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1. nfroduction

[n the feld of Applications of Ceneralized metric structures Pinsler, Lagrange, Hamilton (FLH) spaces, sienificant results
from many auwthors have been given. Among them are Antonelli [1], Asanov 12, Balan 13), Beil 141, Bogoslovsiy {51
Brandt (6], keda {7], Miron [8], Stavrinos {8), Vacaru [10] et al. have studied properties PoL spaces in the fields of
Ecolagy, Setsmatogy, Gravitation, Relativity, Gauge theory, String theory and Cosmology. The interest of Applications has
been increased duting the Last years. Applications of FeL spaces have inspired authors from many countries. Quantum
Gravity, Vielation of Spedal Relativity, Fermat Principle etc. can be studied in the framewaork of Finsler Geometry, Finsler,
Lagrange and Hamilton geometries constitute a signiffcant branch of metrical differential geometry, extending with its
Applications the topics of Theoretical Physics, General Relativity, gravitational waves and Cosmology including in their
internal structures anisotropic variables, such as velocity(direction), accedaration, scalar, spinor ec. For a unified grometrical
description of the gravitational field the study can be done in the twtal space of a tangent bundle. Applivations of
FLH spaces have been developed in the spinor theory by Vacaru and Stavrinos utilizing Chifford Algebras and spinor
variables [17]. Further applications to Relativity, Strings Theory and Theoretical Physics can be found i a recent
monograph |12} During the last years, observational invastigations of the increased values of anisotropy of microwave
casmnic background radiation | 13,14] suggest the introduction of an anisotropic metric structure in the underlying geometry
of space-time, In some theories of anisotroples the basic philosophy for the study of an anisolropic space-tine is supported
in perturbations of a spatial homogenecus isotropic universe. Thede are investigated in terms of small variations of
the curvatare, As the universe expends the particde energies and muoments will eventually move o a regime whare
ron-teivial interactions fake place and the particle distribution anisotropy is then commudcated to the space-time
geomeiry, The above mentioned consideration retalns the geometrical concepts of the homogeneous setropic cse. A
candidate geometry for the study of generalized fleld equations with respect to the density and pressure of flulds moving
inn anisotropic graviiational fields is Finsler Geometry. It has 2 fundamentally different geometrical character for the

study of locaily anisatropic cosmwlogical phenomena, Le. it intrinsically incorporates the anisotrony in the geometry of _
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2. Prefiminaries

b the following we mention some fundamental geometrical concepts from the theory of Finster Spaces. We consider
a smooth 4-dimensional pseudoriemannian manifold M, (IM, w, M) its tangent bundle and 18 = TM {0}, where §
means the image of the mdl cross-section of the profection # © M - M. We also consider a local system of coordinates
(x'), =0, 1,2, 3and U achart of M. Then the couple (F, v is a local system of coordisates on 7 ~HIU) in TM. A coordinate
transformnation on the total space TH is given by

[ . . i
=il ah det| o) =0,
HEY 1
<l e At S
o= é“;gybi = S50,

A Finsler metric on M s a function F . T — 1 having the properties;

1. The restriction of F to M s of the class ™ and F is only continuous on the image of the null cross section in the tangent
bundie to M. .
2. The restyiction of F to T8 Is positively homogeneous of degree T with respect to (3L

Flz, kyy = kF{x. 3}, ke g,
3, The quadratic Form on B with the coefficients

1
=iyt -
defined on TM is non degenerate (det(fy) o5 0}, with rank{f) = 4.
Axnon lnear connection ¥ on TM is a distribution on TH, supplementary to the vertical distribution ¥ on TM:
Fap{TM) = Ny @ Vo
fn our case a non linear conpection can be defined by

8L
Nf = o (3)
ayf
where 7 are defined fromm
e loaf FF
Rl el 4
e (ﬁys‘érx‘fy % ®
and the relation
dy® .
&2, ¥y =0 (5)
ds
yiekds from the Euler-Lagrauge equations:
d 7/ 8F aF
( B ()
ds L dy® due
The transformation rule of the non-Enear connection coefficients is
., ES g T A
N?‘% = W“'":“Nﬁ A i b {7
O 5 axt awage @)
also
ss-we:-;xfs 3m6§xf*§
R s e gyt
.oaE =
U7 = o dd 7% e oy
X W &Y ax’@g}f
Atocal basts af Ty, (TM), (4, 4,) adapted to the horizontal distribution N is .
8 = - NI(x ), (8)
whiers
d . 4
ax ay

where NF(x, v} arve the coefficients of the non-linear Cartan connection N as we mentioned ahove,



1382 . Sravrines / Manlinear Analysis 73 (20880 ¢ ) 303 380

The concept of non-Hncar connection is fundamental in the geometry of vector bundies and anisotropic spaces. It is
a powerful tond for unification of fields. For sxample, in the case of gravitational field, the non-linear cotmection in the
framework of tangent bundle unifies the external and internal spaces, Le. the position space {the base manifold M) with
the tangent space T,M. In other words it is connected with the local anisotropic stiucture of space-time (devends on the
veiocittes].

