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Rector’s Office, 14 Alexandru Lapuşneanu Street,
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In this paper, we study modifications of general relativity, GR, with nonlinear disper-
sion relations which can be geometrized on tangent Lorentz bundles. Such modified
gravity theories, MGTs, can be modeled by gravitational Lagrange density function-
als f(R, T, F ) with generalized/modified scalar curvature R, trace of matter field ten-
sors T and modified Finsler like generating function F . In particular, there are defined
extensions of GR with extra dimensional “velocity/momentum” coordinates. For four-
dimensional models, we prove that it is possible to decouple and integrate in very general
forms the gravitational fields for f(R, T, F )-modified gravity using nonholonomic 2 + 2
splitting and nonholonomic Finsler like variables F . We study the modified motion and
Newtonian limits of massive test particles on nonlinear geodesics approximated with
effective extra forces orthogonal to the four-velocity. We compute the constraints on the
magnitude of extra-accelerations and analyze perihelion effects and possible cosmolog-
ical implications of such theories. We also derive the extended Raychaudhuri equation
in the framework of a tangent Lorentz bundle. Finally, we speculate on effective model-
ing of modified theories by generic off-diagonal configurations in Einstein and/or MGTs
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and Finsler gravity. We provide some examples for modified stationary (black) ellipsoid
configurations and locally anisotropic solitonic backgrounds.

Keywords: Modified theories of gravity; Einstein spaces; tangent Lorentz bundle; Finsler
geometry; exact solutions.

PACS Number(s): 04.50.Kd, 04.20.Cv, 98.80.Jk, 04.90.+e

1. Introduction

The late-time cosmic accelerating discovered and confirmed in 1998–19991,2 opened
new directions of research in cosmology and seems to change paradigms in mod-
ern gravity and standard particle physics. In spite of various efforts, the source of
acceleration of universe, dark energy and dark matter effects etc are far from being
understood. For reviews of theoretical works and observational data, see Refs. 3–8
and references therein. Different theoretical models in which the Einstein–Hilbert
action is replaced by functions f(R, q), (where R is the Ricci scalar and a function q
is be used, for instance, for the trace of energy–momentum of matter, torsion fields,
etc.), have been investigated in a number of papers. These have stated the condi-
tions of existence of viable cosmological models, analyzed the constraints obtained
from the classical tests of general relativity and quantum gravity models, studied the
galactic dynamics and test particle propagations with and without dark matter, etc.
They have also explored possible connections with modified Newtonian dynamics
(MOND) and the Pioneer anomaly and considered the astrophysical and cosmolog-
ical implications of nonminimal coupling matter–geometry models,9–13 Finsler like
generalizations,14–19 etc.

The gravitational field equations in general relativity, GR, and extra-
dimensional extensions (including models on (co) tangent bundles with commu-
tative and noncommutative variables) have been found to possess a decoupling
property with respect to certain nonholonomic frames of reference. This allows us to
integrate such systems of partial differential equations (PDE) in general off-diagonal
forms.a,20,21 Such methods of constructing off-diagonal solutions in various gravity
theories were elaborated by introducing Finsler like variables in Einstein gravity
and various modifications.

Finsler like variables can be naturally introduced on a (co) tangent bundle,
TV, to a Lorentz manifold, V, with possible noncommutative extensions, for var-
ious classical and quantum gravity models with modified dispersion relations.21,22

Considering nonintegrable (equivalently nonholonomic/anholonomic) 2+2 splitting
on (pseudo) Riemannian spacetimes, we can mimic certain locally anisotropic con-
figurations with prescribed fibred local structures. A Finsler nonlinear quadratic

aThe metrics for these classes of solutions cannot be diagonalized via coordinate transform and the
geometric/physical objects may depend on all coordinates via generating and integration functions
and various parameters.
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element F (x, y) = F (xk, ya = dxa/dτ) is present in such theories as a nonlin-
ear generating function/metric for three fundamental geometric objects. These are
the nonlinear connection (N-connection), N = {Na

i (x, y)}, a lift to total metric,
g = {gαβ}, and distinguished connection, D = {Γαβγ} (d-connection, which is dif-
ferent from the Levi–Civita connection, ∇ = {Γαβγ}).b There are various models of
(generalized) Finsler geometry and gravity theories depending on explicit assump-
tions on data (F :g,N,D) and how corresponding curvature, torsion and other
tensors are derived. Such theories can be metric compatible, or noncompatible,
see critical remarks in Refs. 19 and 23. In all cases, minimal extensions of GR
with a well defined axiomatic can be encoded into certain extended principles of
general covariance and relativity. Considering sections ya(xk) on a basic Lorentz
manifold, we generate certain effective “osculating” (pseudo) Riemannian metrics
g̃ij(x) := gij(x, y(x)) derived in nonlinear forms from F (x, y(x)) (such approaches
were considered in Finsler modifications of gravity and cosmology in Refs. 14 and
15). This class of theories is with f(R, T, . . .) modifications of GR and (via non-
holonomic frame and off-diagonal deformations of metrics and distortions of funda-
mental geometric structures) can be related to various anisotropic modifications of
Hořava–Lifshitz, and/or covariant anisotropic models of gravity, etc.5,7,8,13,22 Con-
ventionally, we denote such modified gravity theories with gravitational Lagrangians
f(R, T, F ).

It is the purpose of the present paper to study extensions of standard GR
to certain forms with Lagrange density f(R, T, F ) when the constructions can be
modeled by generic off-diagonal and nonholonomic effects in an effective Einstein
or Finsler like gravity theory. We shall consider standard models of matter with
respect to certain N-adapted frames of reference which via nonholonomic constraints
and off-diagonal interactions may mimic exotic fluids and states of matter, quan-
tum effects. Such theories are with modified dispersion relations and/or anomalies,
anisotropies and “noncompactified” extra dimensions with (co) velocity-like vari-
ables, etc. The field equations and the covariant divergence of the stress–energy
tensor can be derived in two equivalent geometric and variational forms work-
ing with N-adapted geometric objects. Nonholonomic constraints and off-diagonal
gravitational interactions can model nontrivial matter configurations, for instance,
nonlinear scalar field interactions. So, there are possible alternative explanations for

bWe write boldface symbols for spaces (and geometric objects on such spaces) enabled with
so-called horizontal (h) and vertical (v) splitting, N : TV = hV ⊕ vV, when coordinates and
indices split in the form uα = (xi, ya) [in brief, u = (x, y)] and β = (j, b). Such h–v-
splitting exist naturally of vector/tangent bundles, but can be introduced formally, for instance,
as a 2 + 2 splitting to diads on (pseudo) Riemannian manifolds (when i, j . . . , = 1, 2 and
a, b, . . . = 3, 4). For (pseudo) Finsler models on tangent bundles, the indices run values of type
i, j . . . ,= 1, 2, 3, 4 and a, b, . . . = 6, 7, 8, 9. The term “pseudo” will be used for any necessary local
signature of metrics (±,±,±,±). Readers may consider details on such constructions in Refs. 23
and 20.
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inflation scenarios, late time accelerations and dark energy/matter effects. We shall
demonstrate the possibility of reconstruction of various types Friedman–Lemâıtre–
Robertson–Worker (FLRW) cosmology and anisotropic modifications by appropri-
ate choices of the above mentioned functionals and/or generating/integration func-
tions for generic off-diagonal solutions.

We shall speculate on possible theories of reduction tangent bundle models to
standard ones with effective Einstein equations in GR, for F (x, y) → F (x, y(x)).
In general, such constructions may result in nontrivial torsion, nonzero covariant
divergence of the stress–energy tensor, etc. We argue that following certain general
principles on metric compatible constructions completely determined by a funda-
mental metric tensor we can provide an equivalent encoding of off-diagonal coef-
ficients of metrics into nonholonomic frames. We will state the conditions so that
f(R, T, F ) with general data (F :g,N,D) can be effectively described by certain
(g̃ij(x),∇(x)) and/or equivalent (g,D = ∇ + Q). All geometric objects being deter-
mined by the same metric structure. The motion of massive test particles in such
modified theories is modeled by nonlinear geodesic configurations (with effective
extra acceleration). This is due to the off-diagonal/nonholonomic interactions and
nonlinear coupling between matter and geometry. We shall investigate the Newto-
nian limit of such models and compute certain expressions for the extra acceleration.
The observational data for the perihelion of the Mercury can be used to impose
a general constraint on magnitude of such extra-acceleration and local anisotropy
effects.

