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We study an anisotropic model of general relativity in the framework of Finslerian geometry. The observed anisotropy
of the microwave background radiation [11] is represented by an anisotropy tensor which is incorporated in the
Finslerian structure of space-time [12, 13]. The Einstein equations are derived for the case of a constant curvature
Finsler space-time. We also examine the electromagnetic {EM) field equations in our space. As a result, a modified
wave equation of EM waves yields.
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1. Introduction

In the recent years, some observational astrophysi-
cal results have shown that an anisotropic direction-
dependent expansion of the Universe may be present if
the underlying geometry of the Universe is anisotropic.
In this case [10, 17}, the isotropic Robertson-Walker
metric is no longer valid. It is therefore necessary
to take seriously the possibility that the Universe is
anisotropic and to investigate what effect will have an
anisotropic expansion on the angular distribution of the
background radiation.

The direction of present research, regarding the
anisotropy of the Universe, is to cousider fluctuations
of the homogeneous isotropic model, e.g., [5]. The fluc-
tuations are due to anisotropic distribution of particles.
The anisotropy is hidden in the particle distribution
function, which do not affect the geometry [5] and have
to be unlocked by interactions among the particles (at
a later stage in the evolution of the Universe). It seems
then natural to choose an intrinsically anisotropic geo-
metrical model for the description of space-time {2]. For,
as mentioned above, fluctuations retain the geometric
concepts as in the homogeneous isotropic cagse. Finsler's
geometry, on the other hand, has fundamentally dif-
ferent geometrical concepts from the homogeneous and
isotropic model, i.e., it incorporates the anisotropy in-
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trinsically in the geometry of space. It appears then as
a valid candidate for the construction of such a theory.

A Finslerian geometrical structure of models which
can correspond to anisotropic structures of spacetime
regions {radius< 10%® light years) can be introduced.
Our work was motivated by the observed anisotropy of
the microwave cosmic radiation. This anisotropy is of
dipole type, i.e., the radiation intensity is maximum in
one direction and minimum in the opposite direction.

In the conventional theory this anisotropy can be ex-
plained if we use the Robertson-Walker metric and take
into account the motion of our galaxy with respect to
distant galaxies of the Universe [14]. A small anisotropy
is expected, however, due to the anisotropic distribution
of galaxies in space [11].

From the above-mentioned results, it is reasonable
to seek a Lagrangian which expresses this anisotropy.
As such, we choose [12, 13]

L= Jagyiy + pla)k.y® (1)

The vector k, expresses the observed anisotropy of the
microwave background radiation. A
The intrinsic behavior of the internal vector ¢{z)k’
in which the matter density is hidden (cf. rel. {45)}
can be considered as a property of the field itself. Thig
standpoint can be thought of as a unified description
between the external z’-field and the internal w(z)k!-
field. Therefore the framework of the geometry of total



space of the tangent bundle is a Finsler space, which is
a convenient tool for the description of this field.

In Sec.2. we give the necessary mathematical for-
malism, upon which we develop our theory.

In Sec. 3. we develop the geometric anisotropic struc-
ture of space-time based on the tangent bundle. Some
physical interpretations are given.

In Sec.4. we derive the Einstein equations for the
case of constant Finsler curvature.

In Sec. 5. we study the changes imposed on the elec-
tromagnetic field as a resuit of the anisotropic geometry.
It is shown that the EM field tensor remains unchanged
in our approach. The wave equation of EM waves is
modified ([JA*x)) in such a way that it expresses an
anisotropy of the electromagnetic field, i.e., in the gen-
eralized d'Alambertian there exist terms of anisotropy
{(namely, the Ricci tensor R of the Finsler curvature
- RYjui, the curvature of the non-linear connection Ry
and the Cartan coefficients C’ ) which affect the con-
ventional form of the wave equatlon.

2. Preliminaries

The framework in which we develop our present work is
a Finsler tangent bundle. For this purpose, we consider
a smooth 4-dimensional pseudo-Riemannian manifold

M, (TM, =, M), its tangent bundle, and TM = TM\
{0}, where G means the image of the null cross-section of
the projection 7 : TAM — M. We also consider a local
system of coordinates (%), i = 0,1,2,3 and U, a chart
of M. Then the couple {z', %%} is a local coordinate
systemon 71 (U) in TM . A coordinate transformation
on the total space TM is given by

bk

st mifD 3

i = #(z°,..., ), dat o # 0,

. aze o i

7% = B;r:by’ z* = §fa’. {2)

By definition [7], a Finsler metric on M is a function
F:TM — R having the properties:

1. The restriction of # to TM is of class C™, and
F is only continuous on the image of the null cross
section in the tangent bundle to M.

2. The restriction of F to TM is positively homoge-
neous of degree 1 with respect to (y?),

Flz,ky) = kF{z,y}, ke R,

2. The quadratic form on R* with the coefficients

1 §2F?

2 Ayidyi 3

fij =

defined on TM is non-degenerate {det{f;;) # 0),
with rank{fi;) = 4.

A npon-linear connection N on TM is a distribution
on TAM, supplementary to the vertical distribution V
on TM:
Ty (TM} = N y) @ Vig,)
In our case, a non-linear connection can be defined by

oG

Ni = 3y _ (4)

where G* are defined from
82F
= e aj 4

and the relation

dy®

jj +26G%(z,y) = 0 - (6)
follows from the Euler-Lagrange equations
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The transformation rule of the non-linear connection
coefficients is

—, 0848zt 83 Pab
Ni = b O 5z V@) + azk awom Y ®
also,
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8xt 0% bad’ dge ~ die By”’
. ooFt o
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di' = 5o dz’, ag® = 5t OV

A local basis of Ty, 2 (TM), (6;,8,) adapted to the
horizontal distribution N is

§; = 8 — Nf(@,y)0, &)
where
d : ij
& = = Oy = =
i3 amz H a aya bl
and Nf(z,y) are the coefficients of the non-linear Car-

tan connection NV, as we mentioned above.

The concept of non-linear connection is fundamen-
tal in the geometry of vector bundles and anisotropic
spaces. It is a powerful tool for the unification of fields.
For example, in the case of the gravitational field, the
non-linear connection in the framework of tangent bun-
dle unifies the external and internal spaces, i.e., the po-
sition space (the base mamifold M) with the tangent
space TpM . In other words, it is connected with the lo-
cal anisotropic structure of space-time {depends on the
velocities).

The dual local basis is

{d = dz', 6° = 6y" = dy® +N“dx’}m__ =



A d-connection on the tangent bundle T'A of space-
time is a linear connection on T'M which preserves, by
parallelism, the horizontal distribution N and the ver-
tical distribution V on T'M . A covariant derivative as-
sociated with a d-connection becomes d-covariant. In
our study, we use the d-connection in order to preserve
the horizontal and vertical distribution of the anisotropy
field with respect to the anisotropic axis.

Generally, an h-v metric on the tangent bundle
(TM,=, M} is given by

G = fij(z,y)dz' @ do? + hapdy® @ &y’ (10)

We consider a metrical d-connection
CT = (N}, L, * ») with the property

Fiie = Oufig = Ligfrg — Ly fir = 0, (11)
Ffisle = Oufij — Clifns — Clifun = 0, (12)
where
. 1.,
gk = 57 Eife + Oy — 6 Sin) s (13)
. 1 . . . .
;k, = E.fcw{ajfrk + aicfjr - 5rfjk)- (14

The coordinate transformation of the chjects L?k and
C;]c I8

a5t 8z’ dz” 85t 8

= gk 5 pEE L@V T 5 e

(15)
i a aﬂfl 637
ik = 5.’1?"1 amja Ok lr(w y) (16)

The Cartan torsion coefficients Cj; are given by
1.
Cije = §akfij, (17)

while the Christoffel symbols of the first and second kind
for the metric fi; are

oV /8fk  Bfi  Ofy

Tigk = 5 (ami * a9 Ok ]’ (18)
i _ Lo (Ofky | Ofu _3fz'j>

L 2f (Bmi + fzi  Bzh )’ (19)

respectively. The torsions and curvatures which we use’

are given by |7, 6]
Ry = 6N} — 8,

e = I Pk

St =0, (20)
Pl o= 6uNi— L, (21)
Py = Cympys  (22)

e = Gl + 8Ly + LY LY,
- sz b c;cRih {23)
Sjikn = CiksClp, — CinsClys (24)
Pk = Cijrin = Chinti + Ch;Crinp ¥’
~ CHCrrnp v, (25)
Sixn, = [ Sjikn, (26)

