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A GEOMETRICAL STRUCTURE IN THE }-PARAMETER
FAMILY OF GENERALIZED METRIC SPACES ¥

By Panayiotis STAVRINOS and Satoshi IKEDA.

Introduction. In the context of the time dependent geometric subjects of the
Finslerian approach, the authors will provide a different standpoint from the other
one that has already been developed for the rheonomic systems. In that case, the
time is taken as an arbitrary (external) parameter ([1]9, [6]).

In the present work, we study the geometry of the Finslerian space-time structure
in relation with a A-parameter family of a Finsler space-time (F*), A}, ¢y and its fiber
metric structure which was proposed by one of the authors {5].

From a physical viewpoint, this consideration of A-parameter as an internal coor-

y- . . K . . . C . ~{ 4 .
dinate, gives rise to an ”evolution” of the Finslerian space-time Fé ). For this reason,

: (2)
it is useful to consider a second order deformed bundle T (DF) as the total space

of the deformation of F(§4) constructed locally by X4 = (zF,4%,4° = )), where the
internal variable X is considered independent of =% and o, (k,i = 1,2, 3, 4).

(2)
§ 1. Connection. The metrical structure in T (DF) is given by the form
G = gardz*da® + gi;6y' 6y + goodAG),

with A = dX + M{dz* + Lidyt, 6y* = dy* + Nidz*, A= ¢°.
- The coefficients M} (x,y, A), LY(z,y,A) transform like the components of a co-
vector field on M: _
o BT o o O o 0F it 0%

- 0 9% po  grOT 0T Ny J
M= gaxMes L= g5l Niga = ga™ ~ pwgm?

In an adapted frame on T (DF) = (3—2-» ‘;‘, 5@;), the form of local bases will be

given, as follows:

b _ 0 i d a0 88 0 89

LAY N DAy ¥ 1 A g _ 2
bzt OxH H Byt AN &yt Byt AN BN 5y°
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The transformation of local bases yields the relations:

s ot s 6 03 6
sx>  Bz> 83k’ Gy Oxt Sy

dmk.:—gﬁwd:c‘ 5 = gmjb'y, A=A

Considering that in a deformed bundle T (DF), the D-connections DI = {LY,, L],

LOWCZ‘, (‘;:3, COJ, Ao Afo, AS,} become d-connections, then we get
5 , 0 6 ) 0 g
Dsfoan oz = Lugger Dosewe g = Ly Dogann g3 = Lougys
6 v 8 g 6 8 8
Dé/ﬁngzgﬁ - C#J'S;;’ Dijsys 7 Syt Cgé s Dsysys BN ngg'):;
. o 7 b ;6 ¢) g O
Dajorg o = Zog;.% Dajorz— by A:ZOE—J?: Dasor gy = ooy

In the framework of our consideration, the differential of fundamental functlon Fx,
y, A} of the family of spaces is given, for example, by the relation,

OF OF OF OF o x  OF BF
dF(z,y, A) = —-~d +~5~wd +5Xd>\ s +§26 +§de

The absolute differential of an arbitrary vector X* has the form:
DX =dX' + LE (m,y, NXTbx* 4+ Chy (@, y, N XT8y* + Mo X7 d),

where

, 1. [ég-; &g bg;
R T ) L | o
Liju = (53:“ + bxi  bxm )’

1

ik T o

2
L, 691‘.?' T dgrk _ 5.9;;’1:
2 dyk by oy

LY’ (5930 +59£j 593'0)

jo*z.‘]

y? 72\ &yt

For the physical viewpoint, it is useful to impose the relation g — gj0 = 0. Also,
the form of a curve C : [0, 1] m«»(;g (DF) is given locally by X4(t) = (z*(2), y*(1), A(£))-
A curve C in (12(? (DF) is a geodesic with respect to the global affine connection 4.,
if and only if it satisfies the relation

XA -, dXPdX©
ds? BC ds ds




160 - P. Stavrinos and §. Tkeda.

