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Congruaences of Fluids in a Finslerian
Anisotropic Space-Time'
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We derive the peneralized Raychauduri equation, concepts of expansion, shear and
vorticity. We give the Ricci sensor of a constant-curvature Randers—Finsler space metric

whose first term is the Robenson~Walker metric.
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1. INTRODUCTION

During the last year, observational investigations of the increased values
of anisotropy of microwave cosmic background radiation (Bennet er al., 2003:
Patridge, 1995) suggest an anisolropic metric structure in the underlying ge-
ometry of space-time. A candidate geometry for the study of generalized ficld
equations with respect to the density and pressure of fluids moving in anisotropic
gravitational fields, is Finsler geometry.

Many researchers have studied properties of the gravitational field and of
space-lime in the framework of this geometry, We indicatively mention (Asanov.
1985: Asanov and Stavrinos, 1991; Balan and Stavrinos, 2002; Beil, 1989, 2003:
Ikeda, 1995: Ishikawa, 1981; Miron and Anastasici, 1987, Stavrinos, 2002:
Stavrinos and Diakogiannis, 2004: Stavrinos and lkeda. 2004; Vacaru, 2001
Vacaru and Stavrinos, 2002).

1n the next section we consider the concept of expansion, shear and vorticity
of time-like flows as these are defined in the Finslerian coniext and use them to
derive the generalized Raychauduri equation. This equation plays an important
role in the Riemannian prototype of general relativity {Ellis er al.. 1990; Hawking
and Eilis. 1973).
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The derivation of the field equations of fluids in the Finslerian space-time
can be considered for a possible test of Finsler geometry in connection with
the observational values of microwave background radiation, given that a special
Einsler—Randers type space of constant curvature is used.

Under these circumstances the Robertson—Walker metric is no longer valid.
However, this metric can constitute 2 part of an anisotropic Finslerian metric that
we introduce in the form

Lix, y) = Lg—w(x, ¥} + ¢(0H" ¥ (h
where
1 .. L
Lp—w(x, ¥} = -2-{f2 ~ RYOIC1 -~ kr?y~ i2 4 r20 + P sin” 8 912

is the Lagrangian of the Robertson—Walker metric, i represents a unit vecior
which expresses the observed anisotropy of the microwave background radiation,
P(x) is a scalar function and y* = "—J‘;: denotes a direction in the space.

A general form of the metric (1) has been defined previously in (Stavrinos
and Diakogiannis, 2004), where the first term of (1) is substituted by the pseudo-
Riemannian Lagrangian metric Lg == Jgi ¥y o studying the geometrical

properties of an anisotropic direction-dependent Finslerian space-time.

2. FINSLERIAN CONGRUENCES OF ANISOTROPIC FLOWS

A Finsler space is constructed by a differentiable manifold and a fundamental
smooth metric function F(x, y) on its tangent bundle TM. which depends on the
variables, x € M of position and y = ‘;—'-f- of direction in which F is homogeneous
of first degree with respect 10 y {(Rund, 1959; Miron, 1987).

Suppose (F'. fif{x.y)) is 2 four-dimensional differentiable manifold and
fiflx, y) the anisotropic Finslerian metric is assumed to have signature
- (+,—.— —}forany (x. ¥y)

The motion of  particle in a Finslerian space-time F* is described by a pair
(x.V)wherex € F Yand V = f"t% the 4-velocity of the particle (7 is proper ume)
which represents the tangent of its world-line expressing the motion of typical
observers in the Finslerian anisotropic universe. ‘

A smooth congrience in an open coordinate neighborhood U of F 4 can
be represented by a preferred family of world fines (Gme-like curves) such that
through each couple (x. V) € U there passes precisely one curve in this family in
which V is the tangent vector of this curve (o that point x. This consideration is
analogous to the Riemannian coniext.