The present paper is structured as follows. Section 2 is devoted to a brief intro-
duction into the Finsler osculating gravity and its relation to GR and modifications.
There are derived field equations of f(R, T, F ) gravity. Some particular cases and
the conditions of effective modeling via generic off-diagonal solutions in GR and
Finsler–Cartan gravity are analyzed in Sec. 3. We briefly discuss the procedure of
reconstructing gravity theories with scalar field and off-diagonal interactions. The
equations of constrained motion in modified backgrounds of massive test particles,
and the corresponding Newtonian limits of effective locally anisotropic models, are
analyzed. In Sec. 4, we develop a geometric method of decoupling and integrat-
ing the field equations in modified gravity. We show how such equations can be
solved in generic off-diagonal form as nonholonomic deformations of de Sitter black
holes to certain rotoid and/or locally anisotropic solitonic configurations. Finally,
we discuss and conclude our results in Sec. 5.

2. Modified Einstein and Finsler Osculating Gravity

In the present section, we provide an introduction into modified theories with local
anisotropies which can be modeled as effective GR theories for certain nonholonomic
constraints resulting in zero torsion structure but generic off-diagonal terms in
metrics.
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2.1. Motivations for the f(R, T, F ) gravity

We analyze two approaches to modifications of the GR theory.

2.1.1. Action for f(R, T ) theories

We can consider models on a four-dimensional (4-d) pseudo-Riemannian manifold
enabled with metric structure gij(xk) defining a quadratic linear element

ds2 = gij(x)dxidxj , (1)

for x = {xk}, a gravity theory corresponding to action

S =
∫ √

|g|d4x{(16π)−1f(R, T ) + mL},

where R = gijRij is the scalar corresponding to contraction of the inverse metric
gij with the Ricci tensor Rij constructed for the Levi–Civita connection, mL is the
matter Lagrangian density which via corresponding variational calculus results in
the stress–energy tensor

Tij =
−2(

√
|g|)−1δ(

√
|g|mL)

δgij
,

and its trace, T = gijTij .
c We obtain the Hilbert–Einstein action if f(R, T ) = R.

Such constructions are reviewed in Refs. 5, 7, 8 and 13.

2.1.2. The Finsler–Cartan gravity

In the second class of theories, we consider instead of (1) a nonlinear quadratic
element

ds2 = F 2(xi, yj)

≈ −(cdt)2 + gbibj(x
k)ybiy

bj

[
1 +

1
r

ρbi1bi2···bi2r
(xk)ybi1 · · · ybi2r

(gbibj(xk)y
biybj)r

]
+O(ρ2), (2)

for yi = dxi/dτ with a real parameter τ in xi(τ), where values ρbi1bi2···bi2r
(x) are

parametrized by 3-d spacelike “hat” indices running values î = 1, 2, 3 have to be
computed using certain experimental/observational data and/or theoretical models.
To spacetime geometry and/or geometric mechanics, locally anisotropic field the-
ories with effective nonlinear metrics of type (2), models of quantum gravity,
etc. we can naturally associate22,24 certain local modified dispersion relations for
propagation of light. For a corresponding frequency, ω and wave vector ki, one

cWe use the natural system of units when the Newton constant, G, and light speed, c, are subjected
to the conditions G = c = 1 and the gravitational constant is κ2 := 8π.
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computes locally

ω2 = c2[gbibjk
bik

bj ]2

1 − 1
r
ρbi1bi2···bi2r

y
bi1 · · · ybi2r

[gbibjy
biybj]2r

, (3)

when the local wave vectors ki → pi ∼ ya are related to momentum type variables
pi which are dual to “fiber” coordinates ya.

Nonlinear metric elements (2) are usually considered in Finsler geometry when
certain homogeneity conditions are imposed, F (xi, βyj) = βF (xi, yj), for any β >
0). The value F is considered to be a fundamental (generating) Finsler function
usually satisfying the condition that the Hessian

g̃ij(xi, yj) =
1
2
∂2F 2

∂yi∂yj
(4)

is not degenerate. For physical applications related to “small” deformations of GR,
we can consider that gij = (−1, gbibj(x

k)) in the limit ρ→ 0 correspond to a metric
on a (pseudo) Riemannian manifold with local coordinates (xi) and signature of
metric of type (− + ++). In such cases, we elaborate (pseudo) Finsler models on
tangent bundles to Lorentz manifolds.

There are substantial differences between geometric and physical theories con-
structed for (pseudo) Riemannian quadratic elements (1) and those with nonlin-
ear (Finsler type) ones (2). In the first case, the data (gij ,∇) provide a complete
geometric model for which gravity theories are derived for corresponding Lagrange
densities. We need more assumptions in order to construct some self-consistent
geometries from a generating function F (x, y). A metric compatible model of
(pseudo) Finsler–Cartan geometry completely determined by F and g̃ij , up to nec-
essary classes of frame/coordinate transform eα

′
= eα

′
α(x, y)eα, can be constructed

from a triple (F :N,g,D) of fundamental geometric objects:

(i) The nonlinear connection (N-connection) structure.

N : TTV = hTV ⊕ vTV, (5)

i.e. a nonholonomic (equivalently, nonintegrable/anholonomic) distribution
with horizontal (h) and vertical (v) splitting. This value can be introduced
in coefficient form, N = {Na′

i′ = ea
′
ae

i
i′ Ñ

a
i }, where

Ña
j :=

∂G̃a(x, y)
∂yj

, for G̃k =
1
4
g̃kj
(
yi

∂2L

∂yj∂xi
− ∂L

∂xj

)
.

An N-adapted frame structure is defined naturally as ẽν = (ẽi, ea), where

ẽi =
∂

∂xi
− Ña

i (u)
∂

∂ya
and ea =

∂

∂ya
, (6)

and the dual frame (coframe) structure is ẽµ = (ei, ẽa), where

ei = dxi and ea = dya + Ña
i (u)dxi. (7)

1450094-6
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The following nonholonomy relations are satisfied:

[ẽα, ẽβ ] = ẽαẽβ − ẽβ ẽα = W̃ γ
αβ ẽγ , (8)

with anholonomy coefficients W̃ b
ia = ∂aÑ

b
i and W̃ a

ji = Ω̃aij .
d

(ii) Using data (g̃ij , ẽα), we can define a canonical (Sasaki type) metric structure

g̃ = g̃ij(x, y)ei ⊗ ej + g̃ij(x, y)ẽi ⊗ ẽj (9)

= gij(x, y)ei ⊗ ej + hab(x, y)ea ⊗ eb, (10)

which can be related to an “arbitrary” metric structure g = {gα′β′} via frame
transforms, gα′β′ = eαα′e

β
β′ g̃αβ.

(iii) For any metric g = g̃, we can construct in standard form the Levi–Civita
connection ∇ = {Γαβγ}, which does not preserve under parallelism the N-
connection splitting (5). In Finsler theories, one introduces distinguished con-
nections (d-connections) D = {Γαβγ} which is adapted to the N-connection
structure, i.e. preserves the nonholonomic h–v-splitting. It is possible to
construct Einstein–Finsler type theories for d-connections with are compat-
ible with the metric structure, Dg = 0. For instance, this is the case of
the well known Cartan d-connection, which is metric compatible, but the
Chern and/or Berwald d-connections are not metric compatible which is less
related to standard models of physics, see discussions and critical remarks in
Refs. 19 and 23.

Using N-adapted differential forms and the d-connection 1-form is Γαβ = Γαβγe
γ ,

we can define and compute the torsion and curvature 2-forms

T α := Deα = deα + Γαβ ∧ eβ , and

Rα
β := DΓαβ = dΓαβ − Γγβ ∧ Γαγ = Rα

βγδe
γ ∧ eδ.

For instance, the h–v-coefficients Tα
βγ = {T ijk, T ija, T aji, T abi, T abc} of T α are com-

puted using formulas

T ijk = Lijk − Likj , T ija = −T iaj = Cija, T aji = Ωaji,

T abi =
∂Na

i

∂yb
− Labi, T abc = Cabc − Cacb.

(11)

See, for instance, Ref. 23 for N-adapted coefficients of curvature, Rα
βγδ, and

Ωaij =
∂Na

i

∂xj
−
∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb
.

dAn N-connection can be canonically determined by F following a geometric/variational principle
for an effective regular Lagrangian L = F 2 and action integral S(τ) =

R 1
0 L(x(τ), y(τ))dτ , for

yk(τ) = dxk(τ)/dτ . The Euler–Lagrange equations d
dτ

∂L
∂yi − ∂L

∂xi = 0 are equivalent to the “non-

linear geodesic” (equivalently, semi-spray) equations d2xk

dτ2 + 2G̃k(x, y) = 0, where g̃kj is inverse
to v g̃ij ≡ g̃ij (4).
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For our purposes (in order to decouple and integrate in very general forms the
gravitational field equations), it is convenient to work with the so-called canonical
d-connection D completely defined by a metric g = g̃ in metric compatible form,
Dg = 0, and with zero h- and v-torsions, T ijk = 0 and T abc = 0. In general, there are
nonzero values T ija, T

a
ji and T abi, see (11).e Here we note that there is a canonical

distortion relation

D = ∇ + Z, (12)

where both connections D and ∇ and the distortion tensor Z (it is an algebraic
combination of nontrivial torsion coefficients, see explicit formulas in Ref. 23) are
uniquely defined by the same metric structure g.