Flin = Y Pjign. (27)

The Ricel identities for the d-connection are

X¥pn — X = X" Refpn — Xo R iy (28}
Xieln = X' = X Prign — X' Clp

- Xiirprkh, {29)
Xpin — X¥ale = X" Sp k. (30)

3. Geometrical structure of the
anisotropic model

In what follows, lowering and raising of the indices of
the objects ka,y and all related Riemannian tensors
wili be performed with the metric a;;. For the related
Finslerian tensors we shall use the Finsler metric f;;.

The Lagrangian which gives the equation of geodesics
in the case of a (pseudo)-Riemannian space-time is given
by '

- . drt
L = \fayyy?, ¥ = P (31)

or, equivalently, we may write for the line element:

dsg = \/aijda:idmj, (32)

where @;; is the Riemannian metric with signature
(+1 T _) .

Because of the observed anisotropy, we must insert
an additional term to the Riemannian line element {32}.
This term must fulfil the following requirements:

(a) It must give an absolute maximum contribution for
direction of motion parallel to the anisotropy ax-
is which is preserved by the d-connection of space-
time.

(b} It must give zero contribution for motion in the di-
rection perpendicular to the anisotropy axis, L.e., the
new line element must coincide with the Rieman-
nian one for the direction vertical to the anisotropy
axis.

{¢) It must not be symmetric with respect to the re-
placement y* — —y?%. This requirement is neces-
sary in order to express the anisotropy of dipole type
of the Microwave Background Radiation {MBR).
We need to have a maximum (positive) contribu-
tion for the direction that coincides with that of the
anisotropy axis, and a minimum (negative) contri-
bution for the opposite direction.

We see that a term which satisfies the above condi-
tions is k. {x}y®, where k,(z) expresses this anisotropy
axis. For a constant direction of k, (z), we may consider
ko(z) = w(z)k, , where k. is the unit vector in the di-
rection of k,(z). Then w(z) plays the role of “length”
of the vector k,(x), w(z) € R. Hence, we have the
Lagrangian

L= Jagyiyd + o(z)kaye. (33)



In the form (33), we consider only timelike vectors ¥,
therefore a;;4'y’ > 0. Por spacelike vectors we must
simply change the sign under the root, while for null
vectors we change the affine parameter in order to ob-
tain physically acceptable results [14, 15].

Remark: Using the d-connection, the horizontal and
vertical distribution of the anisotropy field with respect
to the anisotropic axis is preserved.

From (33) weé define the Finsler metric fanction
F{z,y) = L. Setting dz® instead of y°, we get

dsp = 1/ aidztdi + () ko da®. (34}

dsp is the Finslerian line element, and dsg is the Rie-
mannian one. We notice that the Finslerian line ele-
ment is generated by an additional increment to the
Riemannian one due to the anisotropy axis. A curve in
Finslerian space-time has an arc length given by (34).
Now,

ds% = aidzidz’ + 2o(x) ko dz® s o deidzi
+ @ (2 ko dr®kyd (35)

For the Finslerian metric to be physically consistent
with general relativity theory, it must have the same

signature as the Riemannian metric {+,—, ~,~). We
have
dsg = cdr = eydt = yd(ct) = vdz®, (386)

where ¥ = 4/1 - (v/c}* and v is the 3-velocity in Rie-
mannian space-time. From Egs. (35) and (36) we ob-
tain:

ds3 = (G,D[} + 2vp(z)kg + tpzfco;i:o) dx®dz®
+ (Gaﬁ +@? (m)fcafcg) dz®da?
+ 2yp(x) kqdz®dz® + 2ap,dz’ dz®
& 2% (2) ko ko dz dz®, (37)

where a, # = 1,2,3. From Eq.(37) it is evident that

we must have
(ko(2))? + 2vko(z) + ago > 0, (38)
o + ko (T)ha(z) <O {39)

for the signature to be preserved, where we have written
w(x)k; = ki(z). (38) admits positive values for

ko{z) < =7 = V7% = ao,

— g+ V- ago < kolz), (40)
while (39) yields:

(ka(2))® < —aq- (41)

Then, the components of any physically acceptable
vector must lie in the interval (40), {41). Relations (40),
(41) are a restriction upon the anisotropy of space-time,
i.e., the anisotropy vector cannot take arbitrary values.

