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VARIATIONAL PRINCIPLE TO THE GENERALIZED
SCALAR-TENSOR THEORY OF GRAVITATION I

PANAYIOTIS C. STAVRINOS AND SATOSHI IKEDA

Abstract. An extension of the previous work to the Finslerian Scalar-Tensor Theory of the gravitational

field is being studied {Stavirnos and Tkeda). A generalised Brans-Dicke theory of gravitation is constructed on
the basis of the fibered bundle with the metric structure.

. & = gapde® ®dzf + @(Sy* ® Sy + 8y~ ® ByT) + 2byT A y”
of o base manifold and consists of two non-commutative G-numbers (Grassmannian) or scalars y+,y~ playing
the role of fibres,

In the framnework of our approach, we study : curvatures siid the gravitational field equations derived from

nsities.

a variational principle of app pg’_igte L sities. )
1. Intrd’d_nfé;ti_ evious paper presented by us in the 30th International Conference

o ‘Mathematical Physics held n Torun, May 2630, 1998 (Stavrinos and Tkeda) we developed

& new generalized scalar temsor theory of the Finslerian gravitational field on the basis of
the fibered bundié. In that approach we considered a base manifold and two G-numbers
{Grassmannian) non-commutative y+,y~ playing the role of fibres.
In this paper our basic idea is to give the proper Lagrangian in a sufficiently generalized
, form. ‘ :

& non-commutative structure on the fibered bundle is dominated by some components of
& torsiol 1695, Tkeda, Stavrinos and Ikeda) of the Finslerian gravitational field. It is
studied without using the noncommutative geometry.

By utilizing the vector budle consideration, the Finslerian gravitational field can be regavded
as the unified field over the total space of the vector bundle whose hase manifold is the (z)-field
and fibre at each point z is the (y)-fleld. _ '

The inner product of two G-numbers which is a scalar Geld plays a dominant role in the
metric structure of the budle, analogous of the scalar field ¢ of Brans-Dicke’s theory (1961).
This field that is introduced in our bundle M x {yT x y™} influences the external form of the
field equations. :

The form of connections and torsions which are used in the present work have been defined

in the previous paper (Stavrinos and Ikeda).
In that consideration the adapted frame is set as follows.:

9 _ (s 8 F -8 B8
5ZM“(W=W_NJW—NQW’W’W) (1.1)
dZM = (da®, 6yt = dy* + NJda™, 0y~ =dy™ + N dz™)

where, we introduced twdkinds of non-linear connections, N and N .
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The copnection structure 8 gviven by

5o
_.—_--—‘ = N i o -
v';f}( rMKéggN KaM {aﬂ@a y }
with Tl = (Dhras it E-}-
: 8 6 -8 b - a
Vﬁ-s—-—" = Lﬁa 5P V i Byt = L+aua—-y-_'; V&s?ﬂ: = L__a—é—-y-: (1.28)
a 8 a8 o -
V%”ﬂ?*' ".C“’Bnrf* VE‘E?EF”C“H'BF V2 By =Cory (1.20)
3 b . . B & Fij
v“"“ﬂ; = Bf-5:F axf-* Vot oyr Bi-ayr V—a-f: B B -5F (1.2¢)

Tor an arbitrary vector yvM = (V9 y+,V™) the covariant -de:ivatives can be defined 88

follows -

o . b p———
Y &Y

Vi = v L ch Vv - (1.3)

i
+
ixy
4
<

vi-

Here, the metrical conditions

Japly = 0, g++\+ =0 end g—"’“—“ =

were sssumed.

- g, Torsions and curvatures- We assign the porsion tensors and curvatures for the case

of our vector pundle. The torsmn tensor field is given by

) =Vx¥ -V X X, Y1

for each differentiable vector fields X .Y, which are defined on the bundle (X YedX (T, M)
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have for the components of the torsion the following relations

& & a _ &
T (35535?) Teesa Sm + Tap g T Tab 5y~
8 & ) . 0 _ 0
T (5 7n) = T " Toeyr VT ay
8 &\ _ § 4 D _ 0
1 (gpmm) = T T e
a @ 5 8 8 2
0 8N _m LT T
T (5@"’ 3y+) T T T3y 78y
5 0N oo 8 . ms 0 . p- 0
(o 5 = T T Ty T
/9 8N -y b 0 . &
T (gy“:’, 5;:) =17 e + TT_ BT +T7. B
The explicit forms of (2.1) have been given in (Stavrinos and ITkeda)
- BNF _ aN;;
Toy = Cot Tow = By - L, at = Thgt (2.2b)
' - ANy} 8Ny
= —F7 o <4 - - o
T =-E’, ' T, Ba- T =L, By - (2.2c)
T7_ =10 T =-EX, Tr. =024 (2.2d)
T{y =0 Ti. = Ci, =0 T74 =0 (2_»23)
Tr_ =0 TF =0 T = (2.26)
For the derivation of the above relations, we have taken into account the brackets :
§ 671 p+ 0 _ 90
[&Ea ’ '5"55,'3' = Ryp Byt + Vas By
8 ¢ 8 & ] . )
[ 58, = 57| = *3)
s 671 (8 &1_[2 8l._
57 5|~ Loy Byt L8y oy -
Nj 6N~ N7 N
+ - H o
1ere we have put R g = m&cﬂ 5 B = e T G2l
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In the relation (2.2d) the two last terms, T*, and T, represent the non-cummutative
structure. The connection has no torsion if and only if the coefficients {2.2) are equal to zevo.

