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A generalized scalar-tensor theory of the Finslerian gravitational neld is con-
structed on the basis of the fibered bundie of a base manifold and consists of two
G-numbers (Grassmannian noncommutative) y", y~, playing the role of fibres. In
the framework of our approach, we study: the connection structures, torsions, cur-
vatures and the gravitational field equations derived from variational principles of
the appropriate Lagrangian densities. :

"1. Introduction

Scalar-tensor theories were first introduced by Jordan [6]. In these theories, the
gravitational “constant” is not a constant, but a scalar component of the gravitational
field. Such a consideration constituted a subject of a great deal of interest some years
ago. Brans-Dicke’s scalar-tensor theory has a dominant position amongst them [3]. This
theory is identified with the conventional general relativity based on the Riemannian
geometry in the physical interpretation of the metric gy, and differs only in that a new
scalar field ¢ enters the gravitational field equations, which is coupled with the mass
density of the universe [12].

The field equations corresponding to scalar-tensor field theories are usually obtained
from a variational principle, in which the Lagrangian density is a function of g.x and its
first two derivatives as well as a scalar field ¢ and its first derivative ¢ ...

In addition, recently a theory of noncommutative geometry has been introduced and
developed by Connes [4] in the theoretical framework of a unified description of space-time
geometry with quantum theory.

In the framework of the Finslerian approach, G. S. Asanov and H. Rund [1, 2, 9] have
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studied the problem of the variational principle on general relativity i a sufficiently
generalized form. In the present paper, our basic idea is to give the connection struc-
tures, torsions, curvatures and the gravitational field equations derived from a variational
principle. The noncommutative structure on the fibered bundle, which is dominated by
some components of the torsion {cf. (3.3d)) of the Finslerian gravitational field, is being
studied without using the noncommutative geotnetry.

‘This consideration, as we shall see in Sections 2 and 3, leads us to a form of a scalar-
tensor theory of gravitational field, more generalized than Brans-Dicke’s because of the
contributions of two independent noncommutative G-numbers yT, vy, which represent
the fibres. In this case, the elements of our space are expressed in a form of independent
variables ZM = (z#, 4T, y7), p = 1,2, 3,4, and the scalar field ¢ of Brans-Dicke’s theory
intrinsically enters into the metrical structure of the space.

Therefore, it is legitimate to ask for the commnection structure, the metric form,
the scalar curvature and field equations in the framework of a form which is analo-
gous with the one regarded by the authors in previous papers about the spinor bundle
SE(M) = M x C** with (z7,£,,8%) € S (A1) [10] and the second order deformed
bundle T (DF) constructed locally by X4 = (7,9, 4" = A) [11]. By utilizing the
vector bundle consideration [5,7], the Finslerian gravitational field can be regarded as
the unified ficld over the total space of the vector bundle whose base manifold is the
(z)-field and fibre at each point x is the (y)-field. '

Consequently, we can study the Finslerian gravitational field based on the geometry
of the total space of this vector bundle.

2. Connections

In the following, we shall first set the concept of connections of the total space of the
tangent bundle with a local system of coordinates (xt,y') € TM in the form in which
it was developed in [8]. Next, we shall define the connection structures for the case
where the bundle has independent variables ZM = (z®,y",y™), instead of the vectorial
variable y. Here, y™ and y™, as we mentioned in Section 1, represent two noncommutative
G-numbers.

A local adapted frame on the tangent bundle TM is composed of (3%5;, (gi) and its

dual basis (da®, dy'},

i

o 50 .8 b P

where ZM = (2%, y') with M = (a,i) = 1,2,...,8, and N! denote the nonlinear connec-

tion representing physically the interaction between the (z)- and (y)-fields.
The metrical structure in this case is given by

G = GundZMdZY = gupdz® ® dz® + gijéyi ® 8y, (2.2)

where Gy = (gas, gij) is the metric tensor.
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The connection structure and the covariant derivative for an arbitrary vector VM =
(Ve, V') have the form

Va/aZN “é"fz?“j,}" = FJ\[ZrN“a““%’f ) (2-3)
with Iy = (L, Lk, Chis C5 ) and
Ve = gj + L, VP,
Ve = %Zj -+ Cgkvﬁﬁ
-
Vil = ‘Z‘y’m ol

We assume that the connection is metrical, i.e. gogy = 0, daple = 0 and g5, = 0,
gij lk = 0.