The equation of geodesics is given by

d?z!

ds Iy
We ohserve that in the equation of geodesms we have an
additional term, namely, oat™{8;(km) — Bm ok 9,
which expresses a rotation of the anisotropy axis.

Now, for the case of electromagnetic waves, we must
modify Eq.(42). This is because the world line of an
EM wave is null. In geometrical optics the direction of
propagation of a light ray is determined by the wave
vector tangent to the ray. Let k' = do!/d)\ be a four-
dimensional wave vector, where A iz some parameter
varying along the ray. We have:

+ Tl 'y + 00" Bjiphn = Omiphy)y’ = 0.(42)

!
g&%‘“"““ T4k k7 +0a™(8j0kn —Omok;) k7 = 0.(43)

A physical interpretation of the anisotropy axis
could be that it expresses the resultant of the spin den-
sities of the angular momenta of galaxies in a restricted
region of space (k. (z) is spacelike). It is known that the
mass is anisotropically distributed in regions of space
with radii < 10% light years {8]. Then an important
kind of anisotropy might resuit from ordering of the
angular momenta of galaxies. As we move to greater
distances (radii > 10% Ly.), the resultant of the spin
densities becomes approximately zerc, as is expected
for an isotropic universe,

Fa(e) = Y ofe) 20, (44)

k1
where {k) «(#) is the spin density tensor of each rotating
mass distribution.
The spin is defined through the spin density tensor
{3] by the relation

VI k(). | (45)

Sap = 4ar

While @{z}k, expresses spin density, the function
w(z) is related to mass density (angular momenta de-
pend on the angular velocity and mass distribution}.

From Eq. (42) we see that, for small variation of the
resultant of the spin densities vector, a deviation from
the Riemannian geodesics is very small if not negligible.

From the equation of geodesics {42) we obtain for
the motion y° perpendicular to kt:

d?z-
ds?

From (46) it is evident that if y* is vertical to kt,
the equation of geodesics is different from its Rieman-
nian couterpart. If, however, dip(z) is parallel to k;,
i.e., the increment of anisotropy takes place only along
the anisotropy axis, then the equation of geodesics is
identical to that of geodesics in Riemannian space-time.

®, . .
+ T L'y + 0a'™80kmy’ = 0. (46)



Using the notation 8 = k.y%, 0 = /auyy'yl, we
caleulate the metric tensor from (3):

ﬁso( )

fig = %+MS( ihy) - o+ g (2)hiks,

(47)

where § is an operator and denotes symmetrization of
i
the indices 1,7, e.g.,

1
S(Aikq) = §(A~ikjl + Ajka)-

L

Accordingly, we define the antisymmetric operator

1
Al(Mi0) = '2'(Mmﬂ — Mrar).

i

The metric function with the inclusion of S, is {using

(45))
F(z,y) = \Jayy? + Sj”_eausab ‘ (48)

Using 5;; from (45), the metric is found to be

F w(z)r
Fig = Zai + Wzﬁﬁ(yiemsab + €aps5*'y5)
9 42

b, 1
- m€ab,§sa Yyiy; — 'gzeabifmnjsabsmna(‘lg)

where @ = det a;.
The inverse metric is

oy ing e(B+mag) ;
ZFiSj(yk)—?mF?, y'y', (50)

as may be verified by a direct calculation, where m =
kak® = = 0,F1 according 1o ko being null, spacelike or
timelike. It must be noted, however, tha,t if y* repre-
sents the velocity of a particle (y* timelike), then &% is

bound to be spacelike. This foliows from the fact thaﬁ
one possible value of y%k, is zero.