The dual local basis is

{dz = dxis 5}}& = dyﬂ + Njadx.’;}s:amiﬁ" £

A deconnection on tangent bundle TM of space~time s 3 linear connection on TH which preserves by paralielism the
horzental distribution N and the vertical distribution V on TM. A covarlant derivazion assoclated to a d-conaection becomaes
d-covariant, In our study, we ase the d-cosnection in order 1o preserve the horizestal and vertical distribution of the field
of anisotropy with respect to the anisotropic axds.

Generally an v metric on the tangent bundle (TM, 7, M) } is given by

G = fylx, vide @ d¥ + Ry 8y @ 8y, (10}
We consider a metrical deconnection OF = {N?, ;k £ fk} with the property
Fyie = Sefy = Lifs = il = 0 (1%
file = By — Cifiy — Cifap = 0 (12
where
E 7 N & F e
= 5 {8+ 8ufy — 8ufa) {13}
i i g2 A 5
Ch = Ef (8l + il - Sudn ). {14}

The conrdinate cransformation of the objects L}k and {jk is:

{15}

= % dxf #x" . o

G i it i G % - (s)

The Cartan torsion coefficients Gy, are given by
iﬂr = akf i {17}
while the Chi istoffel spmbols of the first and second kind for the metric f are rospectivety:
Ty 8 3
PRI i BN L . 13
ik z(dx‘%éixﬁ ot (18)
af af 4 f
i R i § .
e 15
f (&xf ax G )
The torsions and curvatures which we use are given by

Ty=0 S;=0 (20
R‘;k = BN~ BN B = AN - I {21}
[ = }”m! ik 3}{:‘& = C{Gﬁ}'? {d2)
ﬁ;;q = Sl 4 Sl + Ly - Ly + G, (23}
San = GGy = el (24}
Py == Gy Craas + ﬂi_ﬁm}fj . C;iif:skisii}’{ {2%)

== S (26)

Phae = FiPus,. {27
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The Ricol identities are

K = X = X R — X By {28)
Ko n = Xy e X8 gy = X0, X0 07y, (28]
X'y n = Xy = X5, {30

3. Finsler geoametry associated with the gravity

A bs well known in general relativity, Blnsteln used the prinviple of squivalence as the basis for 2 geometrical description
of gravity. In the foor-dimensional world space~time the trajectory of a particle falling freely In g gravitational field is a
certain fixed curve. its direction at any point degends on the velodity of the particle. The equivalence principle implies that
there is a preferred set of curves in space~time; 4t any point, pick any direction and there is 3 unigue curve in that directien
that will be the sraje{;mry' of any particle starting with that veloeity.

On the nﬁmf’ band, in the Finsterian framework the gravitational field is defined in 2 space that is spanned by the vectos
rowithy = & {;‘ =0, 1, 2, 33 which is attached to each point x (% /k = 0, 1, 2, 3) &5 an independent internal variable.

Namely the mﬁepmdem: variables become (x%, ¥ Inthe terms of £, Cartan the couple (¢, ) {position-velocity or direction)
is called an element of suppart,

The indrinsic behavior of the internal variable y {y = U w} of the field in a space~tinw can be considared as a property of
the field {tself. Consequently it is plausible to consider f“msler space as the basic structure for the study of the gravitational
field. This y-dependence has been combined with the concept of anisotropy.

The motion of a particle {o a Finslerian space—time F; &s described by a pair (0 Vi where x & Frand Voo :ﬁf is the
4-velocity of the particle (v Is proper time) which represents the tangent of its world-tine expressing the motion of typical
observers in the Finslerian anisotropic universe,

Along this line the Finslerian gravitational field may be regarded as a gravitational field spanned by the fine-clements
{x, ¥} aver the tofal space of the tangent bundle, This standpoint constitutes a unified description of feld between the
external x-field spanned by points x (e.g. Riemaanian description of the gravitational fleld) and the internat y-field spanned
by vectors y. Such a model fuliils the assumptions of 2 geometrical interpretation of anisotropic distribution of matter,

tn a graviational thepry of 3 Finslerian taagent bundle curvature effeces cap be considered as tidal forces. Possible
motifications of them are ought to the non-linear character.

