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In this paper we study the differential structure of a spinor bundle in spaces
where the metric tensor g,.(2,£,£) of the base manifold depends on the position
z as well as on the spinor variables £ and £. Notions such as: gauge covariant
derivatives of tensors, connections, curvatures, torsions and Bianchi identities are
presented in the context of a gauge approach, different than the one proposed in
(11, 13], due to the introduction of a Poincaré group and the use of d-connections
16, 8 in the spinor bundle S M. The introduction of basic 1:form fields p,, and
spinors (,, * with values in the Lie algebra of the Poincaré group is also essential
in our study. The gauge field equations are derived by the authors [12]. Finally,
we give the Yang-Mills and the Yang—Mills-Higgs equations in a form sufficiently
generalized for our approach.

1. Introduction

The concept of the nonlocalized field theory has already been developed in recent years
by Japanese authors {3, 11, 13] in order to provide a unified description of elementary
particles. In this approach, the internal variable is replaced by a spinor w = (€, £) (€ and
its conjugate & are considered as independent variables).

The description of gravity through the introduction of variables wﬁb(m) as a gravi-
tational potential (Lorentz connection coeflicients) was proposed originally by Utiyama
114, 1]. He considered the Lorentz group as a local transformation group. The gravi-
tational field is described by the tetrads hf(z) viewed as independent variables. With
the help of these variables we may pass from a general system of coordinates to a local
Lorentz ones.

The Einstein equations were derived in the context of Utiyama’s approach, but this
was not satisfactory because of the arbitrariness of the elements introduced. Later T. Kib-
ble [2, 3] introduced a gauge approach which enables the introduction of all gravitational
variables. To achieve this goal it is important to use the Poincaré group (i.e. a group
consisting of rotations, boosts and translations).

[439]
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This group first assigns an exact meaning to the terms: “momentum?” “energy”,
“mass” and “spin” used to determine characteristics of elementary particles [2]. On the
other hand, it is a gauge acting locally in the space-time. Thus, we may perform Poincaré
transformations for a physical approach. Hence by treating the Poincaré group as a local
group, we introduce the fundamental 1-form field pp taking values in the Lie algebra of
the Poincaré group.

In our present study the basic idea is to consider a spinor bundle with a base manifold
M of a metric tensor g, (z,€,£) that depends on the position coordinates z* and the
spinor (Dirac) variables (&,,£%) € C* x C*, where £ is the adjoint of £, an independent
variable, similar to the one proposed by Y. Takano [1 1], and Y. Takano and T. Ono [13].
The spinor bundle S™ (M) is constructed from one of the principal fiber bundles with a
fiber: F = C*.

EBach fiber is diffeomorphic with one proper Lorentz group {which is produced by
Lorentz transformations) and it entails a principal bundle SL(4,C) over M, {SL({4,C)
consists of the group of rotations and boosts of unit determinant acting on a four-
dimensional complex space, which is reducible to SL(2,C)).

The consideration of the d-connections that preserve the (hv)-distribution by the
parallel translation (cf. [6,8]), in relation to the second order bundie SO(M) = M xC**
enables us to use a more general group G2 called a structured. group of all rotations
and translations that is isomorphic to the Poincaré Lie algebra. Therefore, a spinor in
z € M is an element of the spinor bundle §) (M)

(", 60, €%) € SP (M),

A spinor field is a section of S\ (M),

Moreover, the fundamental gauge 1-form fleld mentioned above in connection with
the spaces that possess metric tensor Guw(x,€,€) will take a similar but more general
form than that proposed by other authors [5]. We shall define a nonlinear connection on
SN (M) such as,

T(S®M) = HS®M) o FOSD M)y o 7O (5@,

where H, F F2) represent the horizontal, vertical, and normal distribution. In a
local base, for the horizontal distribution H (8D M) we have:

1
pu(z. €.€) = §W*ijab+hZ(x:£7$)Pa: (1.1)

where Jgp, P, are the generators of the four-dimensional Poincard group satisfying rela-
tions of the form:

[Jabs Jed] = Mpedag — NpaJac + Neadpe — Ngedog ;

(1.2
Jab;-PC = nbcPa.“nach: Pa:PbE‘ - {), Jab”}“Jba = {}. )
i

The quantities wff} *" represent the (Lorentz) spin connection coefficients and are con-
sidered as given, ny, is the metric for the local Lorenty, spaces with signature (+ — —-),
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These are connected with g, by
Guhthl = ng, g™ = n®*REAY, (1.3)

where h) represents the tetrads. Similarly, for the vertical and normal distributions
FUO(520), FA(§P M) the fundamental 1-forms (,, ¢ are given by

“1 /
(o = E@g;wab +PaP,, (1.4)
- 1= -

Coc — 'é"@(*)aabt]ab + waaPa , (15)

where 1%, % are the spin tetrad coefficients, and @ §lxaab are the given spin
connection coefficients which are determined in such a way that the absolute differential
and the covariant derivatives of the metric tensor g,.(z, &, £) vanish identically.