§ 2. Torsions and curvatures. We shall calculate the torsions and the cur-
vatures in a T@(DF), taking into account [2], [7] in our case. The torsion tensor
field T of a d-connection D isgiven by T(X,Y) = DxY - Dy X — [X, Y], VX, Y. For

the adapted frame ( =5 ”6-%:, ;%), we have the relations:

6 ,
) T (g5 ) = g T Ty

—hogex Thagg gy

5 6 § .6 a

S R TR O N S A N o i

b) T(&y*’ém“ VE fgr + YH Gyt ! ’IS‘” ax
2t

b & & o
e I R (P I o
¢) T(ﬁy"’ éy-’) Fggx 7 Eyt " THN

(2.1)

The relation (2.1)a) is written as

) & & &
22 Depoa g — Doto i = [53" 52:”]
& ‘ & .6 ~q O
— A A i
= Liwges ~Liwggx ~ Bugg ~Vagy

which implies via the relations

N’ i MY 0 .
[5 5]:< p_aNu>a+< M_éMV>i:Rz___3__+Uﬁ8

bzi’ b Szv  bxH | Oyl bxv Sxk | OX 1Y Qyd Y G

and
F0 70 i 70
_ U';u/ """""" Up.u + R;J.D'Lf. .
Also comparing the relations (2.1}a) and (2.2), we obtain for the torsions
XA A i i — 0
T, =Ly, — L Tou=—R,, To,=-Ug,.

Similarly, from the relation (2.1}b), we have
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— O J Sfi_i_..ﬁNﬁméw-;_”,_@
wegh  Tgyd | byt byd Hax

—Cr TY = O ~Li, T = ~Ye

i i Syt B0 i

where

&5 6 SNI & -

S S/ SR T

byt bt byt fyi T HOA
From (2.1)¢), we get

(50 5) = Dty ~ Do~ [ 5] =t ety - 2

: ; g — ) . :
VAN £/by Sy 5/6 51t by’ by 3t 5yt iF 5?,' P
S0 we have
S o ¢ _ 0
;=0 jfa = O — O, TJ% =R,
where
6 &1 50
byt Syd TaN
The relation (2.1)d) is written in the form
& 0 \ A é ) 0
(L 2o by r7o 0
(5:5#’ Ox)  THO6x gy Syt~ TPOOA
0 ) & 0
= D roen 77 E3 ~ Daroxe— i [@, 5;]

o
= Lo A
Ougx  TOHgpA AN by Z “ 8\

Consequently, it follows:

. ON?
A _ 4 70 0
TFLO - AO}J’ TZ-O o mm(‘:}T’ Tﬁo - ‘LO,u, - ‘Z,u,a
where 6’N‘. a0 AN
& 9 . 0 0 O o
_, =i = — e B e d 77 = B —-——-——’L‘Lo
[m’ 8)\] oy e T ATy T
From (2.1)e), we have
& & &
— V=T TO
T(ﬁytaa)\) 1.05)\ FI'LD&_}, zOdA
) & [6 @
= Dé/ﬁy‘é}\‘ “Da/a)\(ﬁ—yi — [Sa;, “é‘”i}
%, ; 6 aL? o

=Cogy Mg~ B
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i %0 AG?,? % 04 6)\’

k1

where

& 97 aL? &
by’ OA
Finally, from (2.1)f}), we obtain T = Tgo =T = 0.

The curvature tensors and the \-curvature tensors I.E T J
v

0 k £ o}
30 jrO{Jlu,i ijin jj{}iv JOCM,

in (f") {DF) are given by the reiatiené:
R (5;’ &iv) 5; - R}‘f’“%’ = (E%%) 52@ . Riiﬂkfﬁ’
R ((%,%) 32; :Kjgogg; =0, R (%, Z%) -(% = Kig{)w(%g =

The curvature tensor field R of a d-connection D) has the form: R(X,Y)Z =
(D, DylZ — Bz g2, VX,Y,Z. We apply this form the adapted frame, to produce:

& 5 & &
k P
B bx¥ i (53:!‘ ’ 6$") sx*

. & & é
= Dgsoge (Db'/b'm" m) — g jgov (D(S/ég;l-‘ 2‘5—557) — Dissn 6/627) X
&

o &
— k k
- Dojsz (LM 6$k) Dsfar (LA"E:EE) — Dri s/6y5408,0/03 550
(";Liy 5 k g 5 6L§f”' k 5 Z 6 10 é
Sxh b L Dsfsar bxk v ~Lauosoz bk By Ds o Hr* Ui Do jox bxA
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- 5L§y£_ g 0 _éLM 6 —LP LF _Q__Ri C* 5 o
o Sxe bxF P gk gy gk T ARTPY Sk pv A gk Sxk’

So, coefficients of the curvature of a d-connection U take the following form:

+ L8, L ~U5, A5,

‘ - sLk  6LX ; -
(23) 'R)\}:/,u = 'Eﬁ — "“53_:,—,& —E_I’iyLﬁ,u - LigLigu - sz/CikA - U,SVAI(;A:

where ﬁgy is given by the relation (2.2).
With a similar method, we can calculate the other types of curvatures.

