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Abstract A generalized FRW model of space-time is studied, taking into consid-
eration the anisotropic structure of fields which are depended on the position and the
direction (velocity). The Raychaudhouri and Friedman-like equations are investigated
assuming the Finslerian character of space-time. A long range vector field of cos-
mological origin is considered in relation to a physical geometry where the Cartan
connection has a fundamental role. The Friedman equations are produced including
extra anisotropic terms. The variation of anisotropy z; 1§ expressed in terms of the
Carian torsion tensor of the Finslerian manifold. A physical generalization of the
Huhble and other cosmological parameters arises as a direct consequence of the equa-

tions of motion.

Keywords Finsler Geometry - Cosmology - Gravilation

1 Introduction

During the last few years considerable studies concerning observable anisotropies of
-the universe have been investigated {5,6,8. 12]. These are connected to the very early
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state of the universe and related to the estimations of WMAP of CMB, the anisotropic
pressure or the incorporation of a primordial vector field (e.g., a magnetic field) to
the metrical spatial structure of the universe [11,24,40]. In this case the form of scale
Factor can be infiuenced by the introductory field. A geometry which may cotinect the
Riemannian metric structure of the space-time to physical vector fields. ts the class
of Finsier—Randers type spaces. In these spaces an electromagnetic field, a magnetic
field or a gauge vector field may emerge out by a physical source of the universe

and can be incorporated into the geometry causing an anisotropic structure [1,3,33~

35,37,42).

Finsler geometry or the theory of Finsler spaces may be considered as a generai-
ized Riemannian geometry of the first order within the sphere of metrical differental
geometry {31]. A Finsler space is a metric space in which the metric function is de-
fined by a norm F on a tangent bundle instead of defining an inner product structure
on it. The norm will be a real function F(x, ) of a space-time point x and 4 tangent
vector y € TyM which places the role of an internal variable (Appendix A}. This
y dependence characterizes essentially the Finslerian field and has been combined
with the concept of anisotropy which causes the deviation from Remannian geomelry
115-17]. All kinds of generalized metric theories and unified field theories belong
to the larger class of the so called anisotropic field theories [15,16]. Therafore these
geometrical anisotropies are caused by internal variables. Under these conditions 2
Finsler geometry can be considered as a physical geometry on which matter dynamics
takes piace while the Riemann geometry is the gravitational geometry [4,41.42].

The Cartan’s torsion tensor {1,31] characterizes all the geometrical concepts of
Finsler geometry and appears to all expressions of geometrical objects such as connec-
tion and curvature, Tn some cases it is useful from a physical point of view to consider
a vector field in the form y/ (x}/7 = 1, 2, 3, 4 and the induced Finslerian metric lensor
gives rise to the oscuiating Riemannian metric tensar Fyp (0} = folx, y{x)).

In the present paper we adopt such an approach in order to obtain some resulis
concerning to a Friedman-like Robertson—-Walker cosmological model (F-LRW) and
its conseguences. We proceed by introducing a Randers-type Lagrangian and the
induced Finslerian metric modified appropriately for a weak primordial vector field i,
[37] (Seci. 2). We construct the field equations using the osculating approach [1,31]and
derive a Friedman-like equation of motion with an extra anisotropic term (Sects. 3, 4).
We generalize the Hubble parameter H, the density parameter € and the deceleration
parameter g for a weak anisotropic approach, The cosmological parameters depend
directly on the anisotropy generated by the vector field defined in the Lagrangian
metric function (Sect. 4). The solutions of the Eriedman-tike equation for both matter
and radiation dominated universe, the Raychaudhuri equation initially presented in
[34,35] and the CMB temperature estimation are ali affected by the presence of the
rate of anisotropy at the field equations (Sects. 4, 5). The anisotropic solution of
the scale factor coincides with the standard ones derived under the assumptions of
homogeneity and isotropy. A possibie estimation of the rate of anisotropy parameier
might be possible if we consider intermediate values for the cosmological constant for
a generalized de-Sitler model defined by the Friedman-like equation of motion with a
cosmoltogical constant {9]. A more accuraie estimation of the model's extra parameter
can be made by cajculating the CMB shift and the baryon oscillation acoustic peak
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Generalized metric space-time with weak anisotropy

using the Friedman equations and comparing thern 1o the corresponding vaiues coming
from the WMAP data [10, 13.26,32,44]. The data produced by these tests depicts a
flat universe confirming the observations,

2 Anisofropy and a Randers type Lagrangian mefric

An alternative way of studying of physical phenomena is to incorporate the dynamics
to the active geometrical background following Einstein’s meaning of gravity. Our
investigation is based on the introduction of a Lagrangian metric [35,37] considering
the anisotropy of the universe [5] as an embodied characteristic of the geometry of
space-time. A similar tnvestigation has been applied to the case of electromagnetism