.. o
L R |
/ F

Remark: The anisotropy of the geomeirical structure
does not follow from the y dependence of the metric ten-
sor, i.e., the direction y is not the cause of anisotropy.
The y dependence of the metric is a consequence of the
existance of the anisotropic field tp(z)k’ This is most
clearly seen from Eq.{47) or (42). For the case y = 0
the equations differ from the Riemannian ones. If, how-
ever, y were the cause of anisotropy, then y = 0 would
yield elimination of the anisotropy field, ie., the geom-
etry would be identical to the Rmmannian one, which
is not. If we set c,o(:r)k:1 = (}, then it is clear that the
geometric structure becomes Riemannian, i.e., the cause
of anisotropy is p{z)kt.
The determinant of the metric is

i)
£ = det(fiy) = ({;) det (as;). (51)

The Cartan torsion coefficients, given by (17), take the
form

3B¢ 3 ;
Ciji = o8 ViYL T ii"?l(az‘jkz)

3p 3By
- —= S{wuysym) — —— § ayu- 52
o3 iﬂ{?hy;yl) 3 i?:‘. ifYi {52)
We observe from (52) that an increment of the anisotropy,
i.e., an increment of ¢, results in a change in the values
of the components of the Cartan coefficients. This is
expected since the condition

Cijk =0 (53)

is the condition for the Finsier metric to be Riemannian.
The Finslerian Christofiel symbois of the first kind
are given by (18):

F e} .
Yt = = T+ At + Mg, (54)
where
(o) 1
= 5(&'%;‘ + 050y — Saiy) (55)

are the Christoffel symbols corresponding to the metric
Qi

38¢ © >
Aiy = S s — L Sk
& ij%} [(20'5 vl 8 rg;y &
ria’z‘;)a{a’ab?f Yy } {56)
and
B 3
ng{( at-i- Stkmmij
il 13{1} 2% i Y O’3y y.?
+ kaiéj’)@'(p} . (87)

The operator § denotes an interchange of the indices
i{!}

in the same form as in the definition of the Christoffel

symbols of a metric, e.g.,

G A o= A+ Ay — i,
ij{I}
{a)
§ Gay; = 21 4.
i {l}
The Christoffel symbols of the second kind are found
from (19):

) @B + moyp
Y= T4+ (w——gFg Jyoyt - 2

G oyl I
+ (Ao + Mija)(

{a)
8(?)&}9’}) U ija

(P(ﬁ'f-mﬂ'(,ﬁ) a IWZ_U_{E apd
Y - g(yk) ;



where Ajt = Ajiza*® and M} = Myga®. In Eq. (58}, it

a
is seen that, besides the (If’) j-k terms, all the rest ex-
presses ananisotropic deviation [from the Riemannian
Christoffel symbols. When ¢ = 0, i.e., in the absence of
an anisotropy, the Finsler Christoffel gym:bols coincide
with the Riemannian ones. From the above relation, for
{a)

J'k = (0 we have ’yj . # 0. This shows the dependence

of 7, on the anisotropy terms.
From the Buler-Lagrange equations we find for G*
(Eq. (5)):

Gl e (59)

@, . . )
5 Ty’ + Jam‘y”ﬁ(ﬁjw(m)km)-

Using Eq. (4), we caleulate the non-linear connection
coefficients:

e Wy mi 7
Ny=T v +oa ‘;A (Ore(x) km)
7

1 . . .
+ ;amly} ﬁl(ajgg(:z‘) km YW, {60
ar
! (a)f mil T
Ny = Nj+oa™ A (Op(a) k)
m .
1 , ~
+ o™y A (Oj(x) km )yk. (61)
o Jm

Eq. (61} clearly shows that the deviation from the Rie-
mannian non-linear connection is due to the anisotropic
terms. In the case of an irrotational arisotropic field,
A (Orp(x) ky) = 0, the non-linear connection is iden-
m

tical to the Riemannian one,
The connection coefficients C’}fj are given by (14}

C! e S{kaét)_

EANEYS
(B8 + mw} ; f1
T Ry WY T 2{«’52 biy;k

wlo — By) . w\?s s
TR y{g{kiyj) - (ﬁ) kiksyt

azjk! 8( y})

(36 + moyp)

YA yi’y.’fyl (62)

+

Accord'ingly, using (13), we get:

i@ (B+mop) ,
Lkm I’Jk-ﬁ-(wya%’

QQD afi (a) fed i .