With the above mentioned connection coeficients we can asgociate the curvature tensor with
the adopted basis Xar = {Xo, X4, X} K = e Xy = 63 X = '67;?:'

KEyss = XoTEu — XnTfn + TEnTu - T Ty +TEz Wi 24
where W§,, are the non-holonomy coefficients in the local basis X
' Xa, Xn} = WhnXz
Twelve kinds of curvature tensors appear,
Ky = (KK Kfp Kl KIS ) (2.5)

where K faﬁ = (Kgaﬁ, Kioz,ﬁ? K _’_aﬁ) ete. The explicit form of these curvatures can be cierived:
in a similar way to that developed in {Stavrinos and.Ikeda)..
The Ricci-tensors are given by _
Kpinw = Khpn = Koy Kos Komy o Kymy =Ky =K 4y = K—a) (2.6)
or in the form
Knaw = {Kuns Kunt, KunZ}

where we have put

o 6LiJN 51’%/1«1 Fe K re 7K 1w VE
Kung = iex  3zN T e LK w—LinLita+ LizWiia
act acy,
Kuni = _é%!%ﬂ - —”59,”]\;{:—4“ + C§+C§JN ~ CEnChy + ChizWis
- OE;, OB, " _ _
KynZ = 5;“_” - —-é;“fr + By By - EgnEip. + ByzWh-

The scalar curvature has the form

KX = MMNGMN = Kaﬁgaﬁ + K++g++ +K._g "

=K+K®+ES : (2.7)
6C_—y BL_"g _ BN? _ BNg :
- " —-C_ o BT e 2.8} .
K-"va bz ay+ C-"+ gt E By~ (2.8)
_ _ _ . ~
Koo = 0E."_ _OL-"a _, - ONg _p - 9N (2.9)

s By By Ay
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8Csty 8E,*_

+ =

BaTom = 5= oy*
. - _ BC.___“,.)_, BL;_+

O

Kitpp =K Tay =K o =K Top = K.t =K " .=0
- K,{,“_-... =K_ " __= K_++... = K+_+., = K._+._+ = K+m_+ =0

The components of Ricei tensor with respect to a basis

M=\ §gn’ Oy+ By~
of a local coordinate system of the pundle will be given by

§La"s  6Lo"s

Kog = ~5ra ~ "5zP + Lo” Lo — Lo pLtp
+Ca'u -+ V,B+,u. e Empwvﬁ——p '
BLite 60,4 . 4 ON& ., ONg
oL_~, 6E.~. . . ON} aNz
Koo = e e +C- oy - E- By
SCH dL.*
Ko = 5;#+ - E?:;;:MJrM +Ca”+ LMy ~—La“‘uC,,*‘+ +
ONF BN
Oty ~ By
SE.2 AL H
Ko = _E'fff - ﬂéjfﬁ  Eol LPy~ Lo~ L.* uBJF -
aN7 N7
— I Mo P B
Oa -+ ay_, EC!»— Bym
. o OBsto _C:ts
— B’y+ 6@‘“
ac.—, 8E_"_
Kb = % ~ oy
Ko =Kp=

15

(2.10)

{2.11)

(2.12)
(2.13)

(2.14)

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)
(2.20)

(2.21)
(2.22)

3. The metric structure. We consider a metric §ap that is presented by a matrix of a

block-diagonal form :

s = (%5 Q)

(3.1)
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~ where . X
. . A= (s}wr A )
G-+ §——
the mairix A has the form A = i " ;{;) = i j};) The metric gaa represents the usual
one of the 4-dimensional space-time. Consequently, we will have the following components !
Gis = G- = (@) - (3.2)
o = G-t = P(2) (83

ot = G = Gt = fua = 0 (3.4)

Under these circumstances the components g 88 well as the scalar felds ¢, 9, are
independent of yT,y " these depend on the space-time coordinates o= (0,1,2,3)

So, we generally have

8G4sp _ 0daB
V9AB _ 28T () -
iap 22 =0 (35)
The inverse of jap is written in the form e
~1
- Ga
-8 2) 9
where ' o e
ar= (500 )
| ( 5t gt
¢he metric tensors §7F, 77, g+, g, will have the form
. d 3.7
g § T (3.7)
gt = 5 = o (39)
w? -+ P? : '
ga-i« — §+a - ga—— = é--cz =0 . (3‘9)

The metric structure i this case because of the previous relations will take the form :

& = gapda® ® daf +p(6y" ® Syt + oy~ ® Sy™) + 20yt A SYT (3.10)

with the determinant G = det(§as) = det{gag), det(4) = g(¢* +¥7) # 0.
4. The variational problem. ‘