. 6L‘I.?:V 5L-’g}‘

. . 4 vi , . ,
(24) Rzip — e - "é.}j + quLgp - LiyLﬁy - Riucfﬂ _,, {JEVAO'F,?
SLO,  6Lg | - .
(25) RD?/,u = 633“" - (5.’1}0; + LngLg,u - Lg,uLgu - vacgi - USV‘A‘&]&
51L SC°. ENT -
v P £ £ £ O At
(2- 6) I)jiu e 6;:1 - 6:[;.:“' + L;}[LCH' - %an + §y‘: Cjﬂ “%‘ YpiAOjﬂ
where ' - Sa0 .
- &1
0 w0 H 0 - 1 i
Ve Y ks Vi = B g
5L8: 50&: 0 0 0 6N} -"0. a
(2.7) Pog = 59; il L5, Cg; — CoiLoy + %ﬁcgj + Y0,
8Ck  5Ck
ko L L A vk Ak 0 sk
(28) Sﬁ‘.?"' -— "S';L - %ﬁw 4 ijC}\'L - C’i]-tc)\j - Ri.’fADf‘“
. oCT oCT
(2.9) Sy = 5;,,5 _ 53;, + CpCmy — CRCre — RUAL,,
8CS,  6C°
(2-10) Sogi = ‘Eg;i - ””8;"(})1 J"'ngcg:i - Cgicgj - REjASOa
6A§I/ 6‘[}3 3N?' k k
(211) ‘[V;élu. = ST - '—éig + AguLf;p - Lﬁ,uAgp - a/\p C'i,y - ZﬁAOur
where 0 ;
g0 M2 0N, o
# OA X
j 5Aj7; oL; £ ¢ £ pd Nﬁ j W]
(2.12} I’Lgp, j— ——6‘:6—2‘ hane 8;# **‘“ Ao,’;Lzlu . L‘L#A—g)ﬁ - —gj“‘c,fp - Z."LA%'“
. 5/\80 6L8 0 70 0 AD ON, ﬁ 040
(213) ng,u - Sk _' '—5:\# + AOOLOp - LO;_LA{)O - _ﬁ'cgi’ - ZpAD(h
5Aky SC{Q _ N OLY
(2.14) JE = . ; - —55\2 + A8, CE — CP AL, — —gf/ﬁgw
SAL.  OC, ALY
(2.15) T = 5y‘j’ -yt ABCL — CEAL, — _(,ﬁ-Agj,



164 P. Stavrinos and S. Tkeda.

A, ACY, A1
(2.16) s = P = A0 — Coilio — 3 Ao,
(2.17) 00 = igO = Koo = 0.

Thus we can get the foﬂbwing:

(2)
Theorem 2.1. In a space T {DF), the relations (2.3)-(2.17) constitute the
coefficients of the curvatures of a d-connection D).

§ 3. Conclusions. From a physical point of view, in order to emphasize the
physical effects caused by the A-dependent quantities, we had better focus our at-
tention on such terms as the non-linear connections M5, L{ and the connection
coefficients AZO,AfO. Therefore, we had better examine the A-torsion tensors T,
Tios Tros T4, TS and the A-curvature tensors L, Iig#, Todus Jubis Tk Jooi- The
physical meaning of them, is of course, dependent on the physical meaning of A it-
self. Therefore, for example, with respect to the non-linear connections M, 0 19, the
A\-deformation field can signify the rate of change of the interaction’s values, or the
differentiation of the intensity of gravitational field relative to the above mentioned

~ curvature tensors.
Consequently, the existence of A-field will influence the intensity of tidal forces

~ via of A-curvature tensors.
The last consideration will be the object of a further our study.
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