(B + mop) |
+ (Ajka + ﬂw)(”‘(“}}%”‘f‘}'y y'
- JTNLCGw),

(63)

op a Lt 1
- “}@“i(ﬂ k )) — (NGl + NiChy

i
i

where N and C}, are given explicitly by Eqs. (60), (62).
The curvature of the non-linear connection is {21):

L@, L o i
i = Ry T+ %(Bkamn -A(ajﬂokb)
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{a),
where R ajk 18 the Riemannian curvature of the metric
Qig.
The torsion Ptk is given by {21):
i ey 1 i :
Pl =T+ =a™ | A(Orpka)y;
23 km

-

#ai AOwE | - 1L (69
and then
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The h-covariant derivative of the (i coefficients is
Cijkit = 6iCiji ~ LisChjx — L Cing — LY Cign. - (67)

From Bgs. (21), (25), (52}, (62), (63), (65) and (67) we
can caiculate the P curvature.
Taking into account the relations

5IL§'k = 5tfir ('ijr - 9 (Cjkh,Nf))
jk{r}

+ ((sl’)(jkr - ((@N?)Crkh

+ NMOCrin) + (BNECjon

+ NHEChrn) ~ (N Cn —~

- NEEChn)] ), (68)

(a )
Yjikr = ( & F — —Jm) jkr

a
+ ;51 T ke + O jor + 0 Mg, (69)
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and (23), (62), (63), (64), we can calculate the R;M
curvature explicitly. '

The S-curvature (24) is

¢*{mo® — %)

Siikn = T -/j;_i(ahjaik)

2

+ é—F— ((ﬁ{amk’ }kh + ﬂ{aimk )kk))

B¢ - .
t Fgs ((ﬁf{ak:{ki)yh +A (a'j!ckh)yi))

2
ZF 2F 8
Be? Alainks)y; + A(ahifc')m)
2R3 ik - I
¢*(mo? ~ 2%)
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(khyk ﬁ»(kzy.?) + kkyh »A( Jyt))

.i_

(hﬂk(ﬂih?!k)yj + ﬁ(ajkyh}yi)s
(78)
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From a physical point of view, the S-curvature can be
considered as a curvature parameter of anisotropy, as
is evident from ¥q. (81). In the absence of anisotropy
p =10, we have § = 0. In other words, 5 represents a
meagure of anisotropy of matier [11].

4. Space of constant Riemannian
curvature

In this section we will give an explicit form of the cur-
vature of a Finslerian space-time with constant curva-
ture as well as the Einstein tensor which is derived for
this space with the metric (1). The conditions for a
Finsler space metric to be of constant curvature are
given in {16]. In this case, the associated Riemannian

s a
space should be of constant curvature 4 R (R is the
Riemannian scalar curvature):

(a} e
R = 4 Rlapaz — agag), (82)
i1kl
ki(z)); = AMai; — ki{x)k;{z)), A =const, (83)
N +4R = 0. (84)
As a consequence of the above conditions (82), (83), (84)
the form of the curvature of a Finsler space of constant

curvature will be given by
Rijw = K(fu ki — Fufin),

or, using (47), the R curvature is writéen explicitly:

K = const, (85)

F F .
Rijnt = K{(;)Q{aik%l — agajk) + ;z(;;) lair {yjki

+ k) - anlyike + kiye)]
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The Ricel R;; curvature is Ry = 3K fi;, or, using (47),
we have

Bel)
0"3 Jiyj

Ry = SK{F ais + £2 s (wiks) -
+ wz(m}éikj} (87)

For the case dim M = 4 the constant is K = R/12.
The Einstein tensor is defined as

EY =RY - %Rf“, (88)
where
L RIF - elz) N Belz)
Big = 4 [aa” > ,,SJ (ytkj) g3 T
+ :,az(g:)fsifcj}. (89)

From Eq.(88) and the condition fy; = 0 we ob-
serve that E*/|; = 0 for the case of a constant-curvature
Finsler space.

5. Anisotropic electromagnetic field
equations in vacuum

In what follows we present a generalization of the elec-
tromagnetic field equations in the framework of the tan-
gent bundle based on the metric Cartan connection for
Finsler spaces.