3,33] together with some recent progress in gravity, cosmology and fuid dynamics
[19.34,37]. We consider the geodesics of the four-dimensional space-time o be pro-
duced by a Lagrangian identified to be the Randers-type metric function (the greek
indices belong 10 10, 1, 2, 3} and the latin ones to {I, 2, 3})

Flx,y) = oix, ¥} + (ko y™ 2.1

o(x,y) = f @ea(x)y< y* 2.2}

where g, (x) is the Robertson—Walker metric defined as

.
e (x) == diag (1, e %R a2 sin? 9). (2.3)
| — kr?

where k == 0, [ for a flat, closed and hyperbolic geometry respectively. The spatial
coordinates are comoving and the time coordinate represents the proper lime measured
by the comoving observer. The vector y* = %i represents the tangent four-velocity
of a comoving observer along a preferred family of worldlines (fluid flow lines) in a
locally anisotropic universe;the arclength parameter s stands for the proper time. We
proceed by considering the natural Lorentzian units, i.e., ¢ = 1. If we fix the direction
v = X then o(x, x) == I. The vector field

1y (x) = ko@{x) (2.4)

stands for a weak primordial vector field ju,| € 1 incorporated to the geometry of
space-time as an intrinsic characteristic. This field would most naturally be expected
to point in the same direction with the tangent vectors of the fiuid flow lines [27]. As
a result it will have only a timelike component which can be expressed as a fumction
of the proper time 1y, = (ug, 0, 0, 0). Important information about the antsotropy is
encoded into the component wg(r) [27]. We consider a linearized variation of

anisotropy, therefore the approximation
dlx) = d(0) + 8,9 (O)x* (2.5)
is valid for small x.
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3 The choice of the connection A} u (x) and the curvature

The metric of the Fmslcr space can be directly calculated from the metric function F.

Smce Juv(x, ¥) = Wta‘,, A ten (x, y) we derive
! b
fuv = guu + @“(uﬂyu + H'u_}',u.) - F}’,u,yl.z T Uty (3.0
where
F .
g;w(x- y) = "o”_“(xa )’)a;.w(x) (3.23
and
Blx. ) = pl0dkey® = ue )™ (3.3)

Under the weak field assumption we can approximate the Finslerian metric (3.1) as
a perturbation of the FRW metric since in General Relativity a weak vector field in a
space (e.g., primordial magnetic field) can be treated as first order perturbation of the
Riemann metric tensor. The metric is considered to have signature (4, — v —Y for
any (x, y). The square of the length of an arbitrary contravariant vector X # is to be
defined [ X 1% = Fuu(x, y)X# X The connection components of the metric are given

by (A7)
In many cases we cansider a convenient Finsler metric 1o approxumate the gravita-

donal theories [1,31]. This meiric is connected to 2 Riemannian one, ry, (x) referred
as osculating Riemannian metric [31]

ruu(—‘C) = fuolx, ¥xh (3.4}

with the following Christoffel components

. ?\,sp
(0 = il (o y () + Cﬁ,,(x‘y(:c‘))%;;(x)

K s 3).,0 KU ‘3};;:
—*.—Cl,,(x,y(x))m(x)*g (x_.y(x))Cm,,(x,y(x}%é;;;(x) (3.5)

thus the equation of geodesics is given by

d®xt
—a T rp )0y =0 (3.6)

Under the assumption that the vector field y* satisfies the relation v ., = O the Fins-
lerian § ~covariant derivative and the Cartan’s covariant derivative of an arbitrary

vector field X% (x) are equal [1,31] (see Appendix B)

T (x, y(x)) = X5, yx)). 3.7
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The Cartan’s torsion tensor can be easily deduced from (2.1) and (A.8) the full
expression is {37]

j (1 | 8
Cap, = Y ;S{;nﬁ.)(a;}vuk) - U—:{Swv}.)(}’yy;fu)\) b ;’j“s(;,wl} (am:y)\.) 3.8)

where 8y, denotes the sum over the cyclic permutation of the indices, Every single
term of (3.8) is proportional to the components of the field u, thus Cyus = U under

the condition luy| < 1 and then we can drop all the torsion dependent terms in (3.5).
Therefore the approximation for the Christoffel components becomes

o) = e, () (3.9

where A¥, (x) represent the osculating affine connection coefficients. The affine cur-
vature fensor associated with the proper choice of the connection coefficients A%,
gives directly the curvature which is associated with the commutation relations of the

S-derivatives

LY, = AL, = Ale, + AL AR, — AL AL (3.10)
The Ricel tensor is given by
L= Lfmu G0
and the scalar curvature
L= L. (3.12)

The inverted metric f** is calculated in {37). The components of the Ricci tensor can
be simplified due to the conditions

iip = 0 (3.13)
nE 20, (3.14)

The condition {3.13) is valid since ¢(x) can be written at the linear form (2.5)
together with (3.14) where we have considered i very small at the first stages of
a highly accelerated expanding unjverse [30)]. We arrive then at the foliowing nonzero

components

= 3 (d/a + 3/4a/aip)

Liy = — (ad + 2a% + 2k + 11 /dadig) /(1 — kr?)
Loz = = (ad + 24% + 2k + 11 /4adig) r?