Suppose (Fy, f(x, ¥} is 3 four dimensional differentiable manifold and i 3%, ¥) the anisotropic Pinsderian mere s

assamed to have the sienature {4, —~, —, —) for any (¥, vi. The square of the Jength of an arbitrary contravariant vecter
Xigto i}e defined by the quadratic form
= fy{x, ¥IX g

The time-like, null and space-like curves can be defined in the ?mslermn framework by the following relations,

tme-like filx, y}‘sf‘%ﬁ =
nuli-dike  filx, wav{ ez (3
space-tike  filx, vIVVY < &,

Finslerian geodesics satisfy the Fuler-Lagrange equations

ar dF(x,
( (. :v)) ““““ oy o (31)
de By gx
o

This 15 the equation of Finserian geodesics associated with the Lagrangian Fx, v3 1o the case where the vector v s 7 o 5
has watit Finslerfan Jengih, then the Finslerian geodesics tale on the form
Bod
ds?

where ;@é(x, &y are the Finslerian Christofell symbels, This equation shows the dependence of geredesic equation en velority,
which is fricorporared in the principle of eguivatence. This approach extends the Rismanmian general relativity withoot any
contradiction with its basic principles. _

The sbove mentioned consideration reveals a profound relation between the principle of equivalence of the Riemaniian
prototype and the space-time paths {geodesics) in Finslerian space~time,

1fwe consider & Finsler-Randers¢{7-R) type of 4-dimensional space, where the electromagnetic field s included, we obtain
the generalized form of geodesics equation, where the electromagnetic field is intrinsically incorporated in the geometyy.
The equation of geodesics satisfies the Loventy equation and the carvature tensor of space s then written a5

g;;jk{xu N ﬁigg A E;i;‘gé {33}

whers Rfm represants the Rismannian curvature and fz;”.? the “dlectromagnetic curvature™.

(xR =0 {32
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In many cases we consider 3 convenient Finsler metric for the research on gravitation theorfes. A metric which is
connecied with a Riemanadan one, ax(¢), is called osculating Riemannian metric and is defined over a region U of ¥,

ay(xd = fer, y(x)). {34)
A generatized Finslerian metric tensor cap be defined, as well, by the undertying Riemannian metric
, afy .
fylx, v) = gy + 5 wiu + 0% (35)
where gi(x} Is the Riemannian metric and ¥'(x) = v'{x) = ““g W can take into account the anisotropis torsion fensor of
Cartan, Cplx) = ~’ 135" . Then, the eguation of geodasics bﬁ-mmm
g i
— e g = 0 {35
— 4 o0 )
where
Py : ; B8 ! B ag!
R R ol o o, ), £) N (3%)

Osculating Riemannian mietrics are %&fu‘i tor studing problems i the framework of Finsterian Rﬁ:}étiyit}j 1221
& weak metric can be introduced into studying gravitational waves in the Finslerian space-time by assuming & weak
gravitational field in the Remennian framework, where the weak Riemannian metric is analyzed in the form
gy(R) = g by, LAl 1. _ {38}
By inserting (38 In (35) we have a Finslerian weak metric
Ftx, vy = {ny o+ hy) 4 Cpa® o+ O00%).
Weak gravitational models of this type have been studied 115], This anatysis can be used for the anisotropic description
of the polarization of waves. It is closely connectad to the equadon of deviation of geodesics o detect gravitational waves,
in oider to study the weak field of 2 F-R space we relate It to the deviation of two moving charged particles. 1 s necessary
to take intg account the relation
5?
Syt

where 2! Expresses the deviation vector between two charged particles and w¥ their 4-vel ocity. The f.}p&mwi“ x@;&r@s&*nis
the covariant derfvative in the framework of Fiasler geometry. This is reasonable since in order v detect a grawtaﬁami
wave at least two particles are neaded. So the deviation of geadesics of the weak F-R space is written in the form
PE (g e

{g e méw{(f:m”g"kéﬁeszzé it d =0 (40

wherg ¢ ;jm expresses the Hnearized Riemannian curvatore tensor and i,
The relation {40} in a first approximation of hy tales the form

B 1% BFEN
e ? o e g 2FE ;10 4 Mﬁ & {413
i

b et = 0 {38y

n e funetions of the electromagnetic field,

gr? 2 a2 3t

The Eq. (41} coincides with the corresponding equation for a weak field of the Riemannian space-~time, The differsnce
between these two is that in the Rlemannian case the eleciromagnetic field has been introduced ad boc, In Eq. (39) the
electromagnetic feld is incorporated in the geometry and the two particles are moved in geodesics {(potential Hines) of the
Finsier space. In virtue of Bg. (41) thelr relative acceleration is governed by the curvature of the electromagnetic fetd that
is produced by one part of the energy-momentum ©Rsor,

4. Finsterian cosmafogical models of anisotropic geometrical Held. Propagation of light rays

Some spplications of Finsier spaces to Cosmology started in 2004 { 18], The motivation to this direction avises by some
chservational astrophysical results concerning the degree of anisotropy of Cosmic Backereusnd Radiation (CMB). Anisotropic
direction dependent expansion may be present if the underling geormetry of the universe is anisotropic. In this case the
isutropic Robertson-Walker metric is no longer valid { 141, or f anisotropic non sravitational forces are present such as large
seale primordial magnetic feld, Finslerian or Lagrangian geomerrical modeds of the form