The electromagnentic field tensor in special relativ-
ity is Fyj = 8;4;(z) — 8;A;{x). A generalization in our
approach yields

Fy = Ay;(a) - Aylx)
5_;;14.@' (x} -~ 51AJ{ZE) -
(9; - NiO)Aslz) ~

il

(8 — Nl As(z),  (90)

il

or

Fy = 8;Ai(z) — 8iA;(x) = Fy; (91)

since &yA;{z) = 0. Therefore the electromagnetic field
tensor remains invariant, as in the usual electromagnetic
theory in Riemannian space-time.

The first pair of Maxwell equations is

O Fy + O0pFy + 0iF = 0. . (92}

Replacing the partial derivatives with the h-covariant
derivatives of the bundle,

&1 Fi = Fay, (93)
we have

Fyy = 6Fy — L Fre — L Fin, (94)

ka e §pFy — LI Fry — LY, Fip, {95)

Fup = 8:Fy — L Fu — L Fo. (96)

Using the relations
& Fy = (8 — NfOL)Fy, Oy =0
and summing of (94), (95), (96) yields:
Fupp + Fup + Fuy = O Fi + 04 Fys + 8 Fly = 0, (97)

where we took into account the symumetry properties of
Li, and Fy = —Fj;. It is seen that the first pair of
Maxwell equations remains unchanged.

The second pair of Maxwell equations in vacuum is

O F* =0 (98)
As before, we consider

BpF* =0 ~— F¥%, =0, (99)
namely,

FUy = 8;F4 4 L}, FM + L] F* = 0. (100)

From the second pair of Maxwell equations (100), in-
serting the expression

Fy = Ay — Ay,

one can derive the wave equation that governs the vec-
tor potential. We have

Fii,=0 = AV; - Al =0, (101)
or, using the operator {JA" = A%f|; we find

— faly; =0 (102)
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Using the commutation relation (28), we have
Aljyy; = ATRyy — ACY Ry, (103)

where we took into account vanishing of the divergence
Afj; = 0, which follows from a generalization of the

Lorentz condition:

AT A%, (104)
or

8, A" + LY, A® = 0. (105)
Replacing (103) with (102) yields

4% — A"R,' + A"C R™; = 0. (106)

The tengsor form of Eq. (106} is evident, thus ensuring
invariance of the form of the equation for relative ob-
servers. Also the transformation rule of the L% con-
nection implies that the Lorentz condition has the same
form for any observer.

It may be possible that Eq. (106) is connected with
the observed anisotropy of the electromagnetic propa-
gation over cosmological distances [9].

Finally, we give the equation of motion of a charged
particle subject to the anisotropic geometrical frame-
work we developed and to the electromagnetic field {we
consider ¢ =c=1):

d*at (e, . .
m(”&“;? + T yy'y + a™(Bykm — m@kj)yj)

=qFjy’,  (107)

or
dz‘rﬂl (Cb} ..

+ (0™ Bjohm — Buiphi) = LF )y = 0. (108)

1t is of interest to note that Tq. (108) is produced by
a Lagrangian of the form

L=m (1 faiyiyd + (,o{x)fcﬂy") + gA.y°. (109)

Thus one may use the Lagrangian (109) as a metric func-
tion and produce the equation of motion of a charged
particle subject to an EM field in the anisotropic geo-
metrical model, as a geodesic of the space generated by
(109).

6. Conclusion

The observed anisotropy of the microwave cosmic redi-
ation, represented by a vector k,{z}, can be incorpo-
rated in the framework of Finsler geometry. The equa-
tions of geodesics are generalized in a Finsler anisotropic
space-time. The calculation of a curvature parameter of
anisotropy is performed expiicitly by contraction of the

5%y curvature. Also, the electromagnetic tensor Fyj

as well as the first pair of Maxwell equations are unaf
fected in the transition to the anisotropic gecmetry. The
Lorentz condition and the d’Alambertian are shown o
retain their form under coordinate transformations. In
our case, however, the generalized wave equation (106}
includes the anisotropy vector through the Ricei cur-
vature R;;, the curvature of the non-linear connection
R;, and the Cartan torsion coefficients Cijk -
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