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Some alternative connection structares of the Finslerian gravitational field are consid-
ered by modifying the m(iependent variables {x, y} (x: point and } vecter) i various
wayr. For axample (x L ¥ (k,i= 1,2,3,4) are chcmged 1o (x yg} (» scalar) or
(—"' ¥ ™ fime axis); (xk, ¥) are generahzed 1o {x*, ¥, pi) (pi: covector dual to
¥ } ar (£°, ¥, ¢2) (g covectur dlffﬁanf. from pi Y (x%, ¥} are further generakized to
(%, @y (@ == 1,2, ., m, (p%): {a)th vector), ete.

KEY WORDS: Finsler geometry; Finslerian relativity; connections; gravitationai
field.

1. INTRODUCTION

A peculiar velocity field is produced by the gravity of mass fluctuations
which are due to the anisotropic distribution of particles. The nonhomogene-
ity and anisotropy of the gravitational field cause our motion and the material
contents of the untverse. That means that the anisotropic and nonhomogeneous
field intrinsically include the motions. Therefore, a standard interpretation for the
cosmic background radiation dipole anisotropy is the result of our peculiar mo-
tion caused by the gravitational field of the iregularities in the mass distribution
{Peebles, 1993).

For the above mentioned reasons, a geometrical model that fulfills the as-
sumptions of a geometrical interpretation of anisofropic disiribution of matter
for the gravitational field is the Finsler geometry. (Asanov, 1985; Ikeda, 1995;
Stavrinos and Diakogiannis, 2004; Stavrinos, 2003; Vacaru, 1997).

In the theory of gravitational field in Finsler spaces, the independent variables
are chosen as (x*, y'), (k, i = 1,2, 3,4), where the vecior y is attached to each
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point x as the internal variable. Therefore, the Finslerian gravitational field is
regarded as a unified field between the external (x }-field spanned by points x and
the internal y-field spanned by vectors y.

From the vector bundle-like standpoint (Miron and Anastasiei, 1997), the
Finslerian gravitational field is considered the unified ficld over the total space of
the vector bundle whose base manifold is the {x)-field and fiber at each point x
is the (y)-field. That is fo say, the Finslerian gravitational field can be treated by
means of differential geometry of the total space of the vector bundle mentioned
above.

Along this line, if the independent variables (x, y) are generalized or special-
ized in various ways, then the so-called adapted frame is also changed accordingly.
By doing so, we can consider some interesting modified connection structures
associated with the Finslerian gravitational field. In the following section, we
shall show some concrete examples: (x*, y') are changed to (x%, y%), y': scalar or
(x", ¥') (x: time axis); (x*, y') are generalized to (x*, ¥, p;) (p;: covector dual to
vy or (x*, ¥, ¢a) {¢a: covector different from p;); (x*, y') are further generalized
to (x*, ¥ (a = 1,2, ..., m), (y@): {a)-th vector), etc.

2. FINSLERIAN CONNECTION STRUCTURE
In the total space, the adapted frame is set as follows (Miron and Anastasiei,

1997).

[dx" = (dx*, 8y' =dy' + Njdx")
(1)

R R TV A
axt = (Jx}‘ — ax* Nﬂ-ayf’ 3)")

where N, denotes the nonlinear connection representing physically the interaction
between the (x)- and (y)-fields, and X* = (%, y){A = (k, i) = 1,2, ..., 8). The
irttrinsic connection 3y represents the intrinsic behavior of the internal variable
y: For example, if the intrinsic behavior of y is grasped by 5' = K} (x)y/, K((x)
being the rotation matrix, then 8y is given by (Tkeda, 2000)

5yt = dy' + Nidx*(=0)

dy' =y — KO/ @)
KWxY .
Ni = — aigx' yf

where we have put Kj;(x) = Kj(O) -+ %%ﬂdx".

