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The gravitational field equations are derived here in the framework of spaces whose
metric tensor depends also on spinor variables ¢ and £. The attempt is to describe gravity
by a tetrad field and the Lorentz connection coefficients in a more generalized framework
fhan the standard one {¢f. eg. [11]). An interesting case with generalized conformally tlat

spaces GCFS with metric guu(z, &, §) = 2788, is studied.

1. Introduction

The introduction of a metric g,.(z,w) that depends on the position variables
x as well as on the spinor variables w assings a non-Riemannian structure to the
space and provides it with torsion. This procedure enables the construction of a
non-localized (bilocal) gravitational field, identical to the one proposed by Yukawa
[17] that allows a more general description of elementary particles. Further arguments
have been developed by some other authors [5, 10, 15]. In our context each point of
the space—time is characterized by the influence of two fields: an external onme which
is the conventional gravitational field in Einstein’s sense, and an internal one due to
the introduction of the spinor variables. These fields are expected to play the role
of a geometrical unification of the ficlds. If w is represented by a vector y, then
we work in the Finslerian framework [3, 6, 7]. A more gencral cas¢ of the gauge
approach in the framework of Finsler and Lagrange gcometry has been studied e.g.
in [1, 2, 4, 7. 8, 9}.

In the following, we consider a space-time and we denote its metric tensor by

9 (Z™).
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where ZY = (g &,,€%), 2", £,,E% 1epresent the position and the 4-spinor variables

(¢ denotes the Dirac conjugate of &) [15]. With the Greek letters A v and a, 8,y
we denote the space-time indices and the spinor indices, also Latin letters a.b, ¢ are

used for the Lorentz (flat) indices. The (*)-differential operators 6’4%? are defined as

o) = A (8(*)"3(*}’?(—*)) (L)
S0zM \ 9k’ 9E, e
with
o) a o . 0 e O B |
EEMX:@+NQ,\5€+N§8@, AT +T7,%‘*% + iy 5
o = __.a_ + 70 ..a_ 4 i
gga ~ gge  Dgs T Megge

where N, A,Wﬁf,ﬁg‘*,ﬁf 100> s, are the nonlinear connections [10]. ,
In our study, field equations are obtained from a Lagrangian density of the form
) L@, owan (1.2)
where oY is the set
U = {h (e, €.0), WP (2, €,0), 00 (2, €, ). T2 (¢, £, B}

Thus L is a function of the tetrad field, of the spin connection coefficients and of
their (*)-derivatives. The variables k,w®) 6} §*) are considered as independent.

It is known that gravity can be described by the tetrad field and the Lorentz
connection coefficients [11]. The variation of the Palatini action with respect to A
and w yiclds a set of two equations:

R} — 3RAS =0, (1.3a)
Du[h(hihl — R )] = 0. (1.3b)

i is the determinant of the tetrad hi, and D, is the gauge covariant derivative

D, =09, + }:w#,

where the sum is taken over all Lorentz indices. ,
In spaces whose metric tensor depends on spinor variables, an analogous method
can be applied, but instead of one connection we have three connections:

wil(@,£,8), 09z, ,8), 89z, ¢, 0.

So we choose a Lagrangian density of the form (1.2) from which four equations are
obtained. The analogous gauge covarjant derivatives of D, appear naturally as

DY = a0 + 3w, (L4a)
DY =87 + 360, (1.4b)

D™ = gt 4 N g (1.4c)
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Transformation laws of the connection coefficients %w\(’r £,6), Hff;)a(r £,8) and
glae (z,€,€) under local Lorentz transformations are the expected transformation laws

ab

for the gauge potentials [10]

wih = LiLfwigh + 5 Tae, (1.52)
w ) N il * a(*)LC P )
A = [ang + S (1.50)
(=) ¢
0 = 48 | rordet, + S, | 1.5¢
(zba [ ed3 353 be ( )

The matrices I and A belong to the vector and spinor representations of the Lorentz
group, respectively. '

2. Derivation of the field equations

The field equations will be the Euler-Lagrange equations for a given Lagrangian.
Later we shall postulate the explicit form of the Lagrangian density

P 9y, | 2D

But first we observe that the metric tensor g, and the tetrad &, are related by (cf.
(109) |

G0 (2,€,E) = hERLNab, (2.2a)