To make some use of the above case of connections in our paper, we can bpecx,ahze the
connection structure {2.3) by taking Z M = (2% 4%} as the independent variables, where
30 is an independent scalar. Then the connection structure 1s reduced to

FMN — (LB'yaLG’v?CBO%C )
namely 7,7, k, ... = 0 in (2.3}, and the metrical structure takes the form
G = gaadz® @ def + goody" ® 6y°, (2.4)

where 6% = dy° + N2dz*,

Now, by generalizing the previous description of the bundle with two noncommutative
G-numbers y™, y~ {internal variables) playing the role of fibres, we develop the geometry
of this bundle without making use of noncommutative geometry {4}, as we mentioned in
Section 1.

The adapted frame is set as follows:

a — d -_8 g a
oZM (5;‘:0‘ o E);r:“ Nﬁj Gy T NOt Gy~ ! Dyt Gy‘) ' (25)
dZzM = (dz®, 6yt = dy*t + N da*, by~ = dy™ + N, dz®).

Here, we have introduced two kinds of nonlinear connections, N and N7 .
Concerning the adapted basis (2.5), the metrical structure is given by

G = GundZMdZV = gopdx® @ dz® + g byt @Sy + gy @y, (2.6)

where we have put got = gin = 0, go— = go =0and g, = ~g_4 =0.
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The connection structure is given by

J N 0 .
Vosozs 5oar = Diw 575 » KM ={a,8,...,+ —}
with Fﬂj}K = {Lﬁd,CﬁyEﬁ_ .
) ) i} d .0 J d
o p L Ussee e = LS Vssspe— =L (27
V(Y/(S. 6:5’8 Ao Sy 8/6 8y+ 4056@,_;. §/6 Byw o ay_ ( a)
5 g 0 d .0 Iéj G,
e = (P —— ¥ S O T v/ e = (O e (27D
Vojout G =Cargn» Vorowt g =Cragyer Voo gz =Corgymr (BT0)
) 5 0 3} L 0 0 _ 0
Vorn o = BP0 Ny g o = BT Vs, e =BT o (27c
90V §pu > Saf o/oy Ayt T Oy 010" By Sy~ (2.7¢)
For an arbitrary vector VM = (V& VT V), the covariant derivatives can be defined
as follows:
sV ‘
o oTe 8
v S CL
‘ av T .
vl = & v
Oy~
etc. Here, the metrical conditions gogi, =0, g4y =0and g _[_ = 0 are assumed.

3. Torsions and curvatures

We assign the torsion tensors and curvature tensors for the case of our vector bundle.

The torsion tensor field is given by

T(X,Y) =

VxY = Wy X — [X, V],

for every differentiable vector fields X and Y defined on the bundle (X,Y € X(T'M)).

Consequently, we have the relations,

, ) )
1(5;;@5;‘

) 0 5
et ST,
B Gy o oyt T tap oy~
4 o d
AT L
at gy T largE T ek T
L Tﬁ£L+TiJL,
“T ez YT Oyt T oy (3.1)
T ¢ T+ a LT a e
Ty T eyt Tt oy
¢ .0 d
) Yo S S -
T~§~+ Sy + {Z+~%~ 3y+ + T—%—+ 83}* ’
) .0 d
(A R s
T + oy N T Oy~
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The relation (3.1) can be written in the equivalent form

9 8 8 8
Vojoz gow ~ Voo™ G T | 7m0 G N |

(3.2)

8 _ [ s _8_ WE’EL}
8z T LUsge ayt o Gy

The comparison between {3.1) and (3.2}, after straightforward calculations, gives us
the following relations for the torsion tensor components:

where we have put

_ o pt : T :
T(z;f}’ - L(ZB - Lgoﬂ Tozﬁ - HR,B&’ T{yﬁ - WV,SOH (338‘)
N + aNZt - BN
T = Cofw‘H Toy = Byt LL: Ty = Tyt (3.3b)
Y o Y + o ONd - 7~ anNg 2 9.
:F(_t»— - AEMa’ TC{* - W? Tcym- - '—Lfa -+ 8y (33(’)
I =0, Ti_=-ET_, Tr.=-C_,, (3.3d)
04 =90, TI =Cly =0, . =0, (3-3¢)
T7_ =0, T =0, T =0 (3.3f)
For the derivation of the above relations, we have taken into account the brackets:
5§ . 8 ]
R e PP : 4
{533"‘ ’ 5@8} P Oyt * Vs Hy— ' (3.4)
d o | |9 o L 10 a1 9 A N g | 0
oyt bz | By ezl T Oyt ay— | oyt oyt Oy oy |
+ - SN I
where we have put R;B = %i;r—f% — %—g%, Va_ﬁ = g—ﬁ— e %%g».

In the relation (3.3d), the two last terms, Ti%“ and T~ embody the noncommutative
structure. The connection has no torsion, if and only if all the coefficients (3.3) are equal
to zero.