We can construct a variant of Einstein–Finsler theory D following standard geo-
metric rules as in general relativity but reconsidering the constructions on tangent
bundles/manifolds. The scalar curvature is by definition

F
s R := gβγ Rβγ = gijRij + habRab = hR+ vR. (13)

This scalar curvature is similar to that for the Levi–Civita connection in the Einstein
gravity. In both cases of a (pseudo) Riemannian geometry and/or a Finsler space,
such a value is uniquely defined on the corresponding total tangent bundle by
contracting the total metric tensor and the respective Riemannian tensor. Formulas
are similar but with that difference that in the second case we consider a Finsler
like connection.

It should be noted that Finsler like variables can be introduced in standard GR
considering a generating function F = F(x, y) determining a 2 + 2 splitting. For
such models, indices i, j, . . . = 1, 2 and a, b, . . . = 3, 4 which is adapted to a fibred
structure on a Lorentz manifold. We can use similar geometric constructions with
4+4 splitting when Finsler models are on tangent bundles, and distinguish this via
conventional i, j, . . . = 1, 2, 3, 4 and a, b, . . . = 5, 6, 7, 8.

The gravitational field equations for D can be postulated in standard geometric
form and/or derived via N-adapted variational calculus

Rβδ −
1
2
gβδ Fs R = Υβδ, (14)

Lcaj = ea(N c
j ), Cijb = 0, Ωaji = 0, (15)

for Υβδ → Tβδ if D → ∇. We have to consider the constraints (15) in order to
get zero torsion (11) and distortion tensors, Z = 0, which constraints D̂ = ∇

eIn our former works, we used the symbol bD for the canonical d-connection. Here, we write the
N-adapted coefficients of D are Γγ

αβ = (Li
jk , La

bk, Ci
jc, Ca

bc)

Li
jk =

1

2
gir(ekgjr + ejgkr − ergjk), bCa

bc =
1

2
had(echbd + echcd − edhbc),

La
bk = eb(N

a
k ) +

1

2
hac(ekhbc − hdcebN

d
k − hdbecNd

k ), Ci
jc =

1

2
gikecgjk.
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in N-adapted frames, (12). It is convenient to work with equations of type (14)
and (15) if we want to study in an unified form both the Einstein gravity and
Finsler generalized theories. Such N-adapted Finsler like variables result into a
very important property of decoupling respective PDE which allows to construct
solutions in very general forms.

2.1.3. The osculating approximation and f(R, T, F ) gravity

Considering arbitrary frame/coordinate transforms on V and TV, we mix the vari-
ables and do not “see” explicit dependencies on F (x, y). Fixing a system of refer-
ence, we can introduce an osculating (pseudo) Riemannian metric on the h-subspace

gij = g̃ij(x, y(x)), (16)

where g̃ij is defined by (4). In general, we can construct exact solutions of (14) for
8-d metrics (9) and/or (10). Nevertheless, the observable spacetime is 4-d and we
can verify possible physical implications, directly, only for the h-components. Any
modifications via F and gij (16), and related nonholonomic deformations of Fs R
(13) can be parametrized as Fs R → f(hR, T, F ), where hR is computed for g̃ij .

In explicit form, we can determine experimentally F for theories with modified
dispersions (3) and, for instance, restricted local Lorentz invariance, see reviews of
results in Refs. 16–18. There are experimental restrictions for such configurations.24

Nevertheless, only local considerations are not enough to conclude if a Finsler like
theory is physically important, or not. For instance, any data (F :g,N,D) can
be redefined equivalently via frame transforms into (0F : 0g,0N,0D), where 0F is a
trivial “Finsler” function resulting in quadratic element (1) but the data (0g,0N,0D)
are constructed as solutions of (14) with possible, or not, Levi–Civita constraints
(15). Experimentally, we shall obtain quadratic dispersions in (2) and (3), but the
information on locally anisotropic types (Finsler, or other types) is encoded into N-
adapted frames 0N and generic off-diagonal terms of 0g. One could see observational
effects for Finsler brane and black hole/ellipsoid solutions with (non) commutative
variables and anisotropic modified dispersions.21,22

The principles of generalized covariance can be extended from V to TV.
Various classes of exact solution of gravitational field equations TV directly or
indirectly contain physical information on F . Such data can be encoded into
N- and d-connections and total metrics. Possible phenomenology and experimen-
tal/observational effects can analyzed for metrics of type (16) with certain nonholo-
nomic projections of theories on fundamental h-spacetime. Geometrically, we can
transform a diagonal configuration on TV, determined with respect to N-adapted
bases (6) and (7), into a generic off-diagonal gij [F, g̃ij ] when the functional depen-
dence can be stated for well-defined boundary/assymptotic conditions, Cauchy
problem, etc. This class of theories is of type f(R, T, F ) → hR[F, g̃ij ], where F
can be defined up to certain classes of symmetries under coordinate/frame trans-
forms and, in special cases, reduced local symmetries.

1450094-9
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Working with gij [F, g̃ij ], we use an effective F(x1, x2; y3, y4) generating conven-
tional 2 + 2 splitting which for corresponding N-adapted bases we can construct
off-diagonal solutions for 4-d gravity theories. In a particular case, we can constrain
the integral varieties of solutions in order to extract Levi–Civita configurations.
Such generating functions F can be also determined up to certain classes of frame
transforms. In all cases, we can conventionally write f(R, T, F ) where F emphasizes
possible locally anisotropic/nonholonomic/generic off-diagonal contributions from
certain Finsler like models on V, or TV.

2.2. Field equations for the f(R, T, F ) gravity

Hereafter, we assume that small Greek indices split in the form α, β, . . . =
(i, a), (j, b) . . . , where i, j, . . . = 1, 2 and a, b = 3, 4 for a osculating (pseudo) Rie-
mannian metric of type (16)

gαβ(uγ) = g̃αβ(uγ , yα(uµ)), (17)

on a nonholonomic Lorentz manifold V with local coordinates uα = (xi, ya) with
functional dependence on sections yα(uµ) of TV. We shall not state theoreti-
cal/experimental constraints for F (uγ , yα) on open regions of TV but analyze gen-
eral and physical important implications of such nontrivial structures on effective
(pseudo) Riemannian spacetime V. The metric gαβ(uγ) (17) can be parametrized
in N-adapted from as (9) and/or (10), for 4-d configurations with nonholonomic
splitting into 2-d h-components and 2-d v-components. It is possible to introduce
Finsler like variables on V if we prescribe an effective nonholonomic distribution
F → F(xi, ya).

For simplicity, we assume that the Lagrangian density of matter L(uγ) depends
only the metric tensor components gαβ, when

Tαβ =
−2(

√
|g|)−1δ(

√
|g|L)

δgαβ
=

gαβL− 2∂L
∂gαβ

, (18)

for |g| being the determinant of (17). We denote by T := Tβ
β . We note that N-

adapted variations are obtained with respect to N-elongated frames (6) and (7)
assuming that we work on a spacetime with nonholonomic 2 + 2 splitting.

Our modified gravity theory is modeled on V by a functional f(R,T,F ) � hR,

for R � F
s R as in (13). The action is considered in the forms

S =
∫ √

|g|d2xδ2y{(16π)−1f(R,T,F ) + L} (19)

�
∫ √

|g̃|d2xδ2y{Fs R+ L}, (20)

where the term (20) with F
s R is a part of theory on TV, which we do not state

in explicit form. We shall formulated certain physically important conditions for a
theory for (19) which will be described by exact solutions of (14) related to (20).

1450094-10
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For the N-adapted variation of S (computations are similar to those for derivation
of formulas (11) in Ref. 8, but performed for the canonical d-connection D and
metrics of type g (10), for ∂f/∂R = ∂Rf 	= 0), we obtain the locally anisotropic
gravitational field equations

Rβγ −
1
2

f

(∂Rf)
gβγ

=
1
∂Rf

[8πTβγ + (DβDγ − gβγDαDα)(∂Rf) − (∂T f)(Tβγ + Θβγ)], (21)

where

Θβγ :=
gµνδ(Tµν)
δgβγ

and Θ := Θ µ
µ . (22)

It should be noted that the divergence of Tβγ is not zero

(8π(∂T f)−1 − 1)DµTµν = (Tµν + Θµν)Dµ ln |∂T f | + DµΘµν . (23)

Such properties with DµTµν 	= 0 are known in Finsler gravity theories and GR in
nonholonomic variables, see Ref. 23, when Dµ is of type (12) with all components
determined by g, and if Dµ → ∇µ,∇µTµν = 0.

Finally, we note that Eq. (21) is similar to (14) with effective sources Υβδ

depending on the physical nature of matter fields determined by Θβγ .