" 4.1 The Lagrangian and the fleld equations. QOur Lagrangian has analogous forx
of the Lagrangian £ = &g{g"‘ﬁRaﬁ, that leads to the Einstein equations and describe the
gravitational field for the empty space of a Riemannian space-time. The counterpart Lagrangial
of our vector bundle N = M x fy*} x {y~} takes the following form :
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I/ |G|GAP K ap = \/|IGIK - (4.1)

where K = GAB Kap, and Kap = Kag+Kiat+ Koo+ Kou + Ko + K. Using the variation
of the Lagrangian :

Tp?aY

in which the variables G4p,T 224A, é—%%%& are considered independent each other (Palatini
method) we can-obtain the gravitational field equations. :

The integral of action [ is given by"
LINEIN
= T ar —i 4.
I fDL(GAB,FB 5 55w ) | (4.3)
The variation of the integral I
§1=35 / Li(Z) =0 (4.4)
b .
After straightforward calculations we get

5T = / (A#B5G 54+ QA BTN 5) 67 (4.5)
D

In order to acquire 8I == O for arbitrary 8Gpa, ST 4Mp, we must have the following
conditions : ' -
CAAB = and QB =0 (4.6)
where

AAB = KAB %KGAB =0 (4.7)

Q4u® = VICIGNTNT 1 + Vi (\/E_GTiGAN) 5MB -V (\/@GAB> =0. (4.8

The above condensed form of the equations represent the gravitational field equations in a
sufficiently generalized form of our space and is valid for arbitrary choice of a metric snd of
‘connection. _

The explicit form of the components of QAP after long calculstions is given by the
following relations.

e % 6/l el §
Qe = w Sro >~¢2+¢2%V(p2+¢2
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]
TF TP ()

oN-\  ONZ
+\/ 8 o (L B 3y+> way_] (49
. LV (19 Vg 8 s
. Q+ - = 2+¢2 e 2+¢25$°‘ <P2+¢2

' ('0+1'b sz( 2+1f)‘">

aNg SN
- /@Jf_i@b? [ v a2 (La“# Lit, Byf )] (4.10) -

,/‘ 5
Q=+, =[v? +9% an V1| ig‘ +Vlgle™ 5 9? + 42
Tl lo? 4 122 o wc’)Nﬁ’

+gLet,) 1D

..!,

, 8N
Qt- = Viglle® +92)9™ 5= (4.12).
. ) BN__
Qe = VR 5 | (4.13)

: ’ 84/
Q- = Ve ¥Rt ]g + !gg"‘“-g-—— 02+ ¢*

8N '
/1012 + %) | Vug™ — g™ Ly + gt gL T ) (414
dy

Qﬂw—— 1 (el 3\/‘? 52
vz

Ayt
e A
o 5 . |
e e s
x/l?i g . - ,:
Vel oot 88 - CptL) — w( BT L85 ~ Es” - 15
+W[@(++ﬁ 1) = W(ELT -0 5% )] (4d1
(/A2 B
Q ﬂ——'w2+w2(¢3y+ ~ P )6 'd‘
It

TR e
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i [wgg-;(x/wﬁ +9%) + so-ggr(\/apz + W)} 55

? -+ 2
8 ¥ 9 °
igl{e® ﬂj¢2) {3y+ (5@2 +qp2) * 3y‘ (902 i'!/ig)} 55

+% [ (C-7 485 ~ Cs%4) = (B~ -85 — Bg=..}]

g Y
Q"ﬁv=\/m(g”55 ﬁ—gﬁ ﬁ)
-
[ L () e ()]
T TV (Vug™ o - Voa) |
lgl(? + 42 (0% L + g% (1P — Ly — Lu?dsh)]
R N e V)
+V1gi{e* + ’J"? Y (0%FC T4 + g% F 4~ Vig™P)
@ = /TR N e (ST
+Vigl(w? + wZ) (9 “BE_“_ +g°“‘E f_ - v_g°f)

SN+ SN}
Q% g = Vlgl(g® +¥2)g™ Vit p = Vigl? + ¥ ( 528 J:L'ﬁ_)

Q7

_ dNT 4N,
o, _ CRIY YN 2 gt)gk | b B
Q* 5 = |gl(0? +¥2)g™ V" s = Vlgl(p? + ¥?)g (&rﬁ py )
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(4.16)

(4.17)

(4.18)

(4.19)

{4.20)

(4.21)

Discussions. In this paper, we extend. the results of the generalized scalar-tensor theory
of the Finslerian gravitational field which was given by us in a previous work (Stavrinos and
Ikeda). In the framework of this appoach we considered the metric strueture of our space (3.10)
in a sufficiently generalized form and we explicitely studied tlie curvatures and Lagrangian field

equations (4.7).

The two scalars or Grassmanian numbers yT,y” were introdneed within the Finslerian fibre

" bundle in order to give rise to the non—commuatxve structure in the metrical and connections.

© structure of gravitational field.

From a physical point of view, these numbers can play a role for a unification of the Gauge

and Higgs fields or can be regarded as two components of a spinor.

e

i
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