The metric of Finslerian space-time is described by the relation

dsz o Fz(x‘ y) - ‘ﬂ-jyj'),j
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The time-like. null and space-like curves can be defined in the Finslerian
framework by the following relations (ishikawa, 1981)

time-like  fij(x. MV'V/ > 0
null-like  fi(x. VVi=0 2)
space-like  f;;(x. )V'V/ <0

In the following we assume Finslerian fluid congruences that the matter fiow
lines of th fluid are time-like geodesics and arc paramcterized by the proper tirne
¢ so that a vector field V7 (x) of tangents is normalized to the unit length V' = .
We denote by Ay = Vi the Finslerian §-covariant derivative with respect to the
direction of V(x) (Rund, 1959).

We notice that A;; belongs to the normal subspace of the tangent space

ApVE=0, ApVi=0 (3)

These are followed because of geodesic condition and the relation of normalization
that means Az is a “'spatial” vector.

A physical and geometrical interpretation can be given if we consider a
smooth one parameter (1) congruence of Finslerian geodesics. Because of the
equation of geodesics deviation (Rund, 1959), the deviation vector 7/ provide us
the separation from a geodesics Cop to a nearby one of the family.

From the condition

L'vZ'n =0 (4)

we get

] i
v = izt - 22 (Vi) = Al - JS AL ®
where £ represents the Finslerian Lie vaniation.

The tensor field A/ measures the change of 7 1o be paraliecl—transporied
along—a Finslerian stream line. From a physical point of view an observer moving
along the geadesic Cp would find the adjacent geodesics surrounding him to be
stretched and rotated by the field A7. We write down the angular meiric &;; in the

Finslerian framework

hij = fij = ViV;
where V' is the unit tangent vecior. This tensor has the property
hij f =0, {6)

Using the $-differentiation in the direction of Vi(x) for a congruence of finid
lines (not necessarily geodesics) we define the expansion, vorticity and the shear
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{Asanov, 1985) by the following forms:

8 = Ayht = V] = Cin V" @)

By = Ay + ViV = ViV (8)
1~ . .

Fir = Ay — 5('911:'1: — 2Cm V" — ViV, = VY, ¢

where Vi = ViV% = A} V¥ and “|” denotes the Riemannian covariant deriva-
{ive associated with the osculating Riemannian metric a;;(x) = gi;(x, V(x)). The
symbols “[ 1.7 V" denote the antisymmetrization and symmetrization of Ay, re-
spectively. The tensor Cijr = %Eﬁ%ﬁl is symmetric in all its subseripts. Therefore
the first extended Finslerian covariant derivative of V can be expressed by

1 .
Ag = é‘@hik'i'&ik‘}'@ik‘i‘ ViV (1)
‘The proper time derivative of any tensor T,:f along the fluid flow lines can be given
by
T = Teru V"

Remark The consideration of a Finslerian incoherent fluid provides that the fluid
lines are geodesics and V' = A V® = 0. In this case the Finslerian geodesics
coincide with the Riemannian ones of a V-Riemannian space (osculating Rieman-

nian).

In the following we derive the Raychauduri equation in a Finslerian space-
time. By the commutation relations of §-covariant derivative of the vector ficld
Vi{x) we obtain

Viow — Viy == L;'rg-h Vj ()

where L’;.M. curvature tensor is derived by the §-covariant derivative with respect

. 1o the osculating affine connection coefficients a}k(x, V{x)) (Asanov, 1985; Rund,
1959}, '

axk T oav! Bxk —

L. VD= (""” v AT

+ L Ly ~ - T
in virtue of {11) we get
VAV = Lip ViVE 4 Vigy V!
or

VEAs = L Vi VE 4 A VE = L ViVE+ (A Vi — AV
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The last relation can be written as
VkArhl = —AIA A]g -+ Lrhln V V -+ vr H3 . (12)

Taking the trace of (12) we have
y d® i : .4.