We use the Greek letters A, p, v ... for space-time indices, e, 4, v, for spinors, and

the Latin letters a, b, ¢, ... for the Lorentz indices.
The general transformations of coordinates on § (M} are: _
2 = CE"LL(my)a gla = gla(gﬁ‘agy) ) é"a = § a(gﬁag’y) : (16)

2. Connections
We define the following gauge covariant derivatives
&

=) - {*)ab
Dy = o -+ Qw# Jab
) .
D(*)a — @(*)aab . 21Y
Ben Jeo (1)
: )
D(*}a - {x)ab
6=+ 565,
where 9 9 9 § 9 g
—_ = — + N, — WNG: . Nalﬁ

St Dz TN Hgge” 8, B¢, Y pe

N, N 5, NS‘ # are the nonlinear connections which we shall define in (2.5).
The covariant derivatives of the metric tensor g, are all zero:

DiVgern = 0, D™ =0, Dge = 0. (2.2)
The space-time frame §/8z* and the local Lorentz frame 6/6z® are connected with
) . 0
i k, el (2.3a)

Similarly, the spin-tetrad coefficients ¢f;, and adjoint h® connect the spin frames, §/9¢,,
d/0e® with 8/dx™:
0 con O

B‘g = W ama, (23b)
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0

The absolute differential of an arbitrary contravariant vector XV is given by
DXY = (DUIXY)dz# + (DU XVYdE, + (DU X7V dE (2.4)

2.1. Nonlinear connections

We give the nonlinear connections in the framework of our consideration in the fol-
lowing form:

N = {Npu, N§* Nog, NI, NP NG}, (2.5)
N]ﬁp _ %WEL*){LbJa,bgﬁa J\;‘rg& = %@(*)aabjabé:ﬁ, Ngﬁ - %‘@&*)abjab@,@,
N7 = —dwl®In, NgP o= 1@eabg g8 NS o _lgliebg e

The differentials of D&, DE® can be written, after the relations (2.5), in the form:
Dég = dés+ Nygde™ + N§¥d¢, + Na,dat | (2.6
DE¥ = def + Nidé™ — Ny de, — Nidz. (2.7)
The metric in the second order tangent bundle is given by the relation [3,10]
G = gondz®dz® + Gii 6y 61 4 gagbuéu’ (2.8)

and the adapted frame

7 (M M g ae) 9
where 6/8y* = 8/0y* — L% 3/0u®.
Furthermore, the dual frame is
574 = (de®, by" = dy' + Nida?, su® = du® + Lody' + Mgdz?t) .
The metrical structure in the spinor bundie will be defined as follows:
G = gu(@.8,E)datda” + gop(e, &, DE*DEP + g°P De, DEY. (2.10)

In analogy with the previous adapted frame, a local adapted frame on a spinor bundle

S (M) will be defined as
%) R
— | = : , —— 2.1
(50) lar e o) 21
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where the expressions Dég, DEP are.given by (2.6), (2.7). If we consider the connection

coefficients I'fi,, given in the general case, then in the total space §2)(

vp

Ta, = {p( woon

oy

M) we have

Cue, T, ), O, € TP, Gl b

Considering that the connections are d-connections {6,8] in an adapted base, we get

the following relations

&

Dsjsar 557
) 4]

Dysyse.. 5o
)

Dy 5o 565

%)
Dsssca 5er

5}
Dy/gzc ]

(b8
-ZV,O o 3

Y O
C 5&:“ i

(#)B &
F/\'y 6{7
Cﬁ@f DET 3

8
Pesea 5

d
= Thogea
5 .
Dgjogazor = Clazers
& I S )
Dyjpgoser = Lod g (2.12)
8 E '
Dé/ééaa”g'ﬁ - Cga'gg;,
_ & — 3 &
Dojocoge; = Cavses
_ Oﬁa 6
¥ 567

The covariant differentiation of tensors and spin-tensors of arbitrary rank may be

classified into three types:

T
vorg
Vo Tf
Vil
vy
Vs®p:

ViV

Vv

vl yon

6T 1 F:EA)MT; _ FS)RTIQ{'.'.H

%—- o Kl e o/ N

Dhe+ oIy 4o - Ol T

5?53.‘ _ F,g(gi)’y@f — -+ B F( e L

6?35 N é’(*)“’g@;’f;: —— @E:"C,g*)aé + (2.13)
5;3?;. G( )ﬂr@a::: R Cffé)“ b

S

5:5/5 @( )aavb ‘((:*)Otb%ci.:. )

%%5“ @ab Whe = @Y
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2.2. Lorentz transformations

We can get the Lorentz transformations of linear connections wb*'®® , O)Bab Qé*)ab
in the following form:

w;{*)ab = LeLhw L(L bed 1 %Lgn'ﬂ

A0 aa ’ a 7 {(*)Bea SLZ < ~lo

G)'eab [LCLg@ ped 4 SL L ﬂ Az, (2.14)
@&*) ab Ag {LgLséé*)cd + g?ﬁL J 1

Similarly, the Lorentz transformation law of nonlinear connection is given by:

L q6L 1 488

N - %wé*)abja bl + 5n S LT Aba = Nopwh§ + 5n S L4, A6,
Npe = NOAL 4 IneiSErh g e e
Ny = A [N%AL + 3ndBrhy, A0e,]
NF = NpAGP - ncdSie Lh, 80 A5, (2.15)
No™ = [NGPATY — eI a8 A,
Noo = 48 [NGA7" = dnt 2L phy fras )

where J. op = LS Lch*d

3. Curvatures and torsions

From the covariant derivatives Dl{f) , Dixle D((f) we gef six curvatures and torsions:

(a) DD = DIODY) - DIIDE) = Ry Put SR
T A V?“'hf;:
.Rﬁi _ 6%£er B &gii&b4_ux)apw££b__wgapa ﬁ?b,
(b) DO DY) = PP+ ;ng,fab,
pet - 6€§iiﬁb 8‘§gzab O Pufre — @I (3.1)
Po, = A OWL ey e,

e Sxk  fea
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* ® Hace 1 Pabo
(c) DY), = PR, 4 P T,
~ 6@(*)0«16 &U{*)ab B N
b - 2 S{#Yab (x)ac =} *)ebh
e = OO R e - S,
Pac 5?;0“1 6}1& ()a, jca Alxoayc
PSS = Sah . bLe WP = O Ry
(d) [Dé*) D(*)ﬁil — SgaPa + %Sgbﬁjab ?
a 6’17[}6& 5?7DCGX =k ; +Yab 705
Sat = 55+ B¢ + Oy — Oy
868 gelried ~ o
abf B o {(=ya(x)Fch _ oix)bHBeca
R 5ot 6ke oL b@hea
" * 1 a
(e) (D, DY] = QapPat 5Q8 T,
Oy oyl +)ba .
op = 855 - _é%g)”"g" + 95@ P thar — O g,
86(*)&b 89(*)(15
b . Il » 25 Ai*la (=}cb - (*)bw(*)ca
2,8 - 8504 85’6 +Oc(xc) @5 @ac Oﬁ ’
2} oy * . Sefa }. Sa
(f) {D«)Q’D( ),6} =GR+ Q.
e fa (S'qua’ dig, = (*18ba, 7 A{=)aba, 7,
gode = 55ﬁ _ ._;é; LB GlHlabags
N 69_50.5 Sé}'aab N N B N
abaf . - o (*}ﬁcb@(*)aa . @(*)&b@ﬁca.
¢ . eg O T

4. Field equations

We derive the field equations using the spin-tetrads frames in the Lagrangian form:

L{h,w) 4, @) 4, ©0)). The method of derivation of equations is similar to Palatini’s
one and it is analogous to [12].

We get the Lagrangian

L{h,w™ 600 W)
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or
LA, 63y?) = h(R+P+P+S+Q+Q),
where
G - & * )G o, #}a A% joeab
o = (he(e68), w0, 6, 6), ¥2a, SORTS e ey
S I A o ) Mo o o
o = S = (5(1:#’ G 65“) , 2= (xh, &, £7),
R = hf‘h”}?ffj,,
P = hip Pﬁg, P = hgqﬁabﬁ’jb&,
Q = QUddy, Q= QUi
S = YumSy’.
The Euler-Lagrange equations are written in the form:
oL ar oL 0

&zM oAy Gyl
From the relation (4.1), the variation of £ with respect to hj yields the equations

(Re+ Po+ BY) = 5 (R+ P+ P)s, = 0,
H? — th“ = {
H 9 H ’
where
P = QgPsl,  Pf o= waP R: = RYRY.
and

HY = RE4+PE4+ P, H=R+P+P.