Lyl = \{'%f‘f}y"}d 0L,y {42}

Ry express a generalized geometric model for the anisotropic structure of Universe, In oty situation the rap!atemfzm of a
vector ¥ by —v® is not valid,
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Mowever, a Finslerian geometrical structure of models can correspond to anisotropic structures of space-time regions
{radius less or equal T0F Yight years) The function &%) & ¥ plays the role of “length”, £, is the unit vector of the axis of
apisotropy. In this moedel the equation of geodesics Is given byirotational goodesics}

at @

5 + DY ol () - Butd )Y = 0. (43)

& generalized cosmological Friedman — ke Robertson- Walker anisotropic mode! can be derved by {42} if we consider the
Rivmanmian part in the form

o F 12 .
o (%, ¥) = (ot 00V 5*‘33 ’ “
with
h ot 2 24
el = dxaﬁ(}y Y e we?r? @yt sin® @ o

represents the Robertson-Walker metric, This form of metrie has been stwdied in velation with the anisotropy of a
primesrdial magnetic Held and the microwave cosmic radiation {{MB! in [9]. In the case of electromagnetic waves the
direction of propagation of Heht rays i determined by the wave vector taugent to the ray. The geodesic equation of
propagation bas the foom

L . .

T PURE b e Bk ~ Bkl =0 {45)

{4} .
where b is an affine parameter, Iy are the Christofel symbols of the Riemanndan space and & 2 wave vector. The frequence
@ of the wave in a Finslerian space-time can be defined by o = 'k, where ¢ = %i;; is the d-velocity for an observer with
proper time T moving in a world-line ¥ {0}, The integeal cuirves K{2) of the vectos i defined by ‘é“; = & are calied Heht rays.
I the matural lift to TM the form of fight rays is C(0) = {(A), K.
The Cheistoffed symbels correspond to the Riemann metric ap{x) and the additional term

o (@ ¢1En - Ba)ly ) ¥ (47)

expresses a rofation of anlsotropy direction(axis). Also a physical interpretation of this type of rotation can be given i
refation with spin densities of the angular momenta of galaxies. The pon-linear connection in this mode! has the form

fa}

Nt 3) == Uy + @A | @00 En |+~ A | @) En |35 (48)
The wave vector & of light ravs has the form

i .

F N, Rk == 0 {48
where N} is ziven by (48], The Invariant equivalent form of (49) is

Vi e 0, {30)

The S-curvaturs can be computed by the formula

C3{mote? - gY@ B et - 452

S == oo [ varrilin Sl earraer® .;}i -; F ; 51
: 4F igt e gEs g Selken) ey (51}
where

moe b = 0,21 ot=agy B =Lyt 52)

Tha S-curvature can be considered a3 a curvalure parameter of anisotropy sIn0e § = § Sl =
For the case where our model includes an electromagnetic field with electromagnetic potential, the Lagrangian can be
modified to the form

Ll y) = JagGyy + ¢day® + KAy (53]
which produces the eguation of motion

(iz?éé f g . « % 5T s .

o G {a {O@rh ()l ) - Kﬁ;‘]y} = 0. (54}
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Iis this case KF'y governs the equation of motion of rotation geodesics. The constant K~ m% can be associated with specific
charged particles. The geodesic equation of a wave vector in this case is analogous to the (46). In the tangent bundie of &
generat Finsler space the wave vector | for light rays will satisfy the equation

ﬁfj
S T R, IOK ffi (55)

where 1 . Ol vepresent the Cartan conpection coefficienes. By the relations (42} and (43} the null-condition of Hight rays
is pmvxded emuse of the nullity of the second term (461, In the framework of & curved space-time for light cays, locally

plane waves are presented by approximate solutions of Maxwel's equations [17]. In the form of the Finslerian ansatz these
remabn invariant 18] and they have same form as io classical case,

5. Madified connection structures

i the total space, the adapted frame is set a5 (8L _

The intrinsic connection 8y represents the intringic behavior of the internal variable y: For example, If the intrinsic
behavier of y is related to 3% == K09, G (x) being the rotation matsix, then 8y is given by

Sy ==y b NN (= )

dyf == 7 KMy (56)
S R

&
where we have put K (x) = [ (0) + Sio .

The intrinsic par aitehsxn of iy ;m}dum:’-: the non-linear connection [ 18],

From a physical point of view we may apply the above mentioned form of non-inear comnection in the frammework of
the ohserved anisotropy of cosmic background radiation (CMEB). As it has been studied in a Finslerian ansanz (42), it Gn
be represented by a vector # (3, which is incorporated in a metric moded of of Finsler geometry, as a result of our motion
with raspect to some local frame in the universe. The rotation of a vector % from anisotropy axis #F is given in virtue of the
rotation group A" (x4, In this case the non-linear connection

N e G435 {Y} o
* e
expresses the variation of the rotation group with respect to the anisotropy axis | 16], The rotation group A2 can be used
nstead of the lunction ¢ (2} inthe right-hand side of{42), giving a profound geometrical and physical meaning to the concept
of noer-linear conpection. Then, Hwe choose MY = %’%ﬁé"’, we can see that the con-finear conmection expresses the variation
of spin density,
I addition the Berwald type form of the pon-Hnear connection is given by