VA Aigda = = = — A A — LiViVi4 Vi (13)
Using the relations (7)-(10) and substituting in (13) we obtain

do - - o . g

S ‘-‘5,';;5”' "%(f),';;rﬁm —L;'fvaf + V; (14}

dr 3 o ’
This is Raychauduri’s equation of the Finslerian space-time. In the Riemannian
approach of general relativity this equation plays a crucial role in the theorems of

singularities. The change of expansion which is expressed by 57 48 = depends on the
V -anisotropic behavior of Cartan tensor C’ along the matier ﬁow lines. When
we consider an incoherent fluid, the fluid- hnes are geodesics and the last term of
right-hand side of (14) is Vi = 0. In this case the Raychauduri equation is reduced
1o the form of a V-Riemannian metric space associated with the congruence of
geodesics.

A perfect fluid in the Finslerian space time case has the form

Tii(x. V(x)) = (u + pyV;(x)}V;(x) + payj (15)

where p = p(x), ¢t = p(x) represent the pressure and the density of the fluid,

respectively.
The Einstein equations can be written in the form

1 .
Lijx. V(x) =K (T,—j(x. V{x)) — -Z—T}fa,,-j) . K :consiant (16)

where the Ricci tensor L;; is directly determined by the matier energy-momentum
tensor 7}, at each point, associated with the osculating Riemannian melric lensor
aij(xy = gijlx. V(). Substitution of (15) to (16} gives

. )
LiyVivi= ~2~K(,u+3p) (173

The term L;; V' V! corresponds to an anisotropic gravitaiional influence of the
matter afong the world lines of the fluid and it expresses the tidal force of the field.
The form of Raychauduri equation in the case of perfect fluids (cf. 15) is
given in virtue of (17) by
. 4B Py P | .
O=——= —-3-®~ - 553G + Dy’ ~ K@ +3p+V; (18)
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The condition
LiViVis 0 (19)

provides us with the so-called strong energy condition for every time-iike vector
V* rangent to time-like geodesics. From {17) and (19) we notice that the fluid
energy p and pressure p saiisfy the energy condition u -+ p > 0. This condition
uniquely defines the Finsleriar world lines (congruences) of the fluid with Vix)
tangent vector field analogous to that of Riemannian framework (Ellis er af.,
1990). The term L; V' V! > 0 can be considered as 2 key for the existence of
conjugate points in the Finslerian space-time structure. Indeed if we are given a
Finsler manifold (M*, F) which is forward geodesically complete we may apply
the theorems of Bonnet-Myers and Hawking—Ellis (Bao er a/., 2000; Hawking and
Ellis, 1973) along flow lines of the fluid. By virtue of (17} and (19) we deduce

(+3ppzK' >0 (20)

X

where X7 = 6LK !, A some constant. Then every geodesic with length [ = =
or longer must contain conjugate points.

3. ROBERTSON-WALKER METRICIN A
RANDERS-FINSLER SPACE-TIME

We define the Finslerisn metric fanction (Stavrinos, 2002; Stuvrines and
Diakogiannis, 2004) for an anisotropic model of the universe as

L(X, y} = v gij}!iyj + 45(1’)&:;}’" (2])

where i1, is 2 unit vector which expresses the observed anisotropy of the microwave
hackground radiation, ¢(x) plays the role of the “length” of the vector i, {x) =
$(x)iZ,, ¢(x) € R .The coefficients g;; in (21) are of general Riemannian type. In
the following we use the Robertson-Walker madel Tor the first term of (21) and
derive the Ricci tensor, L;;(x, ), for a Finslerian space-time of constant curvature;
Along to this direction we choose a coordinate system with spherical coordinates
where the components {#{1), r{z), #{1), ¢{r)) are functions of proper time 1. The
Lagrangian of Riemannian geometry for the R-W metric

dr?