9" (2. £,) = hithin™, (2.2b)

where 7, is the Minkowski metric tensor and it is of the form diag (+1,-1,—-1,-1).
From the relations [16]:

g=—h% (2.3a)

dg = 99" dgpv, (2.3b)
and using (2.2), we get

dh 1

=77 = ~5 M 2.4

G = T3 (2.4)

where ¢ = det(g,., ).
Now we postulate the Lagrangian density in the form
L=mMR+P+Q+5), (2.5)

where R, P, Q.S are the scalar curvatures obtained by contraction of the spin curva-
ture {ensors:

R=h'BYRSE, P = hERZPE PR Q= QupeQ7, S = 52,5857 (2.6)

1A il
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The spin curvature tensors are given by [10]
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Lagrangian (2.5) is the only possible scalar that can be made from the curvature ten-
sors (2.7) and it must be the sum of the first-order quantity R and the second-order
quantities P, and 5. The mixing of the quantities of different order is not Impos-
sible. It is known that the Einstein—-Maxwell Lagrangian is the sum of the first-order
quantity 2 and the second-order quantity F,, F*Y. So, our Lagrangian (2.5) is phy-

sically acceptable,

i
!
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The Fuler-Lagrange equations for the objects
g = [p# wi(f), ggj)’ﬁ(*)a}

are of the form

| dL aL
) - = 0, 2.8
Y (awﬁ’?aﬂm)) ope @9

where 35\? was defined in (1.1). From the variation of L with respect to the tetrad
we have '

oL
T = (. 2.9
Taking into account (2.3) and (2.4) we get the equation
HY — I =0, (2.10)
where
HP = RY + Pb = hERS + hiPL P, (2.11)
and
H=R+PF. (2.12)

From the variation of L with respect 1o wﬁ*) we get
) oL () oL ( oL oL

@ T e o0 OO 2l oGP
The spin-connection coefficients Wi are contained in R and P
W(R + P) = hiERy (R + Po o Pu).
From relation (2.13) we get the following variation of the term hR with respect 10
Wi
) O(hR) L e d(hR) n ) 9(hR) d(hR) (2.14)

“oaE Wi BT AN W™y i

By a direct calculation, the first term of (2.14) can be writien as
oS h(hyhy — hihp)]-
The second and the third terms of (2.14) are equal to zero. The fourth term equals
R(RZRY — hy hywi)® + h(hIRYE — hY hE e, (2.15)
Consequently, the first and the fourth terms can be rewritten as

D[Ry hY = hyhi)], (2.16)
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where we have used the gauge covariant derivative fo} from (1.4). Contribution from
the P-part is equal to

s d(hP . é LR
AW B(AWa Iy T gt ey T g6

The first term of (2.17) is equal to zero. The second and the third terms can be
written as

O (RRERL P, (2.18)
O (hhE DL PEe), (2.19)

respectively. The fourth term may be written as
RhRE G PE — RRYRYOCIPES — hhthy Pl B = hhiRE P B0 (2.20)

The sum of (2.18), (2.19) and (2.20) is equal to
DS hLBEPE Y + DM (hhy b Pi2). (2.21)

So, (2.17) is written in the form

DA b = hy b)) + DE(AREREPISY + DU (R P ) = 0. (2.22)

laking the variation of L with respect to 85 we have contributions frc)m (P+Q+S).
The field equation is

55;)___._..._____?_()’1 {‘))Z + §lle a(hL() —+ 3 ‘3()’”:)} _ a(ﬁj_’i)b - (2.23)
8865 B(aeglrieby a@ety  agte

We proceed in the same way as before. The contribution from the AF term is
— DI (hhE R P, (2.24)
The contribution from the hQ term gives
DY rQ™. (2.25)
Simnilarly, the A5 term yieids |
2D (hS25). (2.26)
So, the third equation is written in the form
Db RE P — DY (2hQT - 2D08 (RS2, ) = 0. (2.27)
Finally, the variation with respect to #0)* yields the equation “conjugate” to (2.27):

DR RE Plye) — D®P (20Qupas1) — 213(*)(; 57y = 0. (2.28)
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3. Generalized conformally flat spaces of the gu,,(:c,f,_é) = ez"(‘c’f’anw metric
In this section we study the form of the spin-connection coefficients, spin-curvature
tensors, and the field equations for generalized conformaily flat spaces (GCFS)

(M, gz, £,§) = 2@E9y,,), where 7, represents the Lorentz metric tensor 7.,
= diag (+,—,~,—), and £ . represent the internal variables. The case of conformally
related metrics of the Riemannian and the generalized Lagrange spaces has been
extensively studied in [8, 9. It is remarkable that in the above mentioned GCFS
spaces, some spin connection and spin-curvature tensors vanish.