3. Particular Cases and Effective Gravity Models

In this section, we consider several classes of modified gravity theories with explicit
parametrization for sources and functional f. We shall analyze the possibility to
reconstruct gravity with scalar field and off-diagonal interactions. We will study the
effective locally anisotropic motion and Newtonian limits. We also will provide the
Raychaudhuri equation on the tangent Lorentz bundle TV .

3.1. Effective Finsler like and Einstein configurations

3.1.1. Assumptions on stress–energy tensors

The calculation of Θβγ is possible if the matter Lagrangian is postulated. Using
formulas (18) and (22), we find

Θβγ =
gβγL − 2gατ∂2L
∂gατ∂gβγ − 2Tβγ

. (24)

There are three such important models of matter fields subjected to nonholonomic
constraints:

(i) For perfect fluids, we assume that with respect to N-adapted frames, the four-
velocity field satisfy the conditions vαvα = 1 and vαDµvα = 0. There is not

1450094-11
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a unique definition but we shall take the Lagrangian density L = −p. For
conventional energy density ρ and pressure p, we can parametrize

Tβγ = (ρ+ p)vβvγ − pgβγ, (25)

when (24) is computed Θβγ = −2Tβγ − pgβγ .
(ii) We can consider a scalar field ϕ(x, y) with zero mass, with Lagrange density

ϕL = gατ (Dαϕ)(Dτϕ), when Θβγ = −ϕTβγ + (1/2)ϕTgβγ .
(iii) A different relation, Θβγ = −FTβγ , is computed for the electromag-

netic (antisymmetric) tensor field Fαβ with the Lagrangian density, FL =
−(16π)−1gατgβγFαβFτγ .

The assumptions above on stress–energy fields are based on the principle of
general covariance in GR when the formulas for gravity–matter field interactions
are the same with respect to arbitrary frames of reference. Possible contributions
from modified f -terms, extra v-dimensions and local anisotropies are encoded in
N-adapted frames of reference and d-connection D.

3.1.2. Models with f(R, T, F ) = hR + 2f(T )

The scalar curvature hR is the first term in (13), in 8-d, taken for gαβ(uγ) (17),
reduced to 4-d, and f(T ) is an arbitrary function taken for the traces of the stress–
energy tensor of matter. We identify hR with the scalar curvature Fs R of D adapted
to a 2 + 2 N-connection splitting via a prescribed generating function F(u). The
gravitational field equations (21) transform into a variant for Finsler gravity, see
(14), with source

Υβδ[f(T ),Tαβ,Θαβ ] = f(T )gβδ + [8π − 2∂T f(T )]Tβδ − 2∂T f(T )Θβδ.

Such a 4-d effective gravity model transforms into a theory for ∇ if the conditions
(15) for zero torsion are imposed. In both cases of connections D and/or ∇, the
functional dependence Υβδ[f(T ),Tαβ,Θαβ ] does not allow to obtain standard Ein-
stein manifolds even we neglect terms with Tβδ and Θβδ. The term f(T )gβδ mimic
a locally anisotropic polarization resulting from T (u) of a gravitational constant λ,
when, for instance, f(T ) = λT (u). Such generic off-diagonal solutions were studied
in a series of our works, see Ref. 23.

For trivial N-connection structure, the constructions presented in this subsec-
tion reduce to those analyzed in Sec. III.A. of Ref. 13. Nevertheless, there are
known locally anisotropic cosmological configurations with nonzero N-connection
coefficients, i.e. off-diagonal generalizations of FRWL universes studied in Ref. 25.
In all such cases, we can consider perfect fluid or dust universe approximations and
construct cosmologies with effective cosmological constant and locally anisotropic
polarizations. The generic off-diagonal solutions can be constructed with general-
ized group symmetries which may contain information on symmetries for the Finsler
generating function F in some 8-d models.

1450094-12
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3.1.3. Modified theories with f(R, T, F ) = 1f(Fs R) + 2f(T )

This is an example when the effective 4-d gravity is geometrically more “sensitive”
to Finsler contributions. For simplicity, assuming a matter content for a perfect
fluid, the field equations (21) for f = 1f(Fs R)+ 2f(T ) are reformulated in the form
(14) with modified gravitational constant and effective source

Υβδ = 8πefGTβγ + efTβγ ,

where the effective values are computed

efG =
[1 + (8π)−1∂T (2f)]

∂R(1f)
,

2∂R(1f)efTβγ = [(1 − 2∂R)(1f) + (1 + 2∂T )(2f)]gβγ

+ 2(DβDγ − gβγDαDα)∂R(1f).

We can compute variations of efG by a fundamental Finsler function F in tangent
Lorentz bundle even we follow an osculating approximation to 4-d. If we impose the
conditions (15), we get a Levi–Civita configuration, but with effective (matter and
time) dependent coupling. In general, locally anisotropic Finsler like contributions
are “inverse” ones comparing to matter modifications.

In the scenario with efG and efTβγ , the cosmic acceleration may result in
three possible forms: With locally anisotropic Finsler like contributions, depending
on matter content of the universe (for the matter and geometry coupling, etc.
and modification of the Hilbert–Einstein terms in Lagrange density) and via an
effective source term in the right part of effective Einstein equations. It should
be noted here that such nonholonomic deformations of theories are with generic
N-connection structure.

Of course, we can consider another types of parametrization of f(R, T, F ) result-
ing in different classes of effective sources and off-diagonal deformations. If a gener-
alized principle of relativity is considered for such classes of theories, we can model
such theories as certain branches of nonholonomic manifolds/bundles geometries.
We can use this for defining such transforms when the effective gravitational equa-
tions decouple and can be integrated in general forms.

3.2. Equivalence of models with f(R, T, F ) to effective GR

or Einstein–Finsler gravity

Frame and conformal transforms change the geometric and matter field components
of theories when a theory of type (19) can be modeled as (20) and/or inversely. The
gravitational field equations are also modified (21) both via functionals f(. . .) and
F (. . .). For simplicity, we consider the first action for f = F

s R + 2f(T ), where F
s R
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is of type (13), qA label matter fields with energy–momentum tensor

Tαβ = −2(
√
|g|)−1δ

∫
d4x
√
|g| L(gαβ , qA)
δgαβ

, (26)

computed on the 4-d (h-part) base spacetime. The v-components of the Ricci tensor
in 8-d are stated equal to an effective polarized cosmological constant vR = Λ(x),
we considered such models in Ref. 21. The field equations are of type (14), which
in 4-d result in

Rβγ −
1
2
gβγFsR = [8π + ∂T (2f)]Tβγ + efTβγ ,

with effective gravitational constant

efG = [8π + ∂T (2f)], (27)

and effective energy–momentum tensor, efTβγ = [2f + ∂T (2f)]gβγ . Putting all
terms together, we get

Rβγ −
1
2
[hR + Λ(x) + 2(2f + 2∂T (2f))]gβγ = [8π + ∂T (2f)]Tβγ , (28)

for the canonical d-connection D, when the term 2f(T ) modifies both the gravita-
tional constant and may compensate a cosmological constant Λ = Λ0, or polariza-
tions to Λ(x) and possible contributions by Finsler modifications in hR.

The theory described by (28) becomes an effective Einstein like theory if we
impose the Levi–Civita conditions (15), D → ∇, and fix such a parametrizations
where hR + Λ(x) + 2(2f + 2∂T (2f)) = ∇R, where ∇R is the scalar curvature of
∇. Nevertheless, variations of effective gravitational constant (27) are still possible.
The gravitational field equations can be integrated in very general off-diagonal
forms following methods elaborated in Refs. 20 and 21.

3.3. Extracting scalar fields from modified/Finsler gravity

3.3.1. Conformal transforms and effective scalar fields

We show how the Finsler generating function F (x, y(x)) := χ(x) can be used to
mimic scalar interactions in modified gravity with conformal transforms gαβ →
χgαβ = eχ(x)gαβ . Let us consider a functional f(Fs R,χ) being an algebraic function
on F

s R and χ. We introduce the action

S =
∫
d4x
√

|g|
{

1
2κ2

f(Fs R,χ) + L(eχ(x)gαβ , qA)
}
. (29)

Varying on χ, we get the relation, ∂χf(Fs R,χ) = −κ2χT, where the trace of energy–
momentum tensor for the effective scalar field is computed χT := χgαβχTαβ , see
formula (26) for re-scaled metric eχ(x)gαβ , which results in χTαβ .

There are parametrization where we can invert and find χ = χ(Fs R,
χT) and then

re-define f̂(Fs R,
χT) ≡ f(Fs R,χ(Fs R,

χT)). Under conformal N-adapted transform
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gαβ → e−χ(x)gαβ , we induce from a modified Finsler action (29) an action for the
canonical d-connection D modified gravity with effective scalar fields χ

S =
∫
d4xe−2χ(x)

√
|g|
{

1
2κ2

f(χsR,χ) + L(gαβ , qA)
}
,

where χ
sR = eχ(x)

[
F
s R+ 3gαβ

(
(Dαχ)(Dβχ) − 1

2
(eαχ)(eβχ)

)]
, (30)

when the N-elongated operators eα are certain frame transforms of (6) adapted to
a nonholonomic 2 + 2 splitting. Such bases are also physical frames if the matter
fields qA couple minimally with gαβ but not with χ and the action is re-written in
the form

S =
∫
d4xe−2χ(x)

√
|g|
{

1
2κ2

f̂(χsR ,T) + L(gαβ , qA)
}
, (31)

where T = χT + qT is computed for sets of fields (χ, qA).