With the above mentioned connection coefficients, we can associate the curvature

tensors with the adapted basis (3/02") = Xy = {Xa, X, X}, Xo = s, X = 5%%,
X. =52
R(Xp, XnN) XL = Rinu Xk,
Riwws = Xl = XnTHy + T by — TiTan + Tz Wiin,
where WZ,, are the nonholonomy coeflicients in the local basis Xz,
(X, Xn] = Wiy Xz.

Twelve kinds of curvature tensors appear,

REun =(RE. s RE, . RE.  RE. ), (3.6)

Lo
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where Rmﬁ (]?Mﬁ, R+aﬁ,R a,@)’ etc. The explicit form of these curvatures can be
derived in a similar way to that developed in [10].

We shall adopt the case where all the coeflicients of torsion tensors are equal to zero
and goi = gio = o = oo = g4- = —g—4 =0 (cf. (2.6)).

From (3.6), the Ricci tensors are given by

Run = Rirn = (Rapy Raws Ro—y ooy Ry, =R, ~ Ry, ~R_o), (3.7)

or in the form -
— e + -
RMN - {RMNaa RMNm,u RM‘]\F'W}t

where we have put

N SLS 613 i}
MNa = 5§¢ i AJ/{: + L% o Ly = LS N Lo
ac, acT, . N
RJTJN+ = a;iN - anyw;h + K+OﬁN CKNCM~=
_ 0= OEL_ -
Ryn. = Q;f.N T Ty +Eg_Efin — EgnEn ..

The scalar curvature has the form A
R = RunG"" = Rapg™® + Risg™ + R._g~~ = R+ R 4+ R, (3.8)

where in (3.8) we have assumed Gyy = (g5, (2%), gy (z®), g-—{2?)), with g 4 (2%) =
g-_(2%) = X*(z®) (AM(z™) # 0 is a scalar function).

It should be noted that even if R is the scalar curvature of a Riemannian manifold
constructed from gops, the scalar curvature R constructed from Gy differs from the
Riemannian one because of the contributions of the internal variables g4, g— . So, as
we shall see in Section 4, the above-mentioned scalar curvature R becomes more general
than the one in Brans-Dicke theory.

4. Gravitational field equations

It is usually assumed that the field equations which govern the behaviour of the
field are identical with Euler—Lagrange equations of a given problem in the calculus of
variations. In our approach, we shall construct the Lagrangian scalar density, which is
supposed to be invariant under the coordinate transformations.

In the following, we shall consider the Lagrangian of the type

L=L{¢;¢a; Cas’ Jop i Jaby; Japs) . (4.1)

with (z%) = A(2%) = gy (2%) = g (). |
We shall derive the Euler—Lagrange equations corresponding to {4.1). These will be
given by the variation of the action integral,

6T = 5/ Ldz™) =0, (4.2)
I
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where D is the region of integration and dz'™) = dg'. . dyTdy~. In our case, the
complete system of Euler-Lagrange equations consists of the two sets of equations:

6L 9L & [ OL n &2 oL _0
Sp  Bp  Ox% \ dg, ox2drt \ Opup)

iL aL_,,a<aL . g ( L N\ _,
0gop  O9ap 0T \ Oaps x782% \ Ogogs )

(4.3)

where
' Oy . P
P = Hxa’ PaB = e ggh
. 89aﬁ o azgaﬂ
9oy = v 9695 = G

In order to associate the explicit form of the Buler-Lagrange equations (4.3), we

assume the Lagrangian
L=+/|GR, (4.4

where G = | det{G ), /G| = ©+/]g], 9 = | det(gag)| and R represents the generalized

form of the scalar curvature and is given by (3.8) and ¢*?, g* "= g7~ = 7! are the
inverse of gog, g4t = g~ = ©.
By direct calculations, the Ricci tensors yield
D= LT a1 -1 -1
Raﬁ - Raﬁ u Laﬁ(zo,,u’wo + ’"2"{10@{:0,;3{:0 = Paf¥®
-~ N 1 1 1 {4.5)
Ryp=R__ = ‘z"ga”'gﬁygaﬁ,m@,u - “2“9“” (S‘%uv + é‘&u‘ﬁ%v) ) |

with g, = »B@f;? and R,p is the Ricci tensor constructed from (symmetric) go3. Conse-

quently, the Lagrangian density (4.4), because of (4.5), can be written in the form

: X 1
L =+/lgl (¢R — 29“’8904@5 -+ Zga’@@,a@,ﬁ/‘ﬁ) ) (4.6)

provided that the identity g, = gg™”? Gap.p 18 taken into account. In the above relation,
Qiap means the second covariant derivative of ¢. A comparison of (4.6) with Brans—
Dicke’s Lagrangian reveals some similarities. The first and third term of (4.6) are like
those of B~D theory. By virtue of (4.6), we get the form of derivatives:

1 .
& = L0“§X/|Q‘Qaﬁ@,a@,ﬁﬁp 2,
& = /lglg*® (2L55+ 55¢ae™"),

iji/\ - wzmgﬁﬁj

123 8LO (a4 < (e 4.9 1 -
1 = g+ (g gh — 297 ™) (%Zﬁ% + 5Qasr - 2%)
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- |g‘ gcxﬁ (g’YﬁLA{-} =+ 9’7 Ioz,@) Py V (4?)
OLg

ﬂﬁ)\,u — ‘Pa - + \/—v(,Dﬁ (gm,ug’y}\ "FQ'/\HQ T gmAg'y,u,) ?

ESWT
Hn}\,,u,v = 8LO :

8QI$A,;LV
where we have put
b0l g L ga_ 0L
O el ZITP
H&,\ : oL KA oL I]-rﬂ)\,mx — oL
395)\ ’ 3.9'm\,u. 7 89’&)\,;1,1) ‘

and Lg = \/—_ H.

Substituting (4.7) into (4.3), we obtain, after straightforward calculations, the grav-
itational field equations that govern the behaviour of the fields ¢(2#) = g4 = g,
GaplxH). So, we get the equations

5L 1 |
i Vil (wRJr -ig“ﬁso.,aga,,ego"l - g“ﬁg%ﬁ> =0, (4.8)
5L
o = Vgl E™ + \/— (% g™t = g 9"") paps
“'”\/!?%ﬁ( gt — g"P g ) =0, (4.9)

where B = R* — % g R.
In the more general case, if we use the relations (3.5) for the curvatures, we shall get
the Ricci tensors Kop, K4, K. in the following form:

: - 1 (BN ON;
ch = Roz + TP o -1 £ £
e gt 5Pa¥ (6y++8y— ;
H 1 [13% 8NJ
K+"§“ - R-’r+ =+ 59 25 8;*‘” ’ (410)
K. =R ! Ny
T —_ 29 (PV 8@""” 3

where Ralg, R.., R__ are given by (4.5).
Conseguently, the generalized Lagrangian L will be given as follows:

_ 1
GIGAP Kap = +/1910" (Rag = 207005 + 59 Plagis)

aNg” aNg 1
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or, taking into account (4.6), the relation (4.11) is written in the equivalent form:

..{,.. .
ONy _ON;
Syt oy= |-

L=1L+lglg"®¢., ( (4.12)

The field equations produced by the variational principle of the Lagrangian L entail
for the first set of equations

@ el . QD;Q:@;B & o 3N”‘” aN -
V0glg™ (Ras = =75 + 55 57) = 52 [ l9lg*” (@f + ayf =0. (413

The second set of equations is taken into the following form:

x 1 V. gl dy ONT N
; - aff _ pof e ur Hoo L - _
0/ 1g] (QR.g R ) R A A 5y_) (4.14)
v lgi cp G Bu o 8(,0 aN;f aN;;
Yl ! e ; =
2 (g g taTyg ) Jzv \ Oyt Gy~ 0.

The equations (4.14) give the generalized form of the gravitational field equations in
the considered fibre bundle M x {y™} x {y™}.

Discussion

In this paper, we developed a generalized scalar-tensor theory of the Finslerian gravi-
tational field in the form of the unified description of the field. This standpoint was based
over the total space of the fibre bundle, where its two fibres y™, y~ play an essential role
in our approach. The two G-numbers y™, ¥y~ were introduced in order to give rise to the
noncommutative structures in the metrical and connection structures of the gravitational
field. Those noncommutative structures have not been considered within the framework
of Finslerian fibre bundle. :

Concerning the physical meaning of y™ and vy, we can consider the following exam-
ples: y* and y~ can be compared with the discrete coordinates in the two-dimensional
discrete space, which are introduced to consider a unification of the gauge and Higgs
fields; or ¥y and ¥y~ can be two different kinds of (isotopic) spin components associated
with its point, which show their own intrinsic rotations; or ¥ and y~ can be regarded as
two spinorial components of one {two-dimensional) spinor, which obey their own intrinsic
spin transformations.

These interpretations are all related with the noncommutative structures oi our vector
bundle mentioned above.

In a more general point of view, these two G-mumbers y* and y = are necessary to
consider the supersymmetric aspects of the gravitational field.

Also, the gravitational field equations were derived in the framework of a sufficiently
generalized form (4.9) or (4.14) by virtue of the variational principle, as an outcome of

this approach.
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