As pointed out in [10], the absolute differential DV# of a vector field V#(z,¢,8)
is expressed in terms of the coeflicients

{Ih. CL Ol (.1
Considering the absolute differentials of the spinor variables £, &%
D, = déy — Napdz® — e DEg — Dgﬁngﬁ,
DE* = dg* - N§da* - 75" Dés — DE iy,

which depend on the nonlinear connections:

{Ara)\aﬁiaﬁgﬁ:ﬁgﬁngﬁs??&6}? (32)
and expressing DV# in terms of de?, D€, DE®, we obtain the connection coefficients
{8 Twe, CFHy (3.3)

related to the coefficients (3.1) via the non-linear connections (3.2) [10].
By imposing the postulates of the length preservation for the parallel vector fields
and symmetry of the derived coeflicients

(L5, T2y Cue} (3.4)

in the first two tensor indices, we have the relations:

= 1 (8(*)%{1/ _ 3(*)%/\)

v 2 & /\} SrH
T T (35)
go 100w o 100w
v T 2 aga ) 2yTay B 8%:& 3
where T{uvy = Ty -+ Top-
THEOREM 3.1. For the GCFS spaces we infer the following:
(a) The cocfficients (3.4) have the explicit form
= 00 — o), Cb = 8he®, Ol =Taby, (3.6)

where 0% = 00 06a,To = 00/9L%, 05 = 8*c /dx™ are the derivation operators of scalar
fields involving the coefficients (3.2).
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(b) The following relations hold:

Tl = I} = 80" Nos = 84775,

Cire = 08 + 8070 + 6155707, (3.7)
L e 0 o
ng - Cr;ja + (Sﬁo_ﬁnﬁ& + 65770@'

Proof: Computational, using the consequences (3.5) of the above postulates and
identifying the absolute differentials expressed in terms of (3.1) and (3.3). J

Oc:.ns_i_deringw the absolute differentials of a Dirac spinor field Pz, &, &) and of its
adjoint (x,£,£) we have the coefficients

{r5,,Che 08 1. (3.8)

T~vex

Expressing D+ and D4 in terms of d:r:/\,D@y,DE“’, we are led to the spin-connection
coeflicients I: '

(1728, Cxbe o2y (3.8)

ey

connected to (3.8) [10]. In a similar manner, the absolute differential of a Lorentz
vector V*(x, £, &) produces the coefficients

{@hars 02, Brac b, (3.9)
where the raising and lowering of the indices a,6,... = 1,...,4 are performed by means
of 745, and also the spin-comnection coefficients II: '

{wgaAﬁ ??;3} QE’:aa’} (310)

related to the coefficients (3.9) [(3.13)/10]. Similarly to the previous work of Takano
and Ono [10}, we shall postulate the invariance of length of the parallel Lorentz
vector fields, and the vanishing of the absolute differentials and covariant derivatives
of the tetrads A4, which involve the connection coefficients (3.3) and (3.10).

In the GCFS, the tetrads are given by h%(z,¢,£) = e“(m=§’g)6ﬁ and lead to the

dual entities h¥(x,£,&) = e=?@&D8E, In general, the above postulates produce the
relations:

Ont
Wop) = ( ¢ 4 Fji\flg ]’Lub;

Yy
- v
by = (gga + C‘fj‘*h;) Bt (3.11)
con
Baba = (ggz + C';"th) Roibs
* 1
Wy = (%@& + ijh;;) Bob (3.119)
£

For the GCFS case we are led to
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THEOREM 3.2. The spin-connection coefficients (11} and the coefficients (3.9) are
subject to

Whad = h.p,aféu}‘ — CAMba, 63{; = 0: aaba = O: (312)
w?:ak = T?A(agif)« Zg =0, :;,ba = 0-; (312’)
wza)\ = wba)\a (3.12”)

where R, = € Nuq and Ty = Tg,g:-— Tha-
Proof: Relations (3.11) imply (3.12); (3.11") and wp , = wpar + HfaNﬁ)\ + N85
produce (3.12”) and