3.3.2. FLRW-geometries induced by Finsler modifications

We briefly analyze possible cosmological implications of the models (30) and/or
(31) when L = 0 and f(χsR,

χT) = F
s R + f(χT) with a corresponding re-definition

of F (x, y(x)) := χ(x) to get an effectivef χT = −ω(χ)gαβ(Dαχ)(Dβχ) − 4V (χ).
Such a Finsler modified gravity theory

S =
∫
d4x
√
|g|
{

1
2κ2

F
s R+ f [−ω(χ)gαβ(Dαχ)(Dβχ)] − 1

2
ω(χ)gαβ(Dαχ)(Dβχ)

}
contains (in our case, induced) k-essence cosmology models studied in Refs. 26–29.
This follows from the Friedman equations

3
2κ2

H2 = −f [Φ] +
1
2
Φ − (2∂Φf [Φ] − Φ)Φ,

1
κ2

(3H2 + 2Ḣ) = f [Φ] − 1
2
Φ,

(32)

for signature (+,+,+,−), where Φ = ω(χ)χ̇2 is computed using the derivative on
time-like variable t, χ̇ = ∂χ/∂t.

We can construct a simple solution for the model

A(χ) = f [−ω(χ)gαβ(Dαχ)(Dβχ)] − 1
2
ω(χ)gαβ(Dαχ)(Dβχ)

= A0 exp[−2 ln(χ/χ0)gαβ(Dαχ)(Dβχ)],

with some constantsA0 and χ0. The solution of (32) is very similar to that presented
in Ref. 13, H = H0/t, χ = t, when 3H2

0 −2H0+(κχ0)2A0 = 0. In general, k-essence

fWe can introduce, for instance, a term −4V(χ) for nonlinear interactions, as in various cosmo-
logical models; for simplicity, we restrict our considerations to models with V(χ) = 0.
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models, there are no de Sitter type solutions if (in our denotations) χ = const. and
A(0) > 0.

It is also interesting to note that physical implications of Finsler modifications
in gravity via functionals f(. . . , F ) may be very different than those in “standard”
k-essence cosmology. For instance, the constraint F (t, y(t)) = χ(t) = const defines a
nonholonomic distribution in spacetime which may be “fiber like” with formal extra
dimensional velocity coordinates yi(t), for a 2 + 2 distribution as we explained
in footnote b. The evolution in time depends on such parametrization. Pseudo–
Riemannian configurations can be obtained if D → ∇ (15).

3.4. Locally anisotropic motion and the Newtonian limit

In f(R, T, F ) models, the divergence of energy–momentum tensor of matter (23) is
not zero. For theories which can be modeled as an effective Einstein gravity, this
is a consequence of distortion D = ∇+ Z (12). Nontrivial distributions F result in
transferring solutions of f(R, T ) theories into Finsler like models and off-diagonal
Einstein configurations. The coupling between metric, geometry and constraints on
nonlinear dynamics induces supplementary accelerations acting on test particles.
The goal of this section, is to study the equation of motion of test particles in
dependence of both f - and F -functionals and distortions Z. We shall derive the
equations of motion, compute the Newtonian limits and investigate constraints on
such theories which can be derived from the observational data.

3.4.1. Modified equations for anisotropic motion of test particles

We compute the divergence (23) for the case of perfect fluid model energy–
momentum tensor (25). Introducing the projector operator ⊥gµλ = gµλ−vµvλ, for
which ⊥gµλvµ = 0 and ⊥gµλTλν = −⊥gνλp, and following a calculus with Dα and
decompositions with respect to N-adapted frames eν (6) and eν (7) (see similar
details for ∇ in Sec. V of Ref. 13), we obtain that the equations of motion of a
particle in background (g,D = {Γµνλ}) can be expressed

d2uµ

ds2
+ Γµνλv

νvλ = (gµν − vνvµ)eνq. (33)

The term eνq can be found from divergence (23)

eνq = 8π(eνp)(ρ+ p)−1[8π + ∂T f(Fs R,T,F )]−1. (34)

Equation (34) can be integrated using approximative methods and additional
assumptions on the matter fluid model. For instance, we can chose a linear
barotropic equation of state, p = wρ, with a constant w � 1, when ρ + p ≈ ρ

and T = ρ− 3p. The value ∂T f depends only on ρ and F and the deviations from
geodesic motion are determined by a term ∂T f = 1ξ(ρ) + 2ξ (ρ, F ). Such contri-
butions split into two terms: 1ξ derived from modifications of type f(R, T ) and 2ξ
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derived from an anisotropic F. Fixing a value ρ = ρ0, we can expend

∂T f = 1ξ(ρ0) + 2ξ (ρ0, F ) + (ρ− ρ0)

[
∂1ξ

∂ρ |ρ0
dρ+

∂2ξ

∂ρ |ρ0
dρ

]
= 8π[1a+ 2a(F ) + (1b+ 2b(F ))(ρ− ρ0)],

where 1a = 1ξ/8π, 1b = ∂1ξ
∂ρ | ρ0

dρ and the anisotropic (Finsler generating depending

generating function coefficients) are 2a(F ) = 2ξ /8π, 2b = ∂2ξ
∂ρ |ρ0

dρ. We can write

(34) in the form

[1a+ 2a(F ) − (1b+ 2b(F ))ρ0]eνq

= weν ln
{

ρ

[1a+ 2a(F ) + (1b+ 2b(F ))(ρ− ρ0)]

}
,

and get the approximate solution

q = ln

{[
Cρ

1a+ 2a(F ) + (1b+ 2b(F ))(ρ− ρ0)

]w/[1a+2a(F )−(1b+2b(F ))ρ0]
}
, (35)

where C is an integration constant.
The solution (35) depends parametrically on generating Finsler function via

2a(F ) and 2b(F ) and a logarithmic anisotropic variations on ρ. Such solutions can-
not be expressed in exact form and there are necessary certain approximate series
decompositions.

We extended the Raychaudhuri equations by using D connections in the frame-
work of a tangent Lorentz bundle TV. We consider a nonlinear congruence of
geodesics (33) and we use an analogous method with Ref. 30 for deriving of Ray-
chaudhuri equations, for a velocity field vµ on TV the commutation relations of
vµ gives us

DαDβvγ − DβDαvγ = Rγ
εαβv

ε − Tδ
αβDδvγ − Tε

αβDεvγ .

Imposing the relations g⊥
µνv

µ = 0 and vαDβvα = 0, the previous equation is
written

vβDαDβvγ = −vβvαDβvγ + Rγ
εαδv

εvδ − Tδ
βαDδvβvγ − Tε

αβv
βDεvγ .

We decompose the term Dαvβ with respect to the kinematics terms of expansion,
shear and vorticity θ, σ, ω as

Dαvβ =
1
7
θhβα + σβα + ωβα,

where correspondingly, θ = Dαvβhαβ , σαβ = Dαvβ+Dβvα− 1
7θhαβ , ωαβ = Dαvβ−

Dβvα, hαβ = gαγhβγ . We obtain

vαDαθ = Rαβvαvβ − Tδ
αγv

αDδvγ − Dαvβ Dβvα

= Rαβvαvβ − Tδ
αβ

(
1
3
θhβδ + σβδ + ωβδ

)
vα − 1

3
θ − σαβσ

β
α − ωαβω

β
α.
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These equations are the (modified) Raychaudhuri equations on a Lorentz tangent
bundle. For vanishing nonholonomically induced torsion structures, they transform
into the well known Raychaudhuri equations for the Levi–Civita connection, but
on the tangent bundle to a pseudo-Riemannian manifold.

Using two test particles, we can study spacetime structure in Finsler like gravity
theories using (modified) Raychaudhuri equations. There are possible also observ-
able locally anisotropic effects on a single test particle which do not follow standard
geodesic equations as in general relativity but certain nonlinear geodesic ones, see
footnote d and Eq. (33) for modified equations of motion of a test particle in a
Finsler like background.

3.4.2. Corrections to the Newton law and perihelion effects

We use pressureless dust and associated variational principle to study modifications
and anisotropies in the Newtonian limit of theories. The equations for nonlinear
geodesics (33) of test particles can be derived from δpS = 0, where

pS =
∫

pLds, pL = eq
√
|gαβvαvβ |,

and limit of weak gravitational fields of ds is characterized by ds ≈ (1 +2ϕ −
v2)1/2 ≈ (1 + ϕ− v2/2)dt. In the above formula, ϕ is the Newton potential and v
is the velocity of the fluid in the 3-d space.