{37}

Ny éﬂ"‘ {x}

o DA DA i}
M = G T TR .
The tensor field
aA%  AAT
A% e g e B {59)

denotes a torsion of variation of the rotation group A%,
The adapted frame (8) can be modified in the form,

d’ s (St = @ b TR B =y 4 ™y
3 (ﬁ_a g8 8 .3) ‘ (50}

a2 N = ey FES v
Ex* Bx* it 3}# dy ax®

where we have used 4 = (&, {y = {1, 2 - - 8) for x and y fiefds and 77} another non Bnear connection,
On the basis of the adapted frame (8], the Finslerien convedction structure is introduced by
. 8 ]
Vs w I
e T axA (81
{Iﬂ: - (Lkgﬂ 3,;1" }
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Namely, four connection cosfficients appear. Then, the foliowing four kinds of covarant émwtwm can be defined, for an
arbitrary vector ¥4 = (V¥ V)

YL
Ty, e e LV
, avk
; LA e B RV
ok (62)
Vip = o v
;v
V=t .
We shall first consider the case where (¢, vy arechanged to (x5, v, " being a scalar. Then, the adapted frame is reduced
[24]
Ldx® = (x50 e gy 4 NDARY)
45 i ( § 3 Nﬁ a 3 (6533
gt e é}ys {’iy@
Ir this case, the connection struciure and the metricdl structure are glven by
5 8?: = @i Lc;;; Cf{} tga (&4)
and ‘
€= gudd® @ d* -+ guady’ @ 8 {63)
respeciively.
i 4l
if we choose the non-linear cennection in the form N = ‘l"‘g ¥ with AJ*) = ¢(¥) and y" = alt), then we get
. dilx ) "
N = - :i,}ye m el fay b (bt

that means that N;f takes the form of & covector caused by the factuations of material fields, where (1) denotes the scale
factor,
7 is constant, then dy® = 0, 89" = NJddt and L = 4 w e 0. Therefore P == (1510, CF) = 0. G = 00
(o {xfﬁ y“) is not a constant, in general. g i3 mnstant, then Lﬁ i = 0L
Mext, we shall take up the casewhere (x5, v are changed to (%, ¥, 2% being the time axis, This case Is dual to the above
mentioned case. The adapted frame becomes
i s (07, By = a4 NEK)
a ( & i W 3 a8 (66)
Paxt T OAEe T At Payay b
The connection streciure and the metrical struciure are given by, respectively,

= (8, 1 L Gl (67)
ang

G = oot & 0 + gy @ &Y. {68)

6. Finslerian congruences of anisotropic fows and Baychaudhuri eguation

In the following we shall consider the concept of expansion, shear and vorticity of time-fike flows as these are defined
in the Finslerian context and we shall use them to derive the Finsierian Raychaudhuri equation. This equation plays an
tmportant role in the Riemannian prototvpe of general relativity 1191 In virtue of Rayvchaudhuri syuation the concept of
deviation of geodesics is extended.

A sensadl congrienice in an open coordinate neighborhoud U of P can be represented by a preferred family of world lines
{time-tile curves) such that throuzh each couple &, V) € {F there passes precisely ong curve in this family in which V s the
tangent vector of this carve to that polnt x. This consideration is analogous to the Riemannian coptext,

The metric of Finslerlan space-time 15 describad by the relation

as? = Fr i, vy = Sy
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fn1 the following we assume Finslerian fluid congruences that the matter flow lines of the fuid are time-like geodesics
and are pafameter:meti by the proper time 7 g0 that a vector feld ¥y of tangents is normalized 1o the unit length A f’

We denote by Ay = Vi the Foslerian S-covariant derfearive with respect to the direciion of ¥ix)
We notice that A i belongs to the normal subspace of the tngent space
AV =0, AV =0 (69

These are foflowed because of gendesic condition and the refation of normatization that means Ay Is & “spatial” vector,

A physical and gmmemeai interpretation can be given if we consider 3 smeoth one parameter C{e) congruence of
Finslerian geodesics. Because of the equation of geodesics deviation, the deviation vector ' provide us the sega:rati’cn from
a geodesios Cp to 2 nearby one of the family,

From the condition
Lyr w8 ' 70
we get
- , Vi e .
2V = Vi - Vi) = Al A (71)

ay" C
where 1. represents the Finslerian Lie variation.