By a physical point of view we may apply the above-mentioned form of
nonlinear connection in the framework of the observed anisotropy of cosmic
background radiation (CBR). As it has been studied in 2 Finslerian ansantz, it
can be represented by a vector £(x), which is incorporated in a metric model of
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Finsler geométry as a result of our motion with respect to some local frame in the
universe (cf. Stavrinos and Diakogiannis, 2004; Stavrinos, 2003). The Lagrangian
function of this metric is given by

Lix, ¥y =/ gy v/ 4 $lxMay” €y

The rotation of & vector £ from anisotropy axis £7 is given in virtue of the
rotation group Aj(x). In this case, the nonlinear connection
dAH(x) o

P £ 4)
expresses the variation of the rotation group with respect to the anisotropy axis.
In Stavrinos and Diakogiannis (2004), the expression ¢ (x)£* represented the spin
density, where the function ¢(x} is related to the mass density, Le. it depends on
the angular velocity and mass distribution. The rotation group can be used instead
of the function ¢(x) in the right-hand side of (3), giving a profound geometrical
and physical meaning to the concept of nonlinear connection, N, and to that of
anisotropic behavior of the gravitational field of amisotropy axis. Then, if we choose
N —g—’%g’ we can see that the nonlinear connection expresses the spin density.

In addition, the Berwald type form of the nonlinear connection (4) is given
by

ll_
3 =

. oNf AL (x)
Mo = 50 = "o ©)
The tensor field
; AL BAL
By = Ny = N = Faealal ®

denotes a torsion of variation of the rotation group A’. The form (6) denotes the
curvature of nonlinear connection. The integrability conditions by (6) are defined
by Ai, =0.

The adapted frame (1) can be modified in the form, e.g.,

dx? = (3x* = dx* + TI68y*, 8y’ = dy' + Nidx*)

8 (.3 4 2 A $
Wﬂ(ﬁx Bx’- Niéy”w_—mniﬁ;’”—)
etc., This case comresponds to the case of contact transformation (Miron ¢f 4.,
2001).
On the basis of the adapted frame (1), the Finslerian connection stracture is
introduced by Miron and Anastasiei (1997)

(7

] PR
Vﬁ%asz BCGLA

FgC = (Li,a’ ju Cfl’ : ) (8)
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Namely, four connection coefficients appear. Then, the following four kinds
of covariant derivatives can be defined, for an arbitrary vector V4 = (V¥, V1);

Ko __ A
V% - Sx# +L3-1‘-¢V

#
V=G oy
=t L,V >

Vi: = W +lew

Further, the Finslerian metrical structure is given by (Miron and Anastasiei,
1997) G = Gapdxtdx®? = g, dx* @ dx” + g;;dx’ @ dx/. The metrical condi-
tions gy = 0, gl = 0, gij1 = Gand gi;lr == U can be imposed, if necessary.

3. MODIFIED CONNECTION STRUCTURES-I

We shall first consider the case where (x*, y') are changed to (x*, y©), y©
being a scalar. Then, the adapted frame is reduced to

dxt = {dxk, 8" = dy + NPdx)
8 (.3 6.9 8
r = (E}I = B.r" NK——ﬁ’ 3v")

In this case, the connection structure and the metrical structure are given by

(10)

Tge = (L}, L3, Chy Coo (1)
and
G = gudx* ® dr* + gody® ® 8", (12)

respectively.
In virtue of (2), if we choose the nonlinear connection in the form AV =

— 28530 with A%(x) = $(x) and y* = a(?), then we get

0 = —paora

N e

that means that N takes the form of a covector caused by the fluctuations of
material fields of the Finslerian gravitational field, a(f) can be represented as a
scale fax;:tor.