The solution (35) can approximated eq ≈ 1 + U(ρ, F ), for

U(ρ, F ) = w[1a+ 2a(F ) − (1b+ 2b(F ))ρ0]−1 ln

×
{

Cρ

[1a+ 2a(F ) + (1b+ 2b(F ))(ρ− ρ0)]

}
,

and the variation of respective action is δpS = δ[1 + U(ρ, F ) + ϕ − v2/2]dt = 0.
This allows us to compute the 3-d acceleration of the particle using the 3-d gradient
grad (for nontrivial F, we should perform a N-adapted calculus of this gradient),

tota = −grad [ϕ+ U(ρ, F )] = sa + pa + Na + Ea,

where sa = −grad ϕ
sa = −grad ϕ, the Newtonian gravitational acceleration,

pa(ρ, p, F ) = − C
1a+ 2a(F ) − (1b+ 2b(F ))ρ0

1
ρ

grad p,

the hydrodinamical acceleration,
Na(. . . , F ) ≈ N-connection terms,

Ea(ρ, p, F ) =
1b+ 2b(F )

1 + 1a+ 2a(F ) − (1b+ 2b(F ))ρ0

× grad p
1 + 1a+ 2a(F ) + (1b+ 2b(F ))(ρ0 − ρ)

,

(36)
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where the last term Ea is a supplementary acceleration induced from modifications
of the action and (Finsler) anisotropies of gravitational field. Such a term, Ea �
Ea(ρ, p), was used in Sec.V(c) of Ref. 13 for computing possible modification of
perihelion procession of Mercury

�ϕ =
6πGM�
a(1 − ε2)

+
2πa2

√
1 − ε2

GM�
(Ea),

where ε is the eccentricity of orbit, a is the distance between Mercury and Sun, M�
is the Sun’s mass. The observational data constrain for modifications resulting from
a f(R, ρ) theory where computed Ea ≤ 1.28 × 10−9 cm/s2. The terms pa,Na,Ea
in (36) depend anisotropically on F. So, we have to take into consideration such
terms when the anisotropic effects and constraints for the f(R, ρ, F ) models are
computed.

4. Decoupling and Integrability of f(R, T, F ) Gravity

The field equations in modified gravity theories are very “sophisticated” systems of
nonlinear PDE. Surprisingly, it is possible to decouple and integrate such PDE in
general forms using the anholonomic deformation method20,25 (see also references
therein). In this section, we reformulate the method for constructing generic off-
diagonal solutions for the f(R, T, F ) gravity, with trivial or nontrivial contributions
from a Finsler generating function F, when gαβ(uγ) = g̃αβ(uγ , yα(uµ)) (17). Finally,
we shall provide examples of solutions for ellipsoid and solitonic configurations.

4.1. The anholonomic deformation method for modified gravity

For simplicity, we shall prove integrability of the system (28) for Tβγ = 0,

Rβ
γ =

1
2
Υ(xi)δβγ , (37)

where
1
2
Υ(xi) := Λ̃(xi) + [2f + 2∂T (2f)], (38)

for [2f +2∂T (2f)]|T=0 being a nontrivial function on xi and an effective anisotropi-
cally polarized cosmological “constant” Λ̃(xi) = 1

2 [hR(xi)+Λ(xi)]. The source Υ(xi)
contains information on possible contributions from a Finsler generating function F
and modifications by 2f(T). The solutions of this system of nonlinear PDE define
nonholonomic Einstein manifolds.

4.1.1. Decoupling of field equations

The decoupling property can be proven for metrics with one Killing symmetry on
∂/∂y4, with local coordinates uα = (x1, x2, y3, y4), when

g = εie
ψ(xk)dxi ⊗ dxj + h3(xk, y3)e3 ⊗ e3 + h4(xk, y3)e4 ⊗ e4, (39)

for e3 = dy3 + wi(xk, y3)dxi, e4 = dy4 + ni(xk, y3)dxi. Such metrics are of type
(7) up to frame transforms, εi = ±1 depending on a chosen signature for the
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spacetime metric. We shall use brief denotations of partial derivatives, for instance,
s• = ∂/∂x1, s′ = ∂/∂x2 and s∗ = ∂/∂y3 and construct exact solutions in such
N-adapted frames when h∗4 	= 0 and Υ(xi) 	= 0.

Gravitational field equations for D: For ansatz (39), the nonlinear PDEs (37)
are equivalent to

ε1ψ
•• + ε2ψ

′′ = Υ, (40)

φ∗(ln|h4|)∗ = Υh3, (41)

βwi + αi = 0, (42)

n∗∗
i + γn∗

i = 0, (43)

where the coefficients

γ = (ln|h4|3/2 − ln|h3|)∗, αi = h∗4∂iφ and β = h∗4φ
∗, (44)

are determined by h3 and h4 via

φ = ln|2(ln
√

|h4|)∗| − ln
√
|h3|. (45)

See detailed computations of the N-adapted coefficients for the Ricci and Einstein
tensors in Refs. 20 and 25.

The above system of equations (40)–(43) reflects a very important decoupling
property of the Einstein equations for certain classes of metric compatible linear
connections and with respect to N-adapted frame (in this section, we consider for
simplicity only metrics with one Killing symmetry):

(i) Depending on signature, Eq. (40) is a 2-d D’Alambert, or Laplace, equation
which can be integrated for arbitrary source Υ(xk).

(ii) The system of two equations (41) and (45) is for three unknown functions
h3(xk, y3), h4(xk, y3) and φ(xk, y3) if a source Υ(xk) is prescribed. It contains
only partial derivatives ∗ = ∂/∂y3. We can integrate in general form and
define certain functionals h3[φ] and h4[φ] for any prescribed generating function
φ, φ∗ 	= 0, and integration functions and parameters, see below formulas (50).

(iii) Equations (42) and (43) are respectively algebraic ones (for wi) and contains
only first and second derivatives on ∂/∂y3 of ni. For any defined h3 and h4, we
can compute the coefficients αi, β and γ following formulas (44) and integrate
all equations for N -coefficients in general form.

We conclude that with respect to N-adapted frames (6) and (7) determined by
Na
i = (wi, ni) the modified Einstein equations (37) decouple into PDE with deriva-

tives of 2-d and 1st-order, and algebraic equations for corresponding coefficients of
metric.g This property can be proven in explicit form for D and contain additional

gVia conformal and frame transforms and introducing additional multiples, we can prove decou-
pling properties for various classes of metrics depending on y4, i.e. on all coordinated on a manifold
V of finite dimension. For simplicity, we omit such constructions in this work.
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information on f(R, T, F ) modifications of gravity via source Υ(xk) and induced
torsion of D.

In this work, we construct solutions with nonzero φ∗ and Υ(xk) because we are
interested to investigate possible nontrivial contributions from modified gravity via
nontrivial sources Υ(xk). Vacuum configurations φ∗ = 0 and Υ(xk) = 0 can be
studies by similar methods, see Refs. 20 and 25.

Constraints for the Levi–Civita connection ∇: For ansatz of type (39), the
zero-torsion constraints (15) can be satisfied if

w∗
i = ei ln|h4|, ∂iwj = ∂jwi, n

∗
i = 0. (46)

The first condition “brock” the decoupling property of the system (40)–(43). The
constraints of vanishing the torsion for ∇ relate additionally the N-coefficients with
h4. Nevertheless, we can solve such conditions in explicit form via additional frame
and coordinate transforms and/or re-parametrization of generating functions etc.
For instance, we may fix any convenient value for ln|h4| and use it as a generating
function in the system (41) and (45) in order to define h3 and φ. Next step will
consist in determining wi from algebraic equations (42). Equation (43) became
trivial for n∗

i = 0 which allows us to introduce any ni(xk), ∂kni = ∂ink, in the
off-diagonal metric ansatz.

In general, we can consider (46) as a class of nonholonomic constraints on inte-
gral varieties of solutions for D which results in subvarieties with torsionless con-
figurations for ∇.

4.1.2. General solutions for modified field equations

The h-metric is given by εieψ(xk)dxi ⊗ dxj , where ψ(xk) is a solution of (40) con-
sidered as a 2-d d’Alambert/Laplace equation (40). It depends on f(R, T, F ) via
source Υ(xk) (38).

As a second step, we integrate in general form the system (41) and (45), for
φ∗ 	= 0. Defining A := (ln|h4|)∗ and B =

√
|h3|, we re-write such equations in the

form

φ∗A = ΥB2, Beφ = 2A. (47)

Considering B 	= 0, we obtain B = (eφ)∗/2Υ as a solution of a system of quadratic
algebraic equations. This formula can integrated on dy3 which allows us to find√
|h3(xk, y3)| =

√
|0h3(xk)| + ∂3e

φ(xk,y3)/2Υ(xk). We can write

h3 =
0h3(1 + (eφ)∗

2Υ
√
|0h3|)2

, (48)

if the local signature of the term 0h3 is the same as h3. Introducing the value h3 in
(47) and integrating on y3, we find

h4 = 0h4 exp[(8Υ)−1 e2φ],

where 0h4 = 0h4(xk) is an integration function.