From the variation of £ with respect to w,& Jab

(4.1)

(4.2)

4 5[3 4 oL ) oL o ec 0
bt 5(6;*“)1(/*)&%9) - 55@8(55%%?) * §Ea 6(33__&)(*)@6) | Bl

we get

D (hhihf — ki k) + DEVh(REgE — 1idg )] + DO [Alhiday — RjE)] = 0.
The variations with respect to @((;)ab, @ ()aab vield the relation

8 oL 5 8L 6 oL oL
o)) Folgz) W \a(ge)) o

Skt 5€a

(4.5)

(4.5")

(4.6)
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with
(2(*} - {@g{*)ab,@(*)aab}

which gives us the equations:

DI hhiapgy — DY (20D gLy = 2D (RS s) = 0, (4.7)
D) (i) = 2D (hpuatlf)) — DP (2Mtbaaing) = 0. (48)

Finally, the variation of £ with respect to the spin-tetrad coefficients Y, ¢ derives
the equations:

g 1 i

S + 558 Ve + S B = 0, (49)
- 1 _
Qaa - _2_(SUJ£I+PGJCX) e 0 (410)

5. Bianchi identities

From Jacobi identities,
Q(XYZ) D_(;)agD%:)aDg)} - O:

we get 18(3x6) relations of different types. For each relation we derive two identities,
namely 36 ones in total. Taking into account that

o 1

(=) — o tF)ab
D’u = -6“;‘; -+ Qwﬁ ) nga
5 a o .0 . _ ]
— e & S N [a4s7 . Noygra — a
v " N”O‘@fgc{ N, 5o = h, P N, 0P, ,Z\M!P&PCL AﬂPa,
where 5
AL = B - NP =R, Pa= 5
we can get
* .* Ak 1 1 @ : a
DL DO D] = (4P JR ] - (4P BEAR
1 1 * G & 3 w
+ Wi PR b, Jed] + Ewp PR aps P (5.1)

The first term of the right hand side of {5.1) by straightforward calculations is written
in the form

1. 1 6R% .
{AﬁPC, 5_1%,3;%4 =5 5;;\ Jap + R AV P, . (5.2)
Similarly, the second, third, and fourth terms of (5.1) yield the relations
< 6Ri [ @ 6Ri
{Aupm Rik*pa] = 53?“’}\ Py + A,u ;q,,\[PCa Pa} - 5.@: Fo, (53)
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where we used the fact that [FP,, P,] = 0. Also

1 .

Zi(.d(*)abe;i [Jaba chf - (*)G(Rgh)\ ](.Lb 3 (54)
1 —
2 )ab R Jaba PC] ( )gRb)\P ' (55)

so the relation (5.1) is written as

00, 00] = (A upems,, )
# o (R R P (50)
Defining
D,RY% = LOR, +wleR L, (5.7)
a 2 Sxw e
D.R%, = 15;{*;* R AL+ RE,wi® (5.8)
we have the relations:
DuRE + DRSS, + DARY, = 0, (5.9)
D, Ry, + Do RS, + DyR,, = 0. (5.10)
In a similar way, from
Qe {Dé*)a{ﬂé*)ﬁff)g = 0 (5.11)

we get for the Q-curvature and torsion the identities below:

D,Q% + DsQ%, + D, =0 (5.12)
and
D.Qf, + D@ + D,Q0s = 0, (5.13)
where we put
16Q%
b . ,6"’ ac b
DaQs, = 3 D +O0°Q, (5.14)
Q i a #Ja
D.Q8, L Qi + Q4,600 (5.15)

3
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6. Yang-Mills fields

In this section, we study Yang-Mills fields and we derive the generalized Yang-Mills
equations in the framework of our approach. In such a case we consider a vector field
A= (A, Ay, A%) with values in a Lie algebra G and we define the generalized covariant

derivatives by

D, = D,+iA,, D, = Dy+iA,, D% = D*+iA* (6.1)
The commutators {bx, f)y}, XY = {u,v,«a,3} are defined in the following form
D,,D,] = [D,,D,]+iF,,, (6.2)

where,
F

i

v D;LAz/ - DzzA,u + Q[A;u ij
represents the Yang-Mills field, A, is given by
A, = Aiﬂ;., Ty Ty = C’%T;ﬂ., (6.3)

the elements 7; are the generators which satisfy the commutation relations of the Lie
algebra, and D, represent the gauge covariant derivatives (Def. 2.1).
Using {6.3) of the matrices A, we find that

F,uu - F;,yTi ) ‘ (64)
where the field strengths are given by
Ff, = D,AF - D, AF Al ALCT . (6.5)
Moreover, the generalized gauge field is defined by the quantities Fxy, X, Y = {u, v, o, F},

that is, o
' [DuaDa} = [D;u-vDa}‘i"iFu@?