The tensor field A measures the change of 27 to be paraliel -transported along- 3 Finsierian stream lne. From a physical
point of view an observer moving along the geodesic G would find the adjacent geodesics surrousnding him to be stretched
and votated by the fleld AL We write down the angalar metric ity in the Finslerian framework

By = fis
where V' is the unit tangent vector. This tensor has the property
by =0, (72

Using the 3-differentiation in the direction of V' (x) for a congruence of fluid lines {not necessarily geodesics) are defined

by the expansicn, verticity and the shear {2} by the following forms:

§ = Aght = v} — 9™ {73}
i = A + ViV — VY {74}
. e, ) .

g v Ay~ ?(mék - 2 VT — Wil — VW ' {75}

where Vi = V] WV = ALV*and * " denotes the Riemannian covariant derfvative associated with the escufating Riemansian

metric apixg == gy{x, V(x}} The symbels *| 17, “0)" desote the antisyrmetrization and symmetrization of Ay respectively.
The tensor (g = 4 “r’? {’W} is symmetric in all its subscripts. Therefore the Hrst extended Finslerian covarlant derivative of ¥

can be expressed i};,f

Fos - - :
A == ‘éfﬁhék + g+ + Vive {76}
The proper time derivative of any tensor f;;: along the fluid Bow lines can be given by
T = Th V™

Remark. The consideration of a Finslerian incoherent fluid provides that the fluid lines are geodesics and V¥ == AQVF = 0.
In1 this case the Finslerian geodesics colncide with the Rismannian ones of a VoRiemannian spave (mscslating Riemmnniang

@k
dr
This is Baychoudhuri's sauation of the Finslerian space-time 20 In the Rlemannian approach of general reiativi‘i}r this
eqquation plays a cracial role in the theorems of sinpularities. The variation of expansion which is expressed hy 82 e - depends
an the YV-gmsotropic bebavior of Cartan tensod {T‘ dlong the matter Bow lings.
By a physical viewpoint the anisotropic Carta ﬁ z&nsm is Introduced in the grometry of space-tirme because of 3 primordial
vector field. .
In the case that 6 == 0, &y == 0, &y = const from the relation (77) the tdal field LYV is due to the vorticity & which
play the rede of vacuum eﬂergy {cosmelegical constant). It is analogous  a centrifugal field of the Newtonian theory. It
counterbalances the tidal feld,

2. &g{&& o5 {'&&{Bﬁﬁ — L}é\‘yivf e {;’i {7?}
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When we consider an incoherent fuid, the Buid-lines are geodesies and the lastterm of right hand side of (7735 Ve 000
this case the Raychaadhurt equation is teduced to the form of a V-Rlemanndan metric space associated with the congruence
of gecdesivs.

A perfect flufd in the Finslerian space thne case has the form

Tl VExYY == (g -+ PIVAOVHX) -+ puyy {78)

where p = pix), & = p(x) represent the pressure and the density of the Hold respectively.
The Finsteln eguations can be written inthe form

S . 1,
L, VX =K (Tfj{x', Vixyy - i?}‘fﬁg}) . Koreonstant Tk

where the Ricei tensor Ly is directly determined by the matter energy-momentum tensor Ty at each point, associated with
the osculating Rlemannian metric rensor ay(x) == gyix, ¥V 03). Substitaton of (78} 0 (79) gives

- 1
Lg¥ VW o 3 Kig -+ 30 (8607
The term L, V'V corresponds to an anisotropic gravitational influence of the matter along the world lines of the flusd and it

expresses the tidal force of the fisld.
The form of Raychaudburd equation in the case of perfect fluids &s given by

L 1. . - 1 .
B om0 o G B~ KA 33V (813
dr 3 2 #
The condition

provides us with the so called strony energy condition for every thme-like vector V¥ tangent to thne-like geodesics. We
notice that the fuld enerey 1 and pressure p satisfy the engrey condition 1 -+ p » G This condition eniquely defines the
Finsierian world Hnes (congroences) of the fuid with Vix) tangent vector field analogous to thal of Riemansian framework.
The term LAV = O can be considered a9 a key for the existence of conjugate points in the Finslerian space~time struciure,
The concepts of expansion, shear and vorfoity for fluids were infreduced for congruences in 3 Finslerian anisolropic
spacé-time [2]. The definitions of these cosmological gquantities led to the generalized Raychaudhuri equation which is
rekated to the attractive nature of classical gravity [20L The form of the Finslerian Raychaudhuri equation is given by

dé 1 g PR PR £ o
Y- T Al N0 L T AR V) (83
dr 3 :
where §, &, & are the expansion, shear and vorticity, the " stands for the §-covariant devivative, & = ‘w“g {‘Q;Wi«””
and V1 = %Eﬁ. ‘The operator 7 is the Kiemann covariant derbvative with respect to osculating Riemannian meiric
agix) = gyled(x, V{xy}. Despite the x-dependence of the metric the Cartan torsion tensor
1 #y
i = o oo €30, WK 34
=k V) (34)

doss pot generally vardsh at che Chostofie! symbals’ expresgion and affects both the geometry and dynamics.
The cosmoloyical Hubhle patameter in the Finslerian ansatz can be defined by the anisetropic scale factor & related to
ardsotropic expansion

aaE ) (85

. &
H oo oo ] {86]
& 3
where & = (£, with £{sY) the unit tangent vector alosg the fow jines.
e anisotiopic Hubble parameter bas beerr ased for cosmalegical problems in the Finsierian ansatz {19}