1450094-21

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

01
4.

23
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r 
Se

rg
iu

 V
ac

ar
u 

on
 1

1/
08

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 27, 2014 14:54 WSPC/S0218-2718 142-IJMPD 1450094

P. Stavrinos, O. Vacaru and S. I. Vacaru

The N-connection coefficients can be found from (42), wi = −∂iφ/φ∗, and inte-
grating two times on y3 in (43),

nk = 1nk + 2nk

∫
dy3h3

(
√
|h4|)3

, (49)

where 1nk(xi) and 2nk(xi) are integration functions.
Putting all terms together in (39), we obtain a formal general solution of the

gravitational field equations (37) in f(R, T, F ) gravity via quadratic element

ds2 = εie
ψ[Υ](dxi)2 + 0h3

(
1 +

(eφ)∗

2Υ
√
|0h3|

)2 [
dy3 − ∂iφ

φ∗
dxi
]2

+ 0h4 exp
[
(8Υ)−1e2φ

] [
dy4 +

(
1nk + 2nk

∫
dy3 h3

(
√
|h4|)3

)
dxi

]2

. (50)

Such solutions depend on generating functions φ(xi, y3) and ψ[Υ(xk)] and on inte-
gration functions 0h3(xk), 0h4(xk), 1nk(xk), 2nk(xk) as we described in above for-
mulas. This class of modified spacetimes are characterized by nontrivial torsion with
coefficients computed following formulas (11) using only the coefficients of metric
(and respective N-connection). In general, we can introduce additional parameters
and derive new symmetries because of existing Killing symmetry, see Refs. 20, 23
and 25. We can also consider that the class of solutions (50) is for the f(R, T )
gravity when certain Finsler like variables were introduced in order to be able to
decouple the field equations and get very general classes of solutions as effective 4-d
nonholonomic Einstein equations.

Constraining additionally the class of generating and integration functions in
(50), we construct exact solutions for the Levi–Civita connection ∇. We have to
consider solutions with 2nk = 0, ∂i(1nk) = ∂k(1ni) and wi = −∂iφ/φ∗ and h4

are subjected to conditions (46). Even for solutions with ∇, we get only effective
Einstein spaces with locally anisotropic polarizations. This is because the source
Υ(xk) (38) determines the diagonal coefficients of (50), with respect to N-adapted
frames. This results, in general, in effective polarization of the gravitational constant
as in (27). We can generate solutions for Einstein manifolds if we fix Υ(xk) = const.

Finally, we note that metrics of type (50) are generic off-diagonal, i.e. we cannot
diagonalize such solutions via coordinate transform. This follows from the fact that
the anholonomy coefficients, see formulas (8), are not zero for arbitrary generating
and integration functions.

4.2. Examples of exact solutions

Quadratic elements (50) parametrize formal integrals of a system of nonlinear PDE
for modified gravity. It may describe certain physical real situations if the gener-
ating and integration functions and parameters are subjected to realistic bound-
ary/asymptotic conditions with associated symmetries and conservation laws.
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In spherical coordinates uα = (x1 = r, x2 = θ, y3 = ϕ, y4 = t), a diagonal
metric

◦g = q−1(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ− q(r)dt ⊗ dt, (51)

defines an empty de Sitter space if q(r) = 1− 2m(r)
r −Λ r2

3 , where Λ is a cosmological
constant. The total mass–energy within the radius r is defined by a function m(r).
For m(r) = 0 we obtain an empty space with a cosmological horizon at r = rc =√

3/Λ. If m(r) = m0 = const and Λ = 0, we get the Schwarzschild solution. The
metric (51) is an example of diagonal solution of (37) in GR, when f(R, T, F ) = R,

Na
i = 0,D = ∇ and 1

2Υ(xi) = Λ = const, see source (38).
In this section, we analyze two classes of solutions related to possible f(R, T, F )

modifications of GR. In the first case, we construct metrics for possible off-diagonal
deformations and polarizations of coefficients of de Sitter black holes resulting in
ellipsoidal configurations. In the second case, the de Sitter black holes are embedded
self-consistently into certain solitonic background configurations.

4.2.1. Ellipsoid configurations in f(R, T, F ) gravity

The generic off-diagonal ansatz is chosen

ds2 = eψ(ξ,ϑ)(dξ2 + dϑ2) + h3(ξ, ϑ, ϕ)(eϕ)2 + h4(ξ, ϑ, ϕ)(et)2,

eϕ = dϕ+ w1(ξ, ϑ, ϕ)dξ + w2(ξ, ϑ, ϕ)dϑ,

et = dt+ n1(ξ, ϑ, ϕ)dξ + n2(ξ, ϑ, ϕ)dϑ,

(52)

for h3 = η3(ξ, θ, ϕ)r2(ξ) sin2 θ, h4 = η4(ξ, θ, ϕ)�2(ξ), local coordinates x1 = ξ, x2 =
ϑ = r(ξ)θ, y3 = ϕ, y4 = t, with ξ =

∫
dr/|q(r)| 12 . We get a diagonal configuration if

wi = 0, ni = 0, η3 = 1, η4 = 1 and ψ = 0,
◦g = dξ ⊗ dξ + r2(ξ)dθ ⊗ dθ + r2(ξ) sin2 θdϕ⊗ dϕ− q(ξ)dt ⊗ dt, (53)

with coefficients ǧ1 = 1, ǧ2 = r2(ξ), ȟ3 = r2(ξ) sin2 θ, ȟ4 = −q(ξ). In variables
(r, θ, ϕ), the metric (53) is equivalent to (51).

The ansatz (52) is an example of solutions of type (50) if the coefficients are
generated following similar methods taking 0h3 = ȟ3 and 0h4 = ȟ4.

The coefficients of this metric determine exact solutions if

ψ••(ξ, ϑ) + ψ′′(ξ, ϑ) = Υ(ξ, ϑ),

h3 =
ȟ3(1 + ∂ϕ(eφ)

2Υ
√
|ȟ3|)2

, h4 = ȟ4 exp[(8Υ)−1e2φ],

wi = −∂iφ/φ∗; ni = 1ni(ξ, ϑ) + 2ni(ξ, ϑ)
∫

dϕh3

(
√
|h4|)3

,

(54)

for any nonzero ha and h∗a, and (integrating) functions 1ni(ξ, ϑ), 2ni(ξ, ϑ) and gen-
erating function φ(ξ, ϑ, ϕ).
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For nonholonomic ellipsoid de Sitter configurations (for simplicity, we consider
rotoid configurations with small eccentricity ε), we parametrize

rot
λ g = eψ(ξ,ϑ)(dξ2 + dϑ2) + r2(ξ) sin2 θ

1 + ∂ϕe
φ

2Υ
√
|q|

2

× eϕ ⊗ eϕ − [q(ξ) + εζ(ξ, ϑ, ϕ)]et ⊗ et,

eϕ = dϕ− ∂ξφ

∂ϕφ
dξ − ∂ϑφ

∂ϕφ
dϑ, et = dt+ n1(ξ, ϑ, ϕ)dξ + n2(ξ, ϑ, ϕ)dϑ,

(55)

where ni (49) are computed in some forms ni ∼ ε . . . for corresponding coordinates
and values h3 and h4. The function

ζ = ζ(ξ, ϑ) sin(ω0ϕ+ ϕ0), (56)

for some constant parameters ω0 and ϕ0, we can state ζ(ξ, ϑ) � ζ = const, is chosen
to generate an anisotropicrotoid configuration for the smaller “horizon” (when the
term before et ⊗ et became h4 = 0),

r+ � 2 m0

(1 + εζ sin(ω0ϕ+ ϕ0))
,

where ε is the eccentricity. The generating function |φ(ξ, ϑ̃, ϕ) contained in (54)
is related to ζ(ξ, ϑ̃, ϕ) via formula e2φ = 8Υ ln|1 − εζ/q(ξ)|, for which a rotoid
configuration (56) can be fixed. We construct rotoid deformations of the de Sitter
black hole metric (51) if the function ζ (56) is introduced into the last formula
and define a generating function/functional φ = φ(q,Υ, ζ, F ). In general, such off-
diagonal deformations do not result in other classes of black hole solutions. If we
consider small deformations on parameter ε for which

h3 = ȟ3(1 + εχ3), h4 = ȟ4(1 + εχ4), wi ∼ εw̌i, ni ∼ εň,

metrics of type (55) describe stationary black ellipsoid solutions with coefficients
computed with respect to N-adapted frames, see discussion and references in
Refs. 23 and 20. If we restrict the integral variety of such solutions to satisfy
the conditions (46), we generate exact off-diagonal solutions for the Levi–Civita
connection ∇.