_ .-9—?:;! = wf?:a + Efa:ﬁga + ﬁgagbaﬁa g?)‘acx = Hbaa + ﬁfaﬁ%a + ﬁgagba,@-
From (3.12(2)) and (3.12(3)) we infer (3.12/(2)) and (3.12'(3)). 0

The connections (3.3) and (3.8") give rise to 8 curvature tensors as described
in (5.2) of [10]. But also the spin-connections (II) connected to (3.3) lead to six
spin-curvature tensors (2.7)

{Raprps Pavras Papas Sabgs Yabpos QoY (3.13)
Taking into account Theorems 3.1 and 3.2 we can express these tensors as follows.
THEOREM 3.3. In the GCFS spaces the Spin-cﬁrvature tensors are given by
Rabap = M0 0y + a0 Ab) + mmiaé‘.) + (0T p 0t T ﬁ(panA)ando_:G;? (3.14)
Pabra = MpCaa): P = meony
Sts =0, Qapsa =0, c’éfg" = (),

where oy, = %20 [02%0zY; z,y = {A o, a} and o

(3.14))

*

na)

Proof. Relations (3.14') are directly implied by (3.12'(2)) and (3.12'(3)). (3.6(1))
leads to (3.14(1)) after a straightforward calculation. Also, using Theorem 3.2, we
infer that

= b0 ha — Mhal up-

Pura = Wips ar Pabra = @opna - (3.15)
where
o _ O wany " _ waps
. abX,o 6@ ! abh, o 8505
Then (3.12'¢1)) leads to (3.14(2)) and (3.14(3)). : X

As a consequence of this theorem we state the following

COROLLARY 3.4. In the GCFS space (M,g,.) the Ricci tensor fields have the
form
Rfﬁ = e"“(ZT;bdaZUg - 2nbdazb ~ 5;’377‘1)‘0{& — 26ﬁn€fcr:crji),

p::: — W3e-—cr(nbco.:t;co_:~a _ ot O_*cx??eb)‘

[°5 2 =4

(3.16)
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Proof: Using Theorem 3.3 and R = h)R$E, PL = hi P2, Pl we obtain relations

at oo

(3.16). O

Remark 3.5 1t follows that the scalar curvature takes the form

R = RN = ~6e™ % (n" oy, + 0 ola}). (3.17)

Furthermore, it can be ecasily seen that
P =Phy =

As we have previously remarked, the scalar curvature fields @ = Qupsa Qb8 gnd
S = SapapS°? vanish identically. Then the employed Lagrangian density (2.5)
L=hR+P+Q+85), det(gu)=—h"

reduces to [ = ¢?(R + P) and depends on the fields ¢ € {1, i, 0%,,, 058}, The

Euler-Lagrange equations
3L 3L
g ( o ) oLy (3.18)
i) dyp
for these fields produce the field equations (2.10), (2.22), (2.27) and (2.28).
We shall obtain their form for the GCFS as follows.

THEOREM 3.6. The field equations for the GCFS are

5ﬁn€f(208f o crf) + 2771”](0 ob) + 377“ * - 3n%6" o o, =0, (F1)
5&5;{) - 3%0'(13 a} 3bgosy =0, (F2)
200ty onay = 0, (F3)
20“17"“1 Nab T g = 2000y + ?7"Ldnabazad ooy = 0, (F4)

where we have put ¢ = 930 [0¢s0E%0x".

Proof: By virtue of relations (2.10) and (2.11), and using Corollary 3.4 and Remark
3.5, we get (F1).
Con%idering Theorem 3.2 we infer that D7 = 8% and D** = J0**. Also from

S}A = Wapr = —wWpar, WE derive D) = 3”‘ Taking into account (2.22), we obtain
relation (F2) by a straightforward computatlon Also, by means of Theorem 3.3 and
noticing that P = —30;<, after substituting to (2.27), we infer (F3). Finally, from

(2.28) we dcnve (F4).

4. Geodesics and geodesic deviation

We shall now give the form of geodesics in spaces with the g,..(z,¢ . &) metric.

A curve ¢ in a space (M. g,,(x, & C)) is defined as a smooth mapping ¢ [ —
U C M: 6 — (x(),6(8),£(t)), where U is an open set of M and ¢ is an arbitrary
parameter.
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DEFINITION 4.1. A curve ¢ is a geodesic if it satisfies the set of equations:

)it 2 ol o B _
Iz]z = ddjz + &7 (T 0" + Ch&a + CF,6%) = 0, (4.12)
D2 fa9 D, . ~ 3 e

dfz = E‘;[ga - fv(f’;\m)‘ + Odﬁ‘fﬁ + C’;fﬁfﬁ)] =0, (4.1b)
Dzza D =, s . s - .