Fypansion on the Finslerlan angent bundle
The Finsleran expansion shear and vorticity can be extended on the tangent bundie. We consider ¥V = v, VY s unit

fangent vector along the Finslerian stream lines of the cosmological fhuid, We assume that the tangent vector fiekd V iy along
acongraence of horizontal and vertical geodesics{tangent to the flow lines of an nceferent fuid). The Binsleran space-time
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has to be affinely connected ie. Retorsion free, R, = 0. We assume that a cosmotogical fuid in both cases & determined by
horizontal and vertical paths parameterized by the costnic proper time v, The tangent vector Beld for eachcase iy given by

N - dy
¥ o NY L o ;V {87}
dt Ay
hence we can impose the Iollowing conditions
Vit Vi =0
i (88)

VRV, =1, VELYT =0,

We emphasize thar for the vertical case the interaction which is constructed by physical and geometrical quantities on 2
specific fiber 71 {({xg 1) = T, # attributes the relations

Agwe Vi, Age =V {89}
At the conditions {88 can be re-expressed as

AWl = AV = 0

ApeV* = AV =0

stating that the tensors Ay, A, are purely spatial,
The Finslerian expansion on a bundle can be natorally defined as

(80)

g; = VJ;;
- {81y
fy e VH i
together with the vorddity
By = A+ BY - ViV
Gy 5% Aoy + VeV = ViV
and the shear

(92}

- H CL .
oy = Aggy gf?i By - 204" - VY~ ViV, .
i {93}
f}g;; w5 A{;«“;ﬁ} - fa‘{}}fﬁmz - Z":w&q‘uye& - Vx‘vgn e Vg'r,%’;a*.
where
Ve VL VYV VVE {94}
Therefore we can express the derivatives Vg, ¥, |, by virtue of @, 0. Indeed, the combination of [92] and {33 implies
- ) ) ]
Ay eshy + o + 8 4 WV 4 200 V7
B (95)
Ay o 3 By F g+ Fiw A+ W Vi o+ 2V

The rate of expansion for both &, &; can be implied from the commutation relations and the properties V{‘;V" w VH VY

o . . ) )
W{El‘ = MVT;V;} = Rig VW™ v i ng
cfg {4963
S VR VYL S VIV
where % m W o OVt and %ﬁ% = ggélyi* = fy L, VP Since V'om VP = 0. The contractions A% Ay, AYY A, are

simplified to the form

i 1 L i
AR Ag = - Qfﬁ"} + %G+ o iy
3 {87}

y i [ .
APAL = 35@} e F G D,
thus we can generalize the Ravehaudhur equation in 3 tangent bundle to the form

T e noze that the cosmic parainerers reforring w the horlzontal and vertical geodesics are affne paranceters of the arc-length,
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¥

_-a;‘" = —':é (’3; - (‘s‘ﬁ“(";}k -+ ﬁ?ék{n‘;?;gg R Rgmvi?”’ {QS}

A, T o o

ot = By - i b 5 - S, VIV (99)
For a case that the horizontal and verticsl congruences are rotation free, we have

foy == 43, iy s O {10

Trt case we have to study the evolution of the congruence’s expansion we shouid note the inequalities

FHEt=(EY 20, G i =@ 20 (101

7. The Einstein field equation and the energy momentum tensor of perfect fluids

The energy-momentun tensor can be decomposed tw horizental and vertical pare {12

T, V) = T, VY + T4 (x, V) {102
where

P, VY = Tylx, Vidd @ 6 {1033

TV V) = Tl VISP: @ 8y, {164)

We fix up the horizontal part of T 1o refer to gravity and the vertical one to refer fo glectromagpetic phenomena asseciated
te a primordial magnetic field B Thus, bearing in mind we can express the components of T as{p is the density and P the
pressure of the cosmelogical faid)

Tilx. V) = (p -+ PV, — Plilx, V) {105)
_ 1. 1 N
Tg'i.b{xz v) =3 Egzvjtvu g ggz'h{.ﬁ» '"E‘ ffg;:sa { §€}ﬁ}
where fi,, 15 the metric tensor of the vertical space, B e BB, and
1.
Tl = §32g’wz - BB {1g7}
11, 1s the anisotropic pressure,
i
Ry = = (R-+5)fy = Ky {108}

deseribe the interattion of anisolropic geometry with the classical gravitational matter. The field equations on the vertical
sub-bundle are dependented on the S-curvatue and written as

1 .
Spe — §{R + B = BTy {108}

The Einstein equations can relate the S-curvature of the vertical sub-space to the phensmenocn of weak anisotropy created
by the presence of the primerdial magnetic fiekh The availability of energy-momentum tensors (105} and (106} irnplies the
following expression for the Raychaudhur emations (98] and (85) for an orthagonal congruence {dy = &y, = O}

ﬁé! 1 v il v b

E;m—gﬁé}wo' ﬁ;gmé‘k{iﬁ*ﬁ“syji {I“}}
dé Yoo epws o -

B - k(B ()

singe

. N
R’V =k (’[@vaf - N»-T;)
2
7 {112)
S VIV =k (T}};_UWW E‘J‘;ﬁf‘) .
In a gravitational theory on the Finsferian fangent bundle curvature effects can be considered as fida] forces. Possible

modifications of them are oaght to the non-Hnear character (nternal interaction of tidal forces, dark tidal forces ete). Foran

. i LB il S, . esiipi -
anisotropic space-time with & = &, = 6 =8¢ == U and &y, @y, constant, the tdal fields are B V'V and 5, VAV" are
due to the vorticities. This play the role of vacuun energy.