Ly = — {ai + 247 + 2k + 11/4adip) r* sin* 8

t-..
=
}

(3.15}
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The geodssic deviation equation in the case of a perfect fluid along the neighboring
world lines can be generaiized within the Finslerian framework (§# is the deviation

vector} [2,36]

52 I
: + LY

552 ey ¥ET =0 - (310)

where the operator 5% denotes the Finslerian & —connection along the geodesics.
" Within 2 Finslerian space-time framework the concept of constant curvature & is

formulated by [31,37}

L;(l,uu = K(fuifkn "‘ fk‘ufi\,u) _ f3 17)

4 Einstein’s field equations for an anisotropic universe
4.1 The energy-momentum tensor and the Friedman-like equation

The energy-momentum tensor of a Finslerian perfect fluid for a comoving observer
[1,24,34] is defined 1o be

Tyu(—‘ia.,'l’(x)} = {u + Py (x)pe{x) — P fuanlx, ¥x)) .1

where P = P(x), u = j1{x} is the pressure and the energy density of the cosmic fluid
respectively. The vector y* = “’7‘; is the 4-velocity of the fluid since ¥* == (1,0,0,0)

with respect to comoving coordinates. Thus Tj,, becomes {7}, = diag(u, —Pfij) in
matrix form) {7,24,27,28]

Top =
Tij = ~Pfij
(4.2)
= T‘f
= fPu 3P
The substitution of (4.1) to the field equations
1
L,uu =8n ¢ (Tuu - ET&M:) (4.3}
implies the following equations at the weak field Hmit
i 34, 4 G
24 2Zig =~ (u 4 3P) @4
a 4a 3
i @tk 1la.
— b Do +2~—2+m—I10:4NG{{,L—P) {4.5)
a a- a a
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after subtracting (4.4) from (4.5) we obtain the Friedman-like equation

N2
a & Bn G k .
(—) e T (4.6)
a a 3 a*

where we define z, as

Z0 = Uo. {4.7)
The quantity z, is a constant since we consider a linear approach for the ¢ {x) by (2.5).
The previous equation is simitar to the one derived from the Robertson-Walker metric
in the Riemannian framework, apart from the extra term £z, We associate this exira
term 1o the present Universe's anisotropy. In case we study Finslerian models with
a cosmologicdl constant [9] the field equations (4.4) and {4.5) can be given in the
following form

a 3a dn G A
2% = APY + = 4.
a+4aﬂo 3 {1+ }+3 (4.8)
. .2 .
koLl
fiaf o v —Lig=anGiu—Py+ A (4.9)
a a~ a 4 a

and we end up with the equation of motion
a\* a8 koA
- +Ez: =ma R T o T (4.10)

4.2 The parameter z, and the weak linearized anisoiropy

The physical quantity z, describes the variation of anisotropy which evolves lin-
early due Lo (2.5): it depends upon the scalar ¢ (x) which is the only guantity of the
Lagrangian that gives us insight about the evolution of anisotropy. The parameter z; is
measured by the Hubble's units as (4.6} implies. It is significant that z, depends on the
geometrical properties of the Finslerian space-time manifold. Indesd, the component

Cogp can be directly catculated from (5.8) as

iy
Coop = = (4.113

and after differentiating with respect to proper lime we jead to the direct dependence
of z; on the Cartan torsion component Cooo

zr = 2Com0.0 (4.12)

hence the variation of anisotropy is closely related to the variation of the Cartan torsion
tensor as an intrinsic object of the Finslerian space-time.
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§ The cosmological anisofropic parameters

We list the main anisotropic parameters constructed within the Finslerian framework
11,34,35,37]

5.1 ‘The anisotropic scale factor &(v(s)) and the Hubble parameter H

The anisotropic scale factor is defined along each worid line. §{s) is the length scale
introduced i [12,34] defined as '

S(5) = q{uis)) (5.1}

whete v(s) is the tangent vector field along the world lines. The anisotropic Hubble

parameter H is given by the relation (S = %Q“(s))