4.2.2. Black holes and locally anisotropic solitonic backgrounds

Another example of off-diagonal solutions with local anisotropies in modified gravity
can be constructed as a nonlinear superposition of the de Sitter black hole solution
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and solitonic waves. We consider a nonstationary ansatz

ds2 = eψ(ξ,ϑ)[dξ2 + dϑ2] − q(ξ)

1 +
∂te

φ(ξ,ϑ,t)

2Υ(ξ, ϑ)
√
|q(ξ)|

2 [
dt− ∂ξφ

∂tφ
dξ − ∂ϑφ

∂tφ
dϑ

]2

+ r2(ξ) sin2 ϑ exp[(8Υ(ξ, ϑ))−1e2φ(ξ,ϑ,t)]

×
[
dϕ+

(
1n1(ξ, ϑ) + 2n1(ξ, ϑ)

∫
dt

h3(ξ, ϑ, t)
(
√
|h4(ξ, ϑ, t)|)3

)
dξ

+

(
1n2(ξ, ϑ) + 2n2(ξ, ϑ)

∫
dt

h3(ξ, ϑ, t)
(
√
|h4(ξ, ϑ, t)|)3

)
dϑ

]2

, (57)

for local coordinates x1 = ξ, x2 = ϑ, y3 = t, y4 = ϕ and q(ξ) = q(r(ξ)) computed as
in (51).

Solitonic backgrounds with radial Burgers equation: We take φ(ξ, ϑ, t) =
η(ξ, ϑ, t), when y3 = t is a time like coordinate, as a solution of KdP equation,31,32

±η′′ + (∂tη + ηη• + εη•••)• = 0, (58)

with dispersion ε and possible dependencies on a set of parameters θ. It is supposed
that in the dispersionless limit ε → 0 the solutions are independent on x2 and
determined by Burgers’ equation ∂tη+ ηη• = 0. Introducing generating functions φ
determined by solutions of such 3-d solitonic equations in (57), we generate solitonic
nonholonomic deformations of the de Sitter black hole solutions. In general, the
new off-diagonal solutions do not have black hole properties. We can consider other
types of solitonic solutions. Such configurations always define exact solutions of
gravitational field equations (37) for D. Constraining the solitonic integral varieties
via conditions (46), we generate solutions for the Levi–Civita connection ∇.

Solitonic backgrounds with angular Burgers equation: In this case φ =
η̂(ξ, ϑ, t) is a solution of KdP equation

±η̂•• + (∂tη̂ + η̂η̂ ′ + εη̂ ′′′)′ = 0. (59)

In the dispersionless limit ε → 0, the solutions are independent on x1 = ξ and
determined by Burgers’ equation ∂tη̂ + η̂ η̂ ′ = 0. Introducing φ = η̂ in (57), we
generate solutions of (37) with angular anisotropy. For small values of η̂, we can
model 3-d solitonic polarizations of the de Sitter black holes.

Finally, we note that nonholonomic constraints and off-diagonal interactions
with terms induced from modified and/or locally anisotropic gravity (for instance,
via solitonic waves) may preserve the black hole character of certain classes or
“disperse” them into effective nonlinear vacuum configurations with polarized cos-
mological constants.
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5. Discussion and Conclusions

In this work, we have merely presented a flavor of a geometric formalism in modified
f(R, T ) theories starting from principles of general covariance and relativity for
nonholonomic deformations of fundamental geometric/physical objects and field
equations on Lorentz manifolds and their tangent bundles. The goal was to prove
a general decoupling property and further integrability in very general forms of
gravitational field equations. Surprisingly, such systems of nonlinear PDE can be
solved in general forms with respect to certain classes of nonholonomic frames for
(auxiliary) Finsler type connections. Imposing nonholonomic constraints on certain
classes of generic off-diagonal integral varieties, the solutions can be transformed
into configurations for the torsionless Levi–Civita connection.

There are two very different approaches to connect Finsler like geometries to
Einstein gravity and modifications:

(i) The first one is to introduce on (pseudo) Riemannian/Lorentz manifolds a
nonintegrable (nonholonomic) 2+2 splitting with a conventional fibered struc-
ture. Such constructions are very similar to those in Finsler–Cartan geom-
etry with metric compatible connections. A reason to introduce Finsler like
variables in GR is that we can elaborate a geometric method of integrating
the gravitational field equations. Here we note that it is possible to elabo-
rate also certain new geometric methods of quantization of gravity theories
using almost Kähler–Finsler variables (following respective gauge like, A-brane
and deformation quantization formalisms). In such cases, a Finsler geometry
is modeled via nonholonomic distributions as an auxiliary tool and does not
change the paradigm of an originally considered Einstein or modified gravity
theory.

(ii) The second approach is related to more fundamental locally anisotropic mod-
ifications of the concept of spacetime and gravitational interactions. They can
be motivated by certain theoretical arguments, for instance, in quantum grav-
ity, modified dispersion relations, and theories with possible violations of local
Lorentz symmetry, etc. Roughly speaking, a very general class of modified
theories of gravity have to be elaborated on tangent bundles of Lorentz man-
ifolds when certain geometric/physical principles are used for extensions of
GR to Einstein–Finsler type gravity theories. Such models may play a physi-
cally important role because they accept an axiomatic very similar to that for
the Einstein gravity, such theories can be integrated in very general form and
there are known well defined methods of quantization of such models. Certain
anisotropic solutions from Finsler gravity seem to play an important role in
explaining locally anisotropic effects in modern cosmology. On tangent Lorentz
manifolds, the gravity models are for an extra dimensional spacetimes (eight
dimensions) which can be reduced to “effective” 4-d metrics via osculating
procedure.
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In another turn, the late-time acceleration of the universe and dark
energy/matter effects are intensively studied in the framework of theories with
modifications of Lagrange density, R → f(R, T, . . .). Various such models with
exotic anisotropic states of matter, modified gravitational and matter field inter-
actions, torsion etc. were elaborated. The corresponding field equations are very
sophisticated nonlinear PDE which request advanced analytic and numerical meth-
ods for constructing solutions and analysis of possible physical implications. One
of the main goals of this work is to extend the anholonomic deformation method
of constructing exact solutions in Einstein and/or Finsler gravity theories in such
a form which would allow to integrate in very general forms certain classes of
f(R, T, . . .) gravity models. From a “modest” pragmatic point of view, a Finsler
generating function F is just a formally prescribed nonholonomic distribution on
various spacetime models which allows us to decouple and solve physically impor-
tant field equations. But the method may be also formulated to encode possible
modifications from locally anisotropic gravity models on tangent bundles. Conven-
tionally, various geometric and physical assumptions for modified gravity theories
are denoted as f(R, T, F ). We proved that via nonholonomic frame transforms and
deformations we can model a f(R, T, F ) theory as a f(R, T ) one, or as an effective
Einstein, or Finsler, theory.

In the present work, we investigated generalized gravity theories with arbitrary
coupling (including anisotropies, parametric dependencies and nonholonomic con-
straints) between matter and geometry. Using geometric and variational methods,
all adapted to possible nonlinear connection structures, we derived the gravitational
field equations. We considered several important particular cases that may present
interest in modern cosmology and astrophysics. We concluded that off-diagonal
terms of metrics, modified matter and time dependent terms in generalized Ein-
stein equations play the role of effective cosmological constant, exotic matter, effec-
tive torsion fields, anholonomic frame effects, etc. For well defined geometric and
physical conditions, such effects can be modified by nonholonomic distributions on
Einstein manifolds and their tangent bundles.

We studied the modified equations of motion of test particles in modified
f(R, T, F ) theories and evaluated possible contributions of effective extra-forces
with locally anisotropic terms. There were formulated the nonholonomically modi-
fied Raychaudhury equations on tangent Lorentz bundle. Certain Newton limits
with corresponding corrections were computed. Using perihelion procession, an
upper limit to extra-acceleration and anisotropies was obtained. As an explicit
example, we took the de Sitter black hole metric and deformed it into new classes
of exact solutions with rotoid symmetry. The effective source (an anisotropically
polarized cosmological constant) contains contributions from possible modifications
of gravitational actions and/or from Finsler like anisotropies. We provided some
examples when black hole solutions are modified (“dissipated”) into off-diagonal
vacuum configurations with complex locally anisotropic structure and effective cos-
mological constant.
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We conclude that the predictions of f(R, T, F ) theories could be very differ-
ent from those in f(R, T ), f(R) and/or GR theories. Generalized principles of
covariance and relativity may state certain conditions of equivalence and mutual
transforms of various models. The study of these theoretical issues and related
phenomena may provide some specific effects which may help to distinguish differ-
ent gravitational models. In our forthcoming work, we shall explore in more detail
such theories by elaborating certain models of modified/anisotropic cosmological
evolution and possible dark energy/matter effects.
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