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We indicate that the main term in the geodesic deviation equation is given by the
seneralized torsion tensor. In the static spherically-symmetric case, the explicit representation
for the main term is found in the first-order low-velocity approximation.

1. Introduction

The equation of geodesic deviation was studied in general relativity from various

points of view (see, e.g. [1-3]). The equation can be extended to the case of the
classical Finsler geometry [4] as well as to the gauge-Finslerian approach [5]. In the
generalized-Finslerian framework [6, 7] which drops the classical condition (2.6), the
equation can also be derived [7}]. ,
In the Finsler geometry [4], the feasibility of scrupulous considerations stems from
_the fact that the Finslerian connection coefficients can be constructed in an explicit
and lucid manner. However, the equations of the generalized-Finslerian spaces cannot
be resolved for the connection coefficients in the general form (see [6, 7]), which
hinders investigation of the generalized-Finslerian deviation equation.

On the other hand, the generally-relativistic analysis of gravitational observations
made in our solar system is founded on the particular case when the gravitational
field metric is assumed -to be static and spherically-symmetric {1]. The correspond-
ing extension of the metric tensor to the generalized-Finslerian case was proposed
in [8, 9], without assuming the condition (2.6). Even in this sufficiently simple case,
however, the possibility of solving the metric condition (2.8) for the conmection co-
efficients subject to the natural condition (2.13) is not obvious.

The deviation equation under study can be investigated in the low-velocity approxi-
mation approach. We start with the observation that the main term of the equation
is expressible in terms of the torsion tensor which involves only the contracted co-
efficients qu;’ thereby avoiding the use of the full connection coefficients L;7; and,
hence, simplifying matters (Section 2). Following this procedure, we calculate the main
term up to the nearest generalized-Finslerian corrections with respect to motion ve-
locity (Section 3). These are the corrections that are of experimental significance, for
all related observations (such as the tidal forces behaviour or the deviation of trajec-
tories of nearby spacecrafts) involve rather small velocities. In principle, subjecting
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the representations (3.5) and (3.6) to experlmental verifications could give Valua
- estimations for the generalized-Finslerian parameters b4. '

2. Geodesic deviation equation

Suppose we are given an N-dimensional differentiable manifold M endowed with |
a symmetric non-singular metric tensor a;;(x,y), where z” are local coordinates of

M and y* are tangent vectors supported by ™ The covariant derivative D, will be
defined in accordance with

Dyai; = dypai; — Li*nag; — Li%nai - (2.1 4

where L;*, = L;®,(z,y) and

d, = &, — an(m,y)éwgmmm (2.2y

(8, = 0/0z™). The symmetry L;/*, = L,*; will be implied. The associated curvature

tensor reads

Wi

L5 = diL™ — diL™; + L™ L™ — Ln®5 L™ (23)

S
¢
1t

and the associated torsion tensor reads
M;" = d;Li" — d;L;" . (24)
We also introduce the notation
Suis = 3508 23
The classical Finsler geometry {4, 10] is characterized by the condition
Sijny’ = 0. (2.6)

The condition (2.6) will not be implied below, for we shall follow the generalized-

Finslerian framework developed in [6, 7].
If we mtroduce the associated Christoffel symbols

itk = 30780k + Oklng — naze), @7)

we can resolve formally the metric condition
Drai; =0 | (2.8)

for the connection coefficients L,*,, obtaining
Lite = 1'% — @™ (L™ Smen + T Sunin — Ln™Smji) - 29

In the Finslerian extension of the Riemannian approach the equation” of geodesic
deviations can be written in the form
D25t

e — K (@, )y’ y" 2 (2.10)
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(eq. (4.4.16) of [4]), where K;'ni is a Finslerian curvature tensor, and D/ds is a co-
variant derivative along a geodesic. This equation can be extended to the generalized-
Finslerian framework (see [7]) such that the curvature tensor (2.3 will enter the
right-hand side of equation (2.10) in the combination

F'=F's* (2.11)
with .
Pt = Lt vy (2.12)
As in [6, 7], we put
| Lif = Ly (2.13)
Now, if we contract (2.3) by y™ and use (2.13), we find the identity
Y Ly = My (214

which shows that the main term (2.11) in the generalized-Finslerian geodesic deviation
equation is determined by the torsion tensor (2.4), namely,

Fit = Mi'sy (2.15)

Since the torsion tensor Mg!, is constructed solely from L;7, as this follows from
(2.2) and (2.4), the last observation enables us 1o avoid examination of the form of
the full connection coefficients L;7,, which enter the curvature temsor (2.3).

3. Static spherically-symmetric case

Following Section 4 of 8], we fix a coordinate system ot = (z¥,2%), introduce the
notation '

a x*  Or
T = (Oap mb)l/Z? Mg = “7:' = Gpa
and put
age = A(r, @roo(r).  @ap = Ao(r, Qras(r),  @oe =0 (3.1)
together with
Top = —W(r)bes, ' (3.2)
where _
@, b
Tab¥ 'Y
- 3.3
roo(y0)? (33)
and § stands for the Kronecker symbol. The indices a,b,... run from 1 to N -1

The space defined in this way presents the static spherically-symmetric generalized-
Finslerian case. .

The low-velocity approximation technique was proposed in [9] to analyse concomi-
tants of the metric tensor (3.1). Such a technique can successfully be applied to our
case to estimate the temsor (2.14). Indeed, the equation obtained after contracting
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(2.9) by y*® can be exammed carefully to find the first-order approximations for the
coefficients L,7. On doing so, we obtain the following approximate representations:
Lo® = %bin® + bonyv®,  La® = byny 8l + ba(y’na — yan®), (3.4)

where n, = n.y% v* =y a /o0 and n® = r®ny; the coefficients by, A = 1,2,3,4, de-
pend on only r. Insertion of (3.4) in (2.14) yields the following result after strazght-
forward calculations: i

F(Jb " 1 1 b bl :

W(y“)?‘ =W { - (53 + ;)b}’t) + (b]r - 2t51b | inyng + o(q) (3.5)
and

R b b
7 (bgr, o -7-; — %) nv(nvég - navb) + ( — by + —ﬁ + bi) np(n,v® — Wrongng )+

1 b 1 b
+ W (b;o 4 mi)(ﬁg W (bw - w}r — 2ta1 by )nam, + o(q}), (36)
where ba, = Oba/0r, n, = n,v?, and iy = éﬁin W/or.

Thus, we have proved the following

THEOREM. In the generalized-Finslerian static spherically-symmetric  approach, the
first-order low-velocity approximation to the main term of the geodesic deviation equa-
tion is given explicitly by (3.5) and (3.6).
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