J (5.2

& =yl — Cp* (5.3)

-y BaG k
H=—i-
SH2+H21 (54}

thus Hubble's units have Lo be attsibuted (o 7, Since A2 > 0 we should fix H2 > |Hz|
Therefore the lower limit of g, is ~H,

= —H {5.5)

&

This result is in agreement with the fixing of a similar parameter in [20,23,26] for self-
accelerated brane-world cosmology. Since the parameter z; is related (o the variation
of anisotropy we expect it to have negative sign (self accelerating universe) as it may
control  transition of the universe from a state of anisotropy to a smoother isotropic

phase [46].
5.2 The density and the deceleration parameter

The density parameter can be defined with respect 1o the parameter A

- B (G :
= (5.6)

—fh T
342 Herit
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where

3H?

pye (5.7}

Herie =
The deceleration parameter is defined in terms of the anisotropic scale factor S(s)
§=—S5/8% (5.8)
The Friedman-like equation can also be rewritten in the form
G, 1 =k/(H%") (5.9)

If 1 < fLeric then Q# < 1ork < 0 (open universe). i p > [ier; then fzu > 1or
k = 0 (closed universe). The latter case 4 = ferit COrresponds {0 S”%_ =lork =10
{flat universe). Thus the values of z, influence the type of spatial curvature. In case we
need to express H in terms of the redshift. the present value of the Hubble parameter

Hy and Q,.524,. we insert [7,29.30)]

Hiz) = HpE{z) (5.10)

into (5.4) where the quantity £{z) = H(z)/Hy is given by

E@) = /Oy + % + Qa1+ 27+ QT+ 22+ Qg (51D
and the parameter €2, is defined by

Q. = —. (5.12)

T AHE

Therefore we are dealing with an expression for H(z) which depend upon the
anisotropic parameter z,, the redshift z and the Q's. '

The Friedman equations in terms of §2's

The Friedman equations can be expressed in turms of the density parameters. The
s give some useful information about the parameter 2, and enable us to test if our
cosmological model fits to the current data (e.g.. WMAP data). Indeed. the equations
of motion (4.6} and (4. 10) are reduced to the form

== Qg + Qg + Rag — 2/ Ho. (5.13)

In case we are interested in manipulating the Friedman equation for a specific value
of the redshift z we can make use of (5.11). It is difficult to distinguish the last term
of (5.13) from GR dark energy, since both terms accelerate the universe, If the self-
accelerating term z, H domimates over the expansion, the cosmological constant in

(5.13) and (5.11) has to vanish {26].
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5.3 The continuity equation

The energy density can be calculated by direct integration of the continuity equation
thﬂ = (). A proper maniputation of {4.1) and (3.9) leads to the equation

Toly + (a/fa +io/2) (37}}’ - 7”,-") =0 (5.14)
which can be simplified to the form{c = 1)
LA 3aja (g + Py 4 ag/2(3P +2u) =0 (5.15)

since we have applied the approximations

FOO = 2/(2 g+ 2ud)

9 = ~2ig(1 + 4u0) 2 + g + 2u)°

0 00, [} . ) (5.16)
Too = SRR A e = g — pg/2
37§ — T} ~ 3+ 3P
A perfect fAluid relevant to cosmology obeys the equation of state
P=wn (5.17)

where w = 0 for a matter dominated universe and w = 1/3 for a radiation dominated
universe. The substitution of (5.17) to {5.15) leads to

w/p = =3 +w)aja + no/2{2 + 3w) (5.18)
and the integration of the differential equation (5.18) implies -
[T g 3w exp (—up (3w +2) /2) {5.19)

sherefore

Ko a~3 exp(—uo) matter dominated universe (5.20)
a~*exp(—3ug/2) radiation dominated universe .

This asymoptotic behavior indicates that the weak anisotropy affects homogeneity.

5.4 The look back time at the presence of weak anisotropy

Given the definition of the anisotropic Hubble parameter (3.4) we can generalize the
concept of the i(_)okback time fy — £ in [7]

&) Springer
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T

o — 7. w/——ijf'j-— (5.21)
o O+ A :

0

where 1 is the age of the universe today and 1, is the age of the universe when the
redshift was z = z.. Therefore the generai expression for the world time evolution

should be [30]

oo

- ' dz’

fz) = / e (5.22)
S (U+VH(E)

since 7 — oc at the start of the universe. Taking into account the weak anisotropy

scenario and the redshift expression of the Hubble parameter (5.10) into account we

deduce the small z, expansion for the worldtime today Iz =0)

fo =10 + i Tazy (5.23)
k=1
where
o0
0

5.5 The Finsierian Raychaudhuri equation

The géneralization of Raychaudhuri’s equation has been given by the following for-
mula [34]

