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General very speciad relativily in Finsler cosmelogy
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General very special relativity (GVER)Y ks the curved space-time of very speciad relativity (VSR
progosed by Coben and Glashow, The geomenry of genegad vory spocial relativity possesses u line element
of Fiosler geometry introduced by Bogostovsky, We calculate the Binstein fiold equations sed dorbee
maoddified Friedmanm-Robertson-Walker cusmology for an oscalating Riemannian space. The Prigdmann
equation of motion feads o an aplanation of the cosmelogicat acceleration in torms of an alternative nor-
Lorente invariant theory, A first order approach for a primordial-spurionic veator field nrodoced into the
metric gives back an estimation of the energy evolution and inflation,
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L INTROBUCTHON

t iy widety known that relativity violations are arising
fromy breaking the Lorewy symmetry. Lovente viglations
sre @ very wide research area fraced back fo Dime in the
carly 185{s and apphied in many aspects of modern physics
since the question of Lorenty symmelry invatiance was
ineorporated into the foundations of both general relatvity
and quostum feld theory [1] Plenty of different high
energy theories face the challenpe of Lorentey symumetry
bresking: therefore the proposal of a Gilfferent geometrical
potnt of view from geneeal relativity makes sense. The
coasideration of such a scemario imphies a class of modified
dispersion relations for elementary particles depending on
both coordinates and womenta. In this case the geometey
of space-thne may be direction depeadent genorating 2
tocal amisotropy {243, A possible candidate for g goometry
which incorporates the anisotropies divectly (o the metric is
Finster geometry. A typleal exarmple of studying Lorentz
vinlations within the Gumework of Finsler geometry is
presented in [3h

An interesting case of Loreniz violation wherg the
Fingler geometry twns ap i3 the mode! of very special
refativity (VSR) charscterized by 2 reduced 1oreny syim-
metry |61 The Losenty vioktions are yenerated by o sub-
grevip of the full Loresty group, called (STH(2) The
adoption of this theory is not in confrast © experimental
consitainls gince H appesrs o be compatible with o cur-
rent Hmits of focal Loventy, and CFT mvariance, confirm-
mg some new physics fo-81 Some exporimental snaiysis
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on the upper hounds of the Lorentz violaion are described
in {91

The combination of Lorentz violations o grovitardonal
phenomeni is o0t compatible with the geometrical franwe-
work of Riemmm geometry since generad relativity is
apphicable only w0 love-energy descriptions of nature. The
siudy of relaivity violations togethor with gravitational
phenomoena regnires o type of space-time geomeiry which
atlows local non-Lorentz invariance while preserving gen-
eral coordinate mvariance, A direct consequence of
Lotenty violations Is the production of lowal anisotropies
and we expect any gravitational phenomenon 1o be affected
By the breaking of classical locs] Hatness (see, for example,
O Hh In Finsler geometry ol geomelrical objecis are
divection dependent while preserving the general coordi-
wate invarianee |12 Thