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Abstract: Tn this paper we show how a topology can be
generated by a fuzzy binary relation of indifference, i.e. a
fuzzy equivalence relation, on a set of objects. This
construction generalizes the classical construction of the
topology of metric spaces, thus showing that the idea of
fuzziness is already present in classical mathematical objects.
An application related to Poincaré’s conception  of
continuum is also given.
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Introduction

The meaning of the concept of distance, as
introduced by Fréchet [3] for the study of
general spaces, includes the idea of resemblance
or indifference between two (mathematical)
objects. Chevallard and Johsua [1] have pointed
out that the distance between two objects (e.g.
two functions, two curves or surfaces etc.) is
apparently a measure of how different these
objects are, or how different are their mathe-
matical properties (their integrals, lengths,
areas, etc.). This special character, of the
concept of distance introduced by Fréchet, does
not exist in the usual meaning of the notion of
distance in elementary geometry or mechanics.
Two points on the plane do not resemble each
other more if their distance is getting smaller!

A generalization of the notions of distance and
metric space, which has more or less a statistical
or probabilistic character, was provided by
Menger [5,6], Schweizer and Sklar [9, 10],

Fritsche [4] and others. But there are some
difficulties in the construction of a topology for a
probabilistic metric space (for exampie, it is not
always possible to construct a closure operator n
the sense of Kuratowski but only in the sense of
Cech (see R.M. Tardiff [11]).

in this paper we follow a direction which is
close to the ‘degree of difference’ character of
the Fréchet’s concept of distance. We generalize
this concept— and the construction of the
resulting topology—in a setting - that uses
notions and techniques from the theory of fuzzy
binary relations; namely we use a fuzzy
equivalence relation (satisfying some natural
conditions) as a fuzzy set theoretic analogue of
distance, and we prove that such a relation
generates a topology, whose properties we
investigate. We also give an application of these
notions and resulis to Poincaré’s conception of
physical continuum.

1. Triangie operations on the intervak [0, 1}

In this section we define a notion of triangle
operation (or norm) on the interval {0,1], as a
technical tool for the generalization of the
Triangle (nequality. This notion is similar to that
defined by Schweizer and Sklar, who worked
towards the direction of probabilistic metric
spaces, but it will be used in a totally different
context.

Definition. We put 7 =1{0, 1] and I°=(0, 1). A
mapping
AIXI—1
is called a triangle operation {or triangle nor)
on I iff the following conditions are satisfied:
(i) A is commutative, i.e.
sant=tAs foreverys, tel
(i) ta1 =1 for every t € 1; also,
0A0=0.
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(iti) For every ¢ € I° there is a ¢, € I° such that
LA =L '

(iv) 4 is'monotoric, i.e. if 5, =<s, and ¢, =Ly,
then s; AL <85, A L.

Example. The operations

5y Aqt=min{s, ¢}, Shgt=g-t

satisfy conditions (i)-(iv). These operations are
also associative, but we shall not need
associativity throughout this paper.

Actually we can immediately see that any
triangle operation A (satisfying (i)—(iv)) also
satisfies:
sat=min{s, t} foreverys, rel. (1.1)
Because from (ii) and (iv),
spat=ssAal=s
and by the same argument s At =<t

From the triangle operations s A, t = min{s, ¢}
and s Ayt=s-t we can produce ‘dual’ opera-

tions by using the involution s—s'=1-s as
follows:

§Vyt=(min{s’, '}’
=1-~min{l—s, 1 —¢} = max{s, ¢}
and
sV t=(s"-t")
=1-(Q-)1-t)=5+1~st
Motivated by these examples, we define, by the

same procedure, the dual of a triangle operation
A on 1, as follows:
sVti=("atY=1-(1~s)a(1-—1).
It can be easily proved that the dual operation v
of a triangle operation A on [ has the foliowing
properties:

(i"y Vv is commutative;

(ii"y tvO=tforeveryrel; also, 1vi=1;

(it") for every t l° thre is a t; € I° such that
HVE=T, .

(iv') if sy <=5, and t,<t,, then 5, V1, <8,V ts.
Also, we have

§ Vt=max{s, t} foreverys,tel

The proof of these statements is direct from

the definitions and from the fact that (s} =3,
and will be omitted. The following kind of De
Morgan laws is also immediate:

(svtYy =s' A, saty=s'vt (1.2)

forevery s, tel

We also note that from (iv), (iv’), (iii’) and
(1.1), it foliows that the functions A and Vv are
continuous at the point (0, 0) with respect to the
Cartesian topology on / X [.

2. 4-Fuzzy equivalence relations on a set of
objects

We recall that a fuzzy binary relation on a set
E is a mapping ¢: £ X E— 1. Zadeh [13], Yeh
and Bang [12] and others, have defined and
studied this notion and its applications to
cognitive and decision processes. Ovchinnikov
[7} has studied the structure of fuzzy binary
relations —in  particular, fuzzy equivalence
relations —in a more general setting, using,
instead of I=][0,1], a complete distributive
lattice with universal bounds. Gur approach will
be similar to the approach of this author,
although we shall use special properties of [
which are necessary for our purpose (as the
existence of triangle operations and their duals
on [ and the density of the elements of I with
respect to their natural order).

Definitions. We say that a fuzzy binary relation

@ on E is:

* reflexive iff @(x, x) =1 for every x e E;

o symmetric iff @(x,y)=@(y,x) for every
x,vek.

Now let A be a triangle operation on /. We say

that @ is A-transitive iff

e, y) s @y, 2)<@(x, z) foreveryx,y, zeE.

We call ¢ @ A-(fuzzy) equivalence on E iff it is a
refiexive, symmetric and A-transitive fuzzy
binary relation on E.

Example 2.1. Take A to be the usual multiplica-
tion in /. Let E be a set equipped with a
pseudo-distance d, i.e. a mapping

d:Ex E—|0, +x)
satisfying d{x, x) =0, d(x, y)=d{(y, x} and the
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triangle inequality
d(x, y) +d(y, z) = d(x, z}.

Consider on E the fuzzy binary relation defined
by the formula (first introduced by Menger [5]):

e(x, y) = exp(=d(x, ). (2.1)

Since d(x, y) =0, it is obvious that ¢ takes values
in (0,1}. This fuzzy binary relation is clearly
reflexive and symmetric. Also, from the Triangie
Inequality, which is satisfied by d, it follows that

e(x, yy- &(y, z)<e(x,z) foreveryx,y zek,

i.e. that ¢ is A-transitive with the usual
multiplication as A, and thus it is a A-
equivalence on E. Conversely, if we suppose
that £ is a A-equivalence relation on a (arbitrary)
set E, with values on (0, 1], it follows that the
function d defined on E X E by the rule

d(x, y) = —log e(x, ¥) (2.1b)

is a pseudo-distance on E. Thus the transforma-
tions (2.1a) and {2.1b) establish a one-to-one
correspondence between pseudo-distances and
A-equivalences with nonzero values and such
that the triangle operation A is the usual
muitiplication.

Now let ¢ be any A-equivalence on a set F.
Following Ovchinnikov [7], we define the @-class
of an element a € E as the fuzzy set [a], with
membership function
[alo(x) = @(a, x).

We then have

Lemma.
[a), =Dl if Pla,b)=1. (2.2)

Proof. If [da], =[b], then @(a, b)=la],(b)=

[blo(B)=q@(b,b)=1, since ¢ is reflexive.

Conversely, if @(a, b) =1 then for every x € E,

[a]o(x) = @(a, x) = @(a, b) & (b, x)
=140b],@) = 16],(),

since ¢ is A-transitive and A satisfies (ii)
(Section 1). 1

Returning to Example 2.1, we remark that for
every point x of a pseudo-metric space (E, 4),

the set of points of a zero distance from x (i.e.
those points y with d(x, y}=0) coincides with
the set '

X = {y [ [x]e = [y]s}’

where ¢ is the fuzzy equivalence corresponding
to d according to the rules (2.1a) and (2.1b).
Thus a necessary and sufficient condition that the
pseudo-distance d is a distance on E, i.e. that it
also satisfies the condition

d{x,y)=0 =2 x=y,

is that for every x € E the set X as above contains
only x.

3. The Kuratowski closure operator generated
by a A-fuzzy equivalence '

The topology of a pseudo-metric (in particular
metric) space (E, d) can be generated as follows:
for every subset A of £, the closure A is the set
of all points x such that d (x, Ay =0, where

d(x, A) =inf{d(x, a) |a € A}.

The resulting topological space is a T, space iff
the pseudo-distance d is a distance.

We will now generalize these classical facts by
proving:

Theorem 3.1. Let ¢ be a A-fuzzy equivalence
relation on a set E, where A Is a given triangle
operation on I = [0, 1. For every element x and
every subset A of £ we put

@(x, A)=sup{p(x,a){acA}).

Then the mapping 25—25 (where 2F is the
power-set of E) defined by

A= AT={x | px, A) =1}

is a Kuratowski closure operator on E, such that
for every x € E the closure of the one-element set

{x} is
(x}7={y [ [x], = [¥]s}-

Proof. At first we have

(1) Ac A¥ for every A < E. Indeed, for every
aeA we have p(a, A)=@la,a)= 1.

We next prove

(2) (AUB)Y¥=A%UB? for every A, Bc E,
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in two steps: at first we show in general the
implication '_ .
(28} Xg¥Y = X%cY? (from which it
foliows that AYc (AU B)% and B¥ < (AU B)YY).
Seppose that X ¢ ¥ and let x; € X¥; then

@lx,, V) =sup{@(x, y) | ye¥} -
=sup{@(x, ¥} xeX}=1

so that x; € Y% The second step for (2) is to
show that

(7o) (AUBYYcAYUBY Let xe(AUB)?
and suppose that x ¢ A¥; we shall show then that
x e BY Since x ¢ A¥ we have

plx, A)y=1-9<1 (for some 4 >0).

Let & be any positive number with 6 < 9. Since
gplx, AUBY=

there isa c e AU B with

1-d=gx, o)<l

Then

plx,c)=1-8>1—-9= @, A),

from which it follows that ¢ ¢ A (otherwise we
would have @(x, A)= @(x, ¢)> @{x, A), which
is absurd); so c e B. Thus for any sufficiently
small 6 >0 there is a c € B with

1<l )<l

which means that x € B¥. Thus (2) is estabhshed

We have now to prove:

(3) (AT < A% for every AcE. let xe
{A¥)%. Then @{x, A¥y=1. We shall show that
also @{x, A)=1. Let & be any positive number
iess than 1. It suffices to find an element a € A
wtih @(x, @) = 1 — 8. From the property (iii") of
the dual operation vV (Section 1) there is a
number §,, 0<< &, <1, such that

8,V O; =<6,

Since @{x, A¥)=1, there exists x; €A% with
@(x, x;)=1—95,. But then @(x;, A)=1, so
there also exists an a; €A with @(x), a)=
1 - &;. Combining these inequalities and using
the A-transitivity of ¢, the monotonicity of A

and (1.2), we get’

Pp(x, a)) = @x, x) A (x5, a1)
=(1-06)a(1-5y)
=8]A8]= ((Slvé)
Thus (3) has been proved.
From (1), (2) and (3) the operator A— A% s a
Kuratowski closure operator. The truth of the

last statement of the Theorem is obvmus from
(2.2y. O

Corollary. With the premises of Theorem 3.1, the
resulting topology on E has the property Ty iff
[l =[yle > x=Vy

or, equivalently, iff

@lx,y)=1 = x=y.

4. Open sets and limits with respect to the
topology generated by a fuzzy equivaience

Proposition 4.1. Let A ¢ E be open with respect
to the topology generated by a O-furzy
equivalence relation @ in E (according to
Theorem 3.1), and let v € A. Then:

() {a}¥=4;

(i) there is a & € (0, 1) such that the set (subset

of E)

B(a; 6)={x | @(&, x)>1~ &}

is included in A.

Proof. (i) Since A is open, its complement
E—A is closed. Let a' e {a}¥; we show that

a' € A by contradiction. If o' € E— A, then the
relation @(a, o’) =1 would imply

ae(E~A)P=E—A

contrary to our assumption.
(ii) Since a¢(E—A)% we have (o, E—
AY<1. So we can put

pla, E—~A)=1-6 (0<é6<1)

If x 1s any point of E such that

pla, x)>1-9

then clearly x ¢ E — A, i.e. x € A |



T. Patronis, P. Stavrinos | Fuzzy equivalence and the resulting topology 241

The sets
B(a; 8) =:{x | @(a, x)>1— 8}
(aeE, 0<8<1)

appearing in Proposition 4.1 are the analogues of
open balls in metric spaces. In order to
formulate our next result about these sets, we
need the following.

Definition. A triangle operation A on [ is called
dense iff for every 8 e I° and 8, € I° with 6, << &
there is a J, € I° such that 8,V d,< 8. (Recall
that v is the dual operation of .} It is easy to

show that the operations
s Ayt =min{s, t}, SA t=g-t

are dense.

Proposition 4.2. If A is a dense triangle
operation on I, then every set B(a; ) defined as
above is open in E with respect to the topology
generated by the A-fuzzy equivalence @ there-
fore B{a; &) is a neighborhood of the point «.

Proof. We shall prove that E - B(a;d) is
closed, 1.e. that

(E ~ B(a; 6))? < E — B(a; 8).
Let y € (E — B(a; 6))7, which means that
@(y, E—B(a;9))=1

We have to show that y ¢ B(a; 8). Suppose the
contrary; then

@la,y}>1-0
and we can also find a &, < 6 with
pla, V)>1—-06,>1-46.

Since A is dense, there exists 6,>0, d,<1,
such that

6,V H,< b,
and since

¢(y, E — B(a; 9))
=sup{@(y, z) |z€ E— B(a; 8)} =1,
there exists z € E — B(a, §) with

I-é =y z)=1

But then

pla,2)= (e, y) 6 @y, 2)
=(1—06,)a(1—-6y)
=1-(8,V &)
>1-8,

which is a contradiction since z ¢ B(a; 8). [

Coroliary. With the same premises as in Proposi-
tion 4.2, if a net {a;}sen converges in E to the
poinis x, and X,, then these points are of the same
‘@ — class’, i.e. (x4, x2) = 1.

Proof. Suppose the contrary, i.¢.
Plxg, X} =1-8, 0<6<L.

Then there is a &, >0 with §, < and a §,>0,
8, <1, with 8,V §,< 8. By Proposition 4.2 the
sets B(x;: ;) and B(xq; 8y) are neighborhoods
of x, and x, respectively. Since the net e ren
converges to both x; and x,, there exists Ae A
such that :

a, € B(xl;_dl) N B(xa; 62}
Therefore

(X, X)) = @lxq, @) & @(xg, o)
?3(1—-51)15(1“(32)>1-~ 8,

which is a contradiction. O

Example. A natural fuzzy equivaience ¢ on the
space *R of nonstandard real numbers {the
triangle operation being the usual multiplication
on /) is defined as follows:

exp(—ist(x =)
if x — y is finite

Px, ¥):= (not infinitely large),

0 if x —y is infinitely large,

where st(r) denotes the standard part of x. It is
clear thai the relation @{x;, xo)} = 1 holds iff x,
belongs to the ‘monad’ of x;. Suppose that a net
{a;} converges in the space *R with respect to
the topology generated by the fuzzy equivalence
@. Then, according to the above corollary, any
two limits of {a;} belong to the same ‘monad’ of
*R. In particular, if there is a real x among these -
limits, then x is uniquely determined by {a,}.
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%. An application related to Poincaré’s
conception of continuum

As an application of our general constructions,
we shall present a rigorous formulation of the
continuum of physical quantities, conceived by
Poincaré [8]. For another approach based on
Boolean Fuzzy Sets see Drossos and Markakis
[2]. Poincaré’s conception of physical continuum
can be described vaguely in terms of a relation of
‘closeness’, concerning physical quantities or
events. The essential point, here, is
noniransitivity: while the quantity or event A
may be ‘close’ to the quantity or event B and B
‘close’ to C (with respect to the difference of
their magnitudes or the time they happened), we
cannot conclude that A is ‘close’ to C.

We suppose that the ‘continuum of physical
quantities’ has the structure of an ordered field
2. This implies, in particular, that ¥ is dense
with respect to its ordering, since it contains a
copy of the rational numbers. Let d >0 be a
fixed, for the moment, element in X. We say
that 4 is a limit of distinguishability, with respect
to some particular observer or some ‘micro-
scope’. For two quantities a4, b € 2 we say that «
is (very) close to b with respect to d or that a and
b are indistinguishable with respect to d, in
symbols

a=y(d) b
or simply
a=yb,

iff
la-bi<d

where |+ | denotes the usual absolute value in ¥
(i.e. ja|=a if a=0 and lg| = —a if a <0). The
relation ==, (d) is clearly reflexive and symmetric,
but it is not transitive, as it can easily be shown
by taking e.g. c=a+d and b=a+e, where
O<e<d.

Although the above relation of closeness or
indistinguishability (with respect to some fixed
element d of X) is not transitive, we may
consider chains of indistinguishable terms be-
tween two elements of 2.

Let a,beX and neN (n=0,1,2,...). We
write '

a=,(d)b

iff there is a chain of n + 2 elements of &

Qg, A1,y -« oy Qpyy |
such that ¢y =g¢, a,,,=b, and

i, —a, 4] <d fori=0,1,...,n

This implies that
ja—blsja—a|+---+la,—b|<(n+1)d

and thus that «, f§ are indistinguishable with

respect to {n + 1)d. This suggests that an ‘order’

of distinguishability between two quantities in &
should be defined, as we are now going to do.

For any pair of quantities «, b € X and any
d € X, d >0, two cases are possible:

(aj there exists n € N such that a =, (d) b;

(b) such an n € N does not exist.

In case (a) we define the order of distin-
guishability between a, b with respect to d, in
symbols

Ny(a, b),

as the least natural number n with the property
a=,(d)b. In case (b) we say that N,(a, b) is not
finite and we write N,{(a, b) = +o. We omit the
easy proof of the following.

Lemma 5.1. The function (a, b, d)~> N,(a, b)
has the following properties:
(1) Ny(a, a)=0;
(i) Ngla, b) = Ny(b, a) = Ny{a — b, 0);
(iil) Nai(a, ¢) < Nupla, b) + Nan(b, c);
(iv) if d,=d, then Ny (a, b)< Ny(a, b).

Let d>0 be fixed in X, and consider the
sequence

d/k:;}é-d (k=1,2,...)

which is obviously decreasing in 2. From the last
property in the above lemma, the sequence of
corresponding orders of distinguishability

Naw(a, b) (k=1,2,...)

is increasing. It follows that the limit
lim exp(—Nau(®, b))
Kpon

always exist in [ =[0, 1], where the expression
exp(—f) means zero in case f= +oo, We define

D ES
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the function
¢d N E X 2-—) I

by the rule

Dy, b):= Eim exp(— Ny (a, b)_).

Proposition 5.1. @, is a A-fuzzy equivalence in
2, where / is the usual mulfiplication operation
in i,

Proof. What we have to prove is A-transitivity,
i.e. that

D a, b) - @u(b, c)= @yla, ¢).

This inequality is obtained directly from
Naprla, b)Y + Nypi(b, ¢} = Nd}k(a; c)

which holds for every k=1,2,... by Lemma
51. 0O :

Corollary. For every1d>0 in 2 we have a

topology in X resulting from the fuzzy
equivalence @,.

In fact this topology describes X with respect
to the limit of distinguishability 4. For example,
if =*R and d is real, then for every aq,be X
we have @D,(a, b)=1 iff b belongs to the
‘monad’ of & (i.e. a—b is infinitesimal) and
@,(a, b) = 0 otherwise.
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