P L Ero et + cﬁgg + C2%EN] =0, (4.1¢)

where @# = dz#/ds, &, = dfa/ds,f“ = df*/ds, and the coefficients IV, I\, C4*%,
ces, C 5 satisty the postulates imposed by Y. Takano and T. Ono {10].

Lrgy?

PROPOSITION 4.2. (a) If Cr* = 0 and C¥, = 0, then I}, = If, and relation
(4.1a) becomes

d?zH <, dz¥ dz?
Mz, &z ))———— = 0. 4.2
o Tl @), E@) T g = 0 (4.2)
(b) For the GCFS, equation (4.1) has the form
d2$,u TN NI T — Fo
de2 + I\ N+ a0, + TREY) = 0. (4.3)

In this case CPe =0,CE =0 hold true iff ¢* =7, =0, ie, for ¢ depending only
on . -

Proof: Equations (4.2) and (4.3) are consequences of Definition (4.1a) and rela-
tions (3.6). O

Remark 4.3: The spinor parts of equations (4.2) and (4.3) also write as

o — é:ng - ‘f‘ch;f - (57 - §5T$)T;/ =0,

= _—— — -~ S p— o (44)
€8+ EOTL + 8T + (& + ETHTY =0,

where
TV = I3 + Cifeg + €188 =T
o CEA'T; a &8 a3h o'

Having the equations of geodesics, it remains to derive the equations of geodesic
deviation of our spaces. This geodesic deviation can be given a physical meaning if
we consider two very close geodesic curves and the curvature tensor is Riemannian,

In the general case of GCFS, the spinor variables are independent of the position,
so it is difficult to convey a physical meaning to the equations of geodesic deviation.
For this reason it is convenient to study the deviation of the geodesics in the case
where the spinor field £, = £,(z*) (and £ = £%(z#)) is defined on the manifold. This
spinor field associates a spinor—and its conjugate—to every point of the space—time.

In this case, from Proposition 4.2 and relation (4.2) the Christoffel symbols 17
are symmetric in the lower indices and the equation of geodesics is similar to the Rie-
mannian one, except that the connection coefficients have the additional dependence
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on the spinors. &, (), £%(z*). Thus our approach is more general. The equation of
geodesic deviation in our case 1s given by

D2 A AV dp®
C oy BACTAT 4.5)

ds? Y de ds ds
The above curvature tensor R}

A o(2, &(2), &(x)) has a modified Riemannian form. This
equation has additional contributions from the spinor parts which enter the curvature
tensor R and the covariant derivative. In (4.5) ¢* denotes the deviation vector, and
s the arc length.

For the GCFS, the deviation equation has the above form, where the curvature
tensor depends on the function o(z,&(x), £(x)) and its derivatives, as we have proved
in Theorem 3.3, relation (3.14). After a direct calculation from (4.5) and

Ry = Raopuoh™ R

132 S

(4.6)

where AP = e™7pP h¢ = 762, we get the equation of geodesic deviation for the
GCFS, with Cte = 0 C# =0, in the form
DECZ
— 5 @l + e+ By
dat d” durt ‘
A A aod g ot —_
+ f]i/(;l Q)O— h‘ + Th}(g&}u) cTd d dé ds . (47)

5. Conclusions

(a) In Section 2 we derived the gravitational field equations in spaces whose metric
tensor depends on spinor variables. Equations (2.10) and (2.22) are gencralizations of
the conventional equations {1.3a) and (1.3b). They are reduced to equations (1.3a)
and (1.3b) when the coeflicients

(@, 600, F9%) — (w,).

PR o Y

Relations (2.27) and (2.28) give rise to new resulits.

(b) Equations (F1)-(F4) represent the field equations on the GCFS
(M, g, (2, €,€)). The solutions of these equations are the subject of further concern.
They represent an application of the gauge approach, for spaces with the metric
g(z,£,6), studied by two of the authors in 12, 13].

(c) The vanishing of the curvatures Sggﬁ,Qabga,@f{j‘ (Theorem 3.3), reduces the
6 spin curvatures of the theory of Y. Takano and T. Ono to the three ones Rupay.
Pubsa, P2, This simplifies considerably the study of the generalized conformally flat
spaces.
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