If y° is constant, then we can put in (10) dy® = 0, c‘h#o = NPdx* and 15 =
ik sl 5y = (. Therefore we can put in (11) T = (L}, L], C&, = 0, Ch, = 0).
goo(x*, v%) in (12) is not « constant, in general. If gu is 2 constant, then we can
put LOM = 0).
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Next, we shall take up the case where (x*, y') are changed to (x", y"), x"
being the time axis. This case is dual to the above mentioned case and means the
time-sequence of the (y)-fields. In this case, the adapted frame becomes

dx* = {dx°, ay*' = dyt + Nidx")
(13)

R B Y O
Bx‘ - (JJ:D - 3x0 Nﬂay' ’ By‘)

The nonlinear connection N}, plays the role similar to the shift function in
the theory of general relativity (Bergman, 1961). The connection structure and the
metrical structure are given by, respectively,

Fac = (L, L Ch. Cy) {14)
and

G = goodx® @ dx" + g,;8y' @ 8y, (15)

4, MODIFIED CONNECTION STRUCTURES-II

In this section, we shall first take account of the case where the independent
variables (x%, v} are generalized to (x*, y', i), pi being a covector dua! to y.
Then, the adapted frame is set as follows: (Miron et al., 2001):

dx* = {dx*, 8y = dy' + Nidx*, 8p; = dp; — My;dx*)
8 {3 . 2 R
W‘(EE’T”&} - Nj5r *‘ng;;;’s*;sﬁa)

where two kinds of nonlinear connections Nj and M,; must be mtroduced. Then,
the connection structure is given by

rd. = (Liﬁ,

(16)

i i
Liur €

i EXLET (7

also the following covariant derivatives can be defined (Miron et af., 2001): For
example, '
k
V=g + LV
Vie= 2;;’; L Vi (18)
V= S5 + BV

ete. The metrical structure is introduced by
G == guedx* ® dx* + 887 ® 8y + gV 8p; ® bp;. (19)

Next we shall consider the case where the independent variables become
(%, ¥', ¢a), g, being a covector taken at one more microscopic level than the
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pi-tevel. Then, the spatial structure becomes second-order vector bundle-like and
the adapted frame is set as follows:

[ dx4 = (dx*, 8y = dy' + Njdx*, 3q, = dg, — Piedx* ~ Qdy’)
(20)

8 (.8 . 8 _ i 8 g i .8 .84, 8
axn = (Bxk Y N; ay + Pha Bg, 7 Bx T @y + Qi 8g. * aq,,)

where three kinds of nonlinear connections N}, Py, and ;, must be introduced.
Therefore, the connection and metrical structires are given by,

Do = (L5, LY, LE,. CL.ClL Chy HEC HIS HE) (21}

Aper T e by
and

G = gu{dxk ®dx* + g,-jﬁy" ® 8y + g"bﬁqa & 84y, respectively. (22
From (21}, for exampie, the folowing covariant derivatives can be defined:

k __ 8¥* £ ok
Vie = 5+ L3,V

Vi = %:—, + v/ 23)
VE .= %‘4{— + HEEVH

etc.

5. MODIFIED CONNECTION STRUCTURES-IIX

Finally, we shall consider the case where (x*, y') are further generalized to
(x5, ¥y (@ = 1,2,...,m), ¥'* being the {o)-th vector interacting physically
with v (¢ # B). Then, the adapted frame is set as follows:

. : i3 :
dx' = (a’x", 8y = NI dxh + %‘1 qf§§§;dy(ﬁ>k)
" - m {24y
3 3 8 N(“‘}f [ [ Z: (‘_I,—l)(ﬂ).f ]
A T T T i R BylE T F (e FyPT
o= =
where 5§y is written in this form in compazison with the base connection in the
theory of higher order spaces (cf. Kawaguchi, 1932). The quantity N denotes
the generalized nonlinear connection and ‘li{{g)); means the interaction of y and

y®_ Then, the connection structure becomes
A . frk (et} 4 Cooi
i = (Liws Ligsjw Criows Citicn) (25)
and the metrical structure is given by

G = g;\kdx"‘ & dx* + Zgw);(mjay(“}" fite] 8)!@” {26)

==l
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(ol (o) N {a) {m)
In (25) and (26), Lg,;, and Crgys, can be reduced to Ly, and Cp iy

and geyieey, can be reduced 0 gy, under some convenient conditions (Miron,
1997), Thus it is understood from the above that we can consider many interesting
modified connection structures by generalizing the independent variables (or the
adapted frame) in various ways.
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