3 kei+4) P Smrerings / Nowlinear Analysis 73 (2004] e 138821 202

The conservation lews for the energy-omentum tenser, are given by

Tie=n, T =0 (113

are based on the assamption of the P-curvature’s vanishing P};ﬂ w ),
Energy conditions
A divect consequence of the coservation laws {113) s the dominant energy condition(D.E.C) for both energy-momentum
tensors which includes the weak energy condition {W.LCY
T, VIV 2 0, T VIVEV = 0, (114)
valid For aif timelike vectors. The W.EC yieid to the inequalities

1.

Kp+3P) 20,  (BVH) = gﬁ’*x (115)
expressed with respect to the present matfer and magnetic fleld. The berizontal energy-momentum tensor Tylx, V)
is responsible for pravitational-phenomena observed on the base space-time manifold M therefore the strang energy
condition{ SEC)

a vl 'im;g

!g%"tf;@j}fk (“ﬁ'}
is valid and the field equation {108) lead to the inequality

RyVivi = 0, {1173
We remark that

S VAV = — (BYPF < 0 (118)
which expresses the negative energy of the magnetic field due to the tension of magnetic lines to remaln straight.

Ackarowledgments

The author would ke & thank the University of Athens {(Special Account for Research Grants) for the financial support
of this werk,

References

111 P Astonedh, B, rgacden, M. Massameto, The Theory of Sprays with Agplications in Physics and Biology. Whower Acsd. Pub,, 1993

121 G5 Asanov, Bogfer Geometry, Relativity and Cauge Theodtes, Retdei Pub. Comp., 1985,

{31 V. Bakam, Applications of the Varkujonal Princisde in the Mbered Finslerian Approch, i 836 Prov, D Ceometry, (eometry Balloan Press, 1904,
pp. TE30,

14} RO Hedl, Finsler geomerry and refativistie feld theory, Found, Fhys, 33 (71200311107,

157 ¢, Bogoshisi, H. Goenner, Dg the possibillty of phase tansitions ia the geometric structuse of space-thme, Phys. LetL A 244 {1998} 222224,

16} . Bronde, Fisslesian spacetims, i ©. Ban, 5. Cherss, 2, Shee {Bde.) Cotemporry Mathematics Finsler Geometry Research Conference o Fintler
Cenmery, uly HE-20 1985, p 37%

7] S theda, Advanced Studies in Applied Crometry, Selzanshi, Sagamithara, 1895,
18] £ pairon, M. Andstasied, Lagrange Spaces. Applications 1o the Theory of Relativity, Hafkan Press, Bucurest, 1997,
(8] © Stmrines, A Keurersis, WM. Stathakopoutos, Friedmaen-Hie Robhereson-Walker model in generalized. metric space-time with weak anisetropy,

Cen, Kefativiny Gravitation 40 {2607) 1408-1425.

§ 5. Vacary, Nenholonomic Ricad flows: I Fvalution equathons and dynamics, L Math, Phys. 49 (2008} 043504

{ P Stavrinos, $. Vacarn, Spinors and space-time anfsetropy, Usiversity of Athens, Athans, 2802, p. 281

1 P Stavrinus, $. Vacary, B, Gaburov, D, Conjs, Cilford and Riemanr-TFinsier Structures in Geometric Mechavics and Gravity, Geometry Baikan Press,
Bucharest, 2006, p 643,

o
bad i 2%

{43} Bermet, of al, Astrophys. L 583 T{2003),

114} R Patridge, Backeround Radistion, i Canbridge Astrophsivat Series, Canbridge Unbversity Presy, 1995

{151 P Sravrines, Deviations of gendesios and gravitational waves in Finster space-time, Rev. Ball, Caloutts Math, Soc 8 112,
1161 P. Stavrines. E Dislosiansis, Firsterion stoucture of arisotropic gravitational field, Gravit, Cosmol. 10 {4} {2004} 1- 11, 140),
{471 P Schosidey, | Eblers, E Falos, Gravirationa] Lenses, Soringer Verfag, 1999,

18] 8 teedy, On connections associated with 3 Fiaslerian gravitational field, Rep. Math, Pliys, 56 (3] (2005) 335-339.

P19 5, Howiing, GER Bl The Lorge Scale Structure of Space-Time, Cambridge Universily Fress, Camibnddyge, 1973,

12t B Stavrings, Congruences of fluids in 2 Finglerlan avisotropic space-time, Tmternac, |, Theores, Phys, 44 (21{20053 245254,