[ —kr?

d5? = dv? — RY(T) [ + r2(d6? + sin® ed«;b?‘-)]
is defined by

P — 1, a1 2y 24
LeG' ¥y = Jeiiyy :5{;%}?2(:){(; — k™ ';-”+r292+rzsm29¢2}(§2”;)
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where we set x' as

r
. i "
=1, ¥y o= o (23)
¢ ¢
k =0, &1 and R(r) the scale factor. The R-W meltric

R%(¢ y
g;; = diag (1, ~7 (k),,, —R¥1yw?, =R sin? 8)
— Rre

In the work of Stavrinos and Diakogiannis (2004) we have considered a vector

y' 1o be a time-like or nuil vector. Under this condition the anisotropy vector

u; = O(x)i; is space-like with components w;(x) = (0, wy{x), ua(x), uz(x)) and

Helx) = u,(1, r, 4, @). Now we put o = ey vl B = u,x)y" in (21), thus we
get

o = (i — RAOW — kr?y™ 2 + 0% + P sin’ 970} (24)

B = ki + kol + kadh (25)

Next, we calculate the Finslerian metric which is derived by the gencrator metric
funciion F{x, y) in the form

2 1 B
fiy = i b ity o iy = DYy Uil (26)
The indices of y' are raised and lowered by the metric g;;. In such a case we have
&ij
. RF 2 2 . ;
v = (r, T ~ R, —R*rFsin’ 8 qb) (27
0 fu iy fu3
R R R
= |0 TR g2 =T 28)
S 0 — Ry ~ R 6uy —R*r0u;

0 —R¥2sin6dur —R2sin?Odus  —Rr¥sin’ 6 dus

Similarly we calculate

P2 — A ~R20i  —R%sin’ 6 ¢i
R _RZ R g &y sin®0 ¢
iy = T—kr? {(I=kr Ty T=kr? kT
i¥p = A s 224 . ) -
N S Laticd Rir4? R*r*sin’ 0 8¢
. ., L QT P . P . ,
—RM2sin? @i KrEwtd phdsin?ddd Rrtsin'e ¢

(29)
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Taking into account (24)~30) we derive explicitly the metric fi; by (21).

P i
fij = (f3 I (30
with
£l = ( o0 fm)
10 fiy
W K
f2 - ( o0 OI)
'129 fn
3
f3=( 00 fm)
130 I
f4 _ ( 040 fﬂl)
B f;;
where
F B .
fo= 5= o3t
, _fu B R%*#i
for = o +a31-—-kr'-’
,_fw BRI
o= g o031 =k
d 2. 4.2
T F R? 2R-Fuy _“E” R )

o 1—kri ol —kr2) o (1 —kr2P
i S s
fm = "“g‘l -+ ﬂ0”3R2r29!

f2 = fuss ™ + po PR3P sin’ 6 ¢

R— 74 Fita ﬁ bf’é
f![l = “-&-— [F'GHE + W} - '““i'""——k;: 4 HiHy

R? o jus ] B-RY? sin? 87¢
fflz_.;_[lsm ngu;-i-w 01W+MEM

fu .
i Dy
o
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RAT 4, it B Rrro
3 2 2
L <8 UMV S u
T o [r u|+l——kr2-} a3ldkr3+u2 !
iﬂg ) ﬁ

3 b N A g
f“} — -;"— + ;{R r S}n 9¢‘[’
Fus g Rir*sin’ @ P

R[5 2, |
f?lﬂ--—{-;[r sm'é?q’m;—l——i-:—i:;g _Z;EW Attty

F 2R*r¥ B
4 5 2 2 4,442 2
=—»-—-R"~——--—~—-'_'""““""""——“R.é~+
fo —Rr ~ R (uz)
RZr:’ ﬁ
fo = L [sin® Gur + Bus) — LR sin® 08¢ + uqua
o ot
Rr? g
1= 27 isin® By + Bzl — F_pirtsin® 68¢ + iz
o ol .
F ~ . 2R2 2 . H . . "
fh= ~ZR*sin’ 6 - 20T sin? 6 dus — E;R"r" sin® ¢ + (ua)*
o o o

Thus the Ricci curvature L;; ina Finslerian space-time of constant curvaiure
Lijw = K fufis — fitdix)

is explicitly given in virtue of (30) by

Lij = 3Kf;
with

The scalar curvature L is related with the constant K by the relation
L=12K
Einstein’s equation in this Finsierian space-time of constant curvature has the form
G = kTij. k =8n

where T;; is given by (15). Here we assume the cosmological constant A == 0.
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