1Dy, D°] = D, D] +iFg,  [Da,D?] = [Da, D"} +iFy, (6.6)
Dy, Dg] = |Da, Dl +iF,s,  [D*.D") = [D% DP}+iF*",
with
Fua = DAy — DoA, +ilA, A,  F2 = D,A* — DA, +i[4,, 4°],

4

Fes — podf - DPAY 4 i[A, A7),

In our space S{M) the Yang-Mills generalized action can be written in the form

F(‘f = Da/v’iﬁ - DBA(} 'll" z[Aa;Aﬂ] b FOIJ@ - DO.’A,B - DSAQ + ?'{ACE’AJB] ? (67)

Sgr = f Ao d*e dYE hitr Pl FHY 4t Fu o PP+ tr Fop PP e FIFG) (6.8)
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where F),, represent the internal quantities in the base manifold, F¥ the field in the
spinor bundle and F, 5 the internal quantities in the internal space.
In order to derive the generalized Yang-Mills equations we get the Lagrangian

Lyy(Ax, DxAy), (6.9)
where Ax = {A4,, 4., Aﬁ} and Dx Ay represent
DxAy = {Dy,A4,, DAy, DA, Do Ag, D*Ap, D*AP D, Ay, D, A%Y .
By varying the action (6.8) and taking into account the Fuler—Lagrange equations
Dx (8(%;’24}/)) - ﬁ(ﬁf = 0, (6.10)
we obtain the generalized Yang-Mills equations in the following form:
D"E,, + D*F,, + D F* = 0,
Dy F#8 4 D F*P + Dol = g, - (6.11)
D, F¥ + DyF§ + D*Fog = 0,

where for the derivation of the equations (6.12) we used the trace properties of the
geuerators 7, with the normnalization condition

1 .
tr (r977) = -jéa*”.

7. Yang-Mills-Higgs field

In this last paragraph we shall give the form of Yang -Mills-Higgs field in a sufficiently
generalized form. The usual case has been studied with the appropriate Lagrangian £
and the corresponding Euler-Lagrange equations.

Here, we get a scalar field ¢ of mass m which is valuated in the Lie algebra G of
consideration and is defined by

d:M®P xCHxCt =g

with
@(»{J!édgn) c g

If &; is in the adjoint representation. its covariant derivatives are given by
QD = -D[u,d) + [A/M é] H

D,
f)a = Dag -+ [Acz>¢]7 (7'1)
D% = D%+ [A%g].

©
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The first of the relations (7.2}, after taking into account (6.3), becomes
D.¢ = D o+ Aﬁqbbcgcﬂj ; (7.2)

for f)aq/), jjagb similar relations are produced.
The generalized Lagrangian is given by the following form:

L= Lyu— %m (D) (D*¢) — —;—tr (Dod) (Do) + -i-m%r 5 (7.3)

Using (7.2} and getting (6.10) for this Lagrangian £, the generalized Yang-Mills-Higgs
equations are as follows:
ﬁ!LF}L;/+baFazj+—D FQ {d) _D (b} ==
D F# L D F £ DFI 4 [, DP g ,
D, F”—I—D Fﬁ +D%Fos+ (¢, Dad] = 0.

d

(7.4)

8. Conclusion

In Sections 2 and 3 we presented the basic differential structures of second order
spinor bundle S M utilizing the fandamental 1-forms p,. The introduction and use of
the Poincaré group and the d-connections in spinor bundle as it has up to now appeared,

e. [15]. |

From the gauge consideration perspective, the connection coeflicients w{ b glret
which play the role of the gauge potential for gravity, were introduced in qpaces where
the metric tensor g, (z,w) depends on internal independent variables w = (¢, £).

Furthermore, the above mentioned nonlinear connections represent a form of a unified
gauge potential. The calculated curvatures correspond to the gauge field strength of the
spinor bundle §)(M). In general, the introduction of spinor variables in a Riemannian
space generalizes and enriches it with torsion.

In the last two sections we derived the Yang—Mills and Yang-Mills-Higgs equations
in a generalized form.
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