting considerably the possible
geometries on M, it includes all the cases of interest and in particular the Riemannian
geometries which admit a non trivial group of motions. In all these cases the deformation
term vanishes and the righthand side of {2.6) depends only on the generator & and on the -
derivatives of o. For an arbitrary but otherwise fixed choice of the pair (£,0) the 1-
dimensional subgroup G;(£), generated by &, prescribes a well-defined motion of the
manifoid M which can be considered as a virtual kinematical background for any possibie
{Newtonian) type of dynamics in M. We shall call the pair (G (&), &), in short, a back-
ground for M. Clearly, if m>2, where m is the dimension of G, there is an infinity of
essentially different backgrounds for M.

In the light of the above the condition

(3.1 _ Im= P (£F0)

becomes important as a criterion for the discrimination between the various backgrounds
which are possible for M. In particular a background such that (3.1) holds is said to be an
inertial background for M. Since 6+0, (3.1) implies the necessary conditions

(32) (a) £,=0, (b} &=0.
The integrability conditions of (3.2}(a) can be written in the form (see also [5h
(3.3) {a) E!Rwixo, (%) $’Rm§<m=0, ey

where R,/ is the curvature tensor. On the other hand the condition that & generates an affine
motion, )

3.43 LIf=8— &Ry =

is automatically satisfied as a result of (3.2)(a) and (3.3). Consequently we have proved the
following :

Theorem 1. The pair (&,0) is an inertial background for the space M, if and only
if the conditions (3.2)(a), (b} and (3.3) are satisfied.

Clearly, Theorem ! covers also the Riemannian case, the vector & now being 2 killing
vector for the space M. 7

All the steps of § 3 can be repeated mutatis-mutandis in the case where M is a Finsler
space assuming only that the coefficients of the connections [ (z=) are replaced by the
Finslerian coefficients % (Zm, vm). This means that equations (1.8), (1.9) and {2.6) can be
naturally generalised for a Finslerian background. .
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