S PR
B = =B~ quo"uu + @y’ —4r Gl + 3P} + (}’:;:'y‘c):“ (5.25)

73

1.

o

where 62 = & Y, &t = @,@*? are the Finslerian shear and vorticity respectively,
which are defined in [§,3]] and refer to a perfect fluid. Equation (5.25; i5 a direct
application of the Finslerian Lie derivative for dust-like matter developed in [38].
Tt includes the anjsotropic gravitational influence of the matter along the worldlines
which s expressed by the tidal force of the fieid

Lany*y” = 4nG(p +3P). {5.26)
Using the expressions (5.8) and (3.3} we produce the linearized Raychaudhuri equation

4= ~473-2 where f depends on a, ¢ in virtue of (5.4)]
a

1

- H
gcﬁ =4mGu+3P) = + fla,a,d.2) (5.27)
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where the function f(a, 4. &, z,} is defined as

. no 3H -
fla,a,d,z) = ~3H% - EE(H2+H2) |

!
+ —}-_j: [2xG{p+3P)+32,Hlz.

Thus we can expand for small values of 7, and conclude that

Fro, a 3a(nNa(ty —a(6)? ; .
-5 =4nG 3P+ 3o — 7 P 5.2
0% = 4G 3P+ — s F 0 B

The sign of the right hand side of (5.27) determines the state of expansion. If the
inequality f(a.d.d,z;) < 0 s valid then the term f(a, &, d, z;) contributes to the
acceleration of the universe(the field assist inflation), whereas if f(a, @, d,7,) = 01t
will slow the expansion down(the inflation domination must be fonger to accelerate the
universe). This specific effect is due to the kinematical reaction of the geomelry of the
spatial hypersurfaces, rather than an attempt to suppress inflation(it can be considered
as an essential ingredient of the Finsierian ansatz) {24,31].

6 Einstein field equations with anisotropic term

We assume 7, 10 be a constant and study the differential equations {4.4), (4.5} and
(4.6} both for the cases of matter and radiation dominated universe. We notice that
for z; = 0 the field equations reduce to the usual ones coming from a Riemannian
Robertson-Walker metric [14,27,28,45]. The whole calculation is done for a homo-

genedus universe of constant density (4.

6.1 Sclution for a matter dominated universe

The solution for the scale factor in the case of a matter dominated universe is derived
hy the integration of the Friedman-like equation (4.6) with initial condition

ally =0 6.1

where 7; = const. We set up 1 = 0 as the beginning of time without considering any
quantumn effects; there are different ways of handling the initial condition for example
setting a(fp;) = O or considering the scale factor after the Plank scale (e.g., see [J1]).
Equation (4.6} is simplified if we insert the parameter (conformal proper time) 27,28]

{

dw
n= / (6.2)

al(w)
0
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which measuses the arc in rad traveled along by a photon on a sphere of radius a{t).
We study the asymptotics of the scale factor

alty=a(tin)) =aln) — 0 {6.3)

where cdr = adn. We consider a homogeneous universe of constant density i calcu-
Jlated as [27]

M M
v 6.4)

=57

We assume that the universe would take over the same volume as in the closed case
(k = 1} since (5.20) is valid for the agymptotics of . The parameter k determines
the kind of spatial geometry k = 0, —1, +1 {flat, open, closed universe, respectively).
Since £ = a4 Eq. (4.6) becomes

aGM
5T

. mon? o ozl N
(a —’az) = 4—4{—54—1{&2-{—

> a . (6.5)

We study a Universe that accelerates very fast at its early stages thus we can accept
a -+ 32—’512 = (0. The velocity of expansion 2 takes on very large values. Equation (6.5)
can be integrated directly for all the values of £. It is more convenient to substitute [28]

2GM .
y == (6.6)
3In
and the separabie Eq. (6.5) leads to
D T e ba. iz 4“2 . -
t_—E / kx — 2a, x+_/£ix-—2a* . ©.7)
0 0
together with the initial condition
a(0) = 0. {6.8)
I Caiculation for k =0
We fix k = ( at {6.7) and find
3
a | a
== v | e o
2 |:6a* OJ
{6.9)

20,

a
]
lo = _/Avf x* + Bay/zfxdx
0
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we expand for a small z, and arrive at the soiution

V3

3ﬁa3/2 + H(2a0a s fo + O(z2)

I =

IT Calculation for & = —1
A direct integration of (6.7) leads to

P= ——%:— [az/z + 2aga + 4af logla — 2a.] + I;}

where

: \/)c‘L 4[5t + 8a, fhx
Iy =/ - dx
x—2a,
0

after expanding for small
1= Jala + 2a) —a,log (I +aja. +vala+ ?»ﬁ*)/a*)
— (a3/4 + a.a+ Zaf iogla — Za*i) o+ O(Zf)-

IIY Calculation for £ = +1
The calculation is the same as the previous case

f == g— [GZ/E — 2aya + 4a? log la + 2a.) + l_l:i

where

i \/x“ +4/77x% + 8a. /i x
[wg =/ dx
x4+ 2a.
0

and after expanding for small z; we obtain the solution
= —/a(2a, = a) 4+ a, arccos (1 — afay)

+ (a2/4 — aga + 2a>logla + Za*{) o+ 0(2,2).

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

{6.15)

(6.16)

The leading term of the solutions for all k represents the solution given by the
field equations of the Robertson~Walker metric [28]. A small g expansion gives the

asymplatic behavior 1 ~ a*/? or equivalently

2/3

a~1

@ Springer
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6.2 Sclution for a radiation dominated universe

The solution for a radiation dominated universe can be deduced by inserting the equa-
tion of state P = % Mz L0 (4.4) and after adding this to {4.5) we end up with the
equation

7
%(QC}} = —k — ZGE[ZI {(6.18)
which we integrate and find
. T
aa + Zz;a = —kt + C (6.19)

If we substitute z, = 010 {6.19) we get back the usual solution Tor a radiation dominated
universe @ o /7 for al values of k. If we take into account the initial condition
a{Q) = {} we arrive at the solution

42 7 7.2 _
alt) = 7\/_ [{C{)Z, + k3 (i —exp ('-'erl)) - &-szf} . (6.20)

.
ir

The expansion of the solution for small ¢, is
Te(kt —3Cy) 2 ] i
() = A1 {20 — kit + e - 2+ O 6.21
a(r) f{\/ 0 = v T oW (6.21)

6.3 Solution for the de-Sitter model

The de-Sitter model for an empty anisotropic universe constructed in [341 leads to the
gguation of motion [ = 0 in (4.10}]

. el .

axs a k A

d e = 2 )
(a) + =2 T+ 3 (6.22)

, - £\ 2 :
Since &2 in (6.22) can be written as H* = (g—) + gz, > 0, the cosmological constant

A i restricted by the inequality A > 3K where K = k/a? is the curvature of the
space.

I Calculation for k =0
The case of zero curvature can be infegrated to give

1/2
a(t) = const x exp (—2z, /21) exp [ (A 3+ 2 /4) 1] (6.23)

The solution converges to the one without anisotropy if we let z; — 0 [9].
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IT Calculation for the special case A = 3£
The field equations for 2 space of constant spatial curvature (maximal symmetry} and
an empty universe (7}, = 0) imply the condition [7,34]

A= 3K (6.24)

hence A can be substituted to the equation of motion (6.22)

] .
(E) +9. =0 (6.25)
a 7
and the solution for the scale factor is
a(ry = const x exp {~2,7}. (6.26)

In both cases the constant of integration can be absorbed into a{t) if we choose the
right scale (e.g., a({) = I).

6.4 A model for inflation with anisotropy

"The idea of inflation can be incorporated into the model of Friedman-like equations
with weak anisotropy if we introduce the vacuum energy density of a scalar fieid Vg
to the energy density w. Indeed, we consider Gu = Vo/mﬁ,], Le., i1 = Vg thus (4.6)
implies [7.9.21]

. 8r Vi .
& +ady = ——-a* — k. (6.27)
: S Mpy

Since we work at an inflationary phase the size of the scale factor is such that the term

P R .
%’-’-ﬁz‘-}—az dominates over k hence we can neglect k and (6.27) can be rewritten as
) P!

- ‘ Vi .
g b Ve (6.28)
3 m?,,f

Taking the positive square root of (6.28) we find the scale factor
2 5 ”2 .
q(ty = const x exp (—z;/2t) exp (87r/3- Vo/mp; -+ z;’/4) t (6.29)

recovering the de-Sitter solution {6.23) and the expected exponential rate of expansion
for the early mflationary phase of the universe.
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7 Estimation of the cosmic microwave background radiation (CMB)

The estimation of CMB can be achieved with the aid of Stefan-Boltzmann’s law
[22,28]

fhrasc” = TspgT(@)* (7.1)
where
s 3 (7.2)
o = \ R
ST TP

The temperalure T(z) is the radiation temperature for a given redshift z and

g = ng+-g~ > @ | (7.3)

bosons fermiony

is defined as the sum of the boson and fermion spin stales (e.g., for photons g = 2,
for neutrinos g = | and for massive particles g = 2Zs + 1). The calculation could
be attainable if we consider some data for the Hubble parameter H = a4/« and the
anisolropic constant z,. The radiation dominated solution does not depend on the
nature of the spatial geometry of the universe thus we fix k = 0 in (4.6) and obtain

frad

3 2
Mred = S_JTE{HA +Hz)
3

= 1 7.4
SnGH (7:4)

theréfore (7.1) and (7 .4) yield [28]

g 3, 1/4
T = ey # % . 7.5
@ [G‘Sigg* (SHG ‘ )} )

The calcutation can be directly derived if’ we manipulate (7.5) into the form

BT = —X e (7.6)
p1) == Pl .
where m p; stands for the Planck mass
he
mpy = el (7.7
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Thus we can calculate the temperature T(z) for a given value of the redshift z with
the aid of the formuia

T(2) = Ty [ + 2 /H@)* (7.8)

where Ty (z) is the value of the temperature for a given value of the Hubble parameter
without the assumption of weak anisotropy and H (z) is calculated from (5.10). Due to
the adiabatic expansion of the universe we can transform the vaiue T(z} at the redshift
of CMB to its present value Tg using the formulatacyz = 1/(] + zr), zr = 1090}

To =acueT (@) (7.9)

8 Discussion

The study of a FRW-mode] with g weak vector field incorporated in the metric structure
of space-time provides us the extended Friedman-like Bq. (4.6). The contribution of
the variation of anisotropy is expressed by the additional parameter z; produced by
the Finslerian character of the geometry of space-time, Especially as it is evident
from Eq. {4.12) 7, has a direct dependence up on the Cartan torsion component Cogo.
We remark that our present model cotrespond (o the ones studied in {20,26] for a
flat universe due to the correspondence of 7, 1o :t%, where r, ig the extra parameter
defined there. The extra parameter z; appears to compete against the contribution of
the cosmological constant due to {5.13).

We perform the model-independent and insensitive to perturbation § test [43], where
S is the CMB shift parameter [20,26]. Our model is close to the WMAP data for z flat
universe since for § = 1.70 £ 0.03 {32] we end up with [Qx| < !. The same result
seems to be valid as we can see in Fig. 1 if we apply the baryon acoustic oscitlation
peak test for A = 0.469+0.017 [10, 13] (Table 1). The procedures of the tests and the
formulas for A and § can be found in [26]. A part of a future work is the investigation
of cosmological perturbations since the Finslerian approach generates deviations from
homaogeneity and isotropy. A more fundamental task is the comparison of our model
to the data of CMB anisotropies and the matter power spectrum, which is strongly
connected to the analysis of the density perturbations [18].

The initial highly compressed. thermal radiation dominated state of anisotropy is
considered to be adiabatically transformed fo a cooler matter dominated isotropic
phase [27). In such a case where the anisotropy energy is converted to thermal
energy and large amount of entropy [23], a phase transition in the geometric structure
can be regulated by the second term of Eq. (2.1), since we expect ¢ (x) o decrease
monotonically as the universe expands, in order to obtain the standard FRW model.
This ensures negative values for the parameter z, and provides us with a self acceler-
ating cosmological model.

The whole picture of anisotropy directed by a primordial vector field can be locally
incorporated to the anisotropic metric structure of a Finslerian space-time. The oscu-
lation of the Finsler space leads to the construction of a disformal Riemann structure
and can be interpreted as a model of modified gravity.
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vatlnes of z, Tor 2 fiat universe(Q x = 0) catculated by the Friedman equation —g;/Hg = 1 — Q)

Table I The A rest estimation
for the parameler 7

Qu z/Ho Qg =1-Quy +u/f
001D (19029492854 —~0.0129492854
0.15¢ —0.8443621881 00046378119
0.232 ~{).7539951 109 G.01 40048841
0.244 —0, 7710952485 —(.0150952485
6.251 «{), 7608626761 ~0L.{H 18626761
0.252 ~(3.7327905974 0.0152004026
0,253 —- (. 1610339645 ~{.0120339645
0.254 0. 7556133186 ~0.00M6133186
0.255 —{0.7449599948 (.00000006002
0,259 ~{3.7313813921 0.096§86079
0.260 ~{), 7400000040 -0.000000004
0,261 —{3,7236653148 0.0153346852
3.262 —().7378258680 0.0001741320
(.263 —().7464096424 —~(.0094(06424
0.264 —(1,7245443659 0.01 10506341
0.2651 —(}.744148917% —(3.0092489179
0.270 —0,7425851580 —~{.012585158
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Table I continued

D p a/ Fp Qg ="t-Su+z/H
0.271 ~0.7389280 128 —~0.009289128
0.272 —0.7279999954 00000000046
0.273 ~01.7337402645 ~0.0067402643
0.274 —0.7135079061 £,0040405097
0.275 ~(1.7151439555 0.098560445
0.2761 ~0,7238999599 £1.0800000001
0.277 —0.7363820256 ~0.0133820256
0.278 -1, 7166084631 0.0653515369
0.279 —0),7339876359 ~D.0129876359
0.284 ~0). 7038915738 0.0151084262
0.282 =0.7096732356 £.0083267644
0.2831 -0, 7079203819 0.URT96181
264 —0.7285702833 ~{0.U125702833
0,285 (. 7232538088 ~{1,0B3538088
0.2861 ~0,7229838341 ~0.09083834]
01.289 ~0.710999943 0.000006007
0.290 —(,70325280H 3 0.0067471987
0.291 —0.7030021795 0.6050078205
0,295 —0.7002433343 0.0047566617
We insert the valses of the 247 {12981 —0.6924644204 0.0094355796
tor the baryon acoustic (.325 ~— (6674671885 0.007532811(5
escillation pcakm . ” 0.341 ~(3.6560009554 0.0029900446
el ol
A= Sl [}?!’Q%T%%f} 0.345 ~0.6501638547 0.0048361453
and exlcutate back the 0.351 —0L.6617634475 —0.0127634475
corresponding values of ;. 0.36 ~(.6545617924 ~0.0145617924
where A = 0.469 £0.017 0L .37 —~(.6385195052 —~0.005195052
) ds 3;1?;25;‘;’: 'dl:ﬂ}??”; 0.38 —0.6199999969 0.0000000031
the huminosity distance defined 0.392 - {1L6008825 186 0.0071170814
in-various Relativity textbooks 0.411 —-(.5985044824 ). 0003044824
(g‘ift:;‘kj‘:jﬁ};opji‘;";;ﬁe , 0an 05789999998 0.0000000002
from the present cbservational 0.451 ~0.3563735170 ~0. 007735170
predictions for 2 flat universe of 0512 —0,4989395368 10109395368

WMAP {32}
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A Appendix

In the following we present some basic elements of Finsler geometry [6.8,31,36,42].
In 1854, B. Riemann, before arriving at Riemannian metric was concerned with the

concept of a more generalized metric

ds* = Fe' x? L xtdx L ™) A1
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where 1 is the dimension of the space. A Finsler structure is provided by a n-dimensional
C manifold M", a C® function F = F(x,y) defined on the tangent bundle
TM = TM/{0}), F: TM — R that satisfies the conditions

(F1) Flx,y) >0 Yy#0 )
(F2) Fix, py) = pFlx. yy forany p > 0 .

where y denotes the directions or velocities on the considered manifold with the
previous coordinates. The metric tensor (Hessian)

rlj,:ﬂ

Ew(x» ¥) {A3)

Jijlx, y) =

is of rank{(f;;)i. ;1 = » and homogeneous of zero degree with respect to y due to the
Euler's theorem. The length s of acurve C 1 x'(f),a £t < b on the manifold is

2]
= / Flxlr), yde. (A4)
o

The integral of the length is independent of the parameter if and only if the condition
(F2} is valid. The condition of homogeneity enables us to define the line element

ds = Fl{x,dx} (A5

and the variation of the arclength & [ ds = (t implies the Euler—Lagrange equations

dif; (if%(x ¥} - E—{%(x, v) = 0 which represent the geodesics of the Finsler space.
The equation of geodesics then becomes analogous to the ones of the Riemann space

£ + 3"4.:;\-.)";. ¢ =0 {A.6)
where the Christoffe] symbols are defined by the vsual formula

. 1o
Vi) = o ) (fra G v+ fre g & ) = Sikr 8 Wi (AD
The notion of torsion tensor is crucial within the Finsler Geometry’s framework.
A Finsler space is @ Riemann space if and only if Cijk = 0 where C;j; is the torsion

tensor defined by E. Cartan as

1afi;
Cije = 5—8% (A8)

Therefore a Finsler space can be treated as a natural generalization of a Riemann space.
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B Appendix

For a Finslerian vector field X¥(x, v{x)) the §- covariant derivative has the form
1,21}

Xf’ﬁ(x. y(x)) = X% + roalx, FANXO(x) {B.1)

and the Cartan's covariant derivative is given by

X (x, y(x)) = X%} — ax x, YNNG x, ¥(xh
i » ¥ .,f’ 8_}?ﬁ PR f LIRS
+ T (x, yx DX (&), (B.2)

The Iy arethe Cartan’s connection components defined as

PG w) = (v, = C,06 = C5,Gh + G GE™) o) (B

AJL

and the Gif, G* are

GH

Gt = 2 (B.4)
ay"

26" = ypo ¥ 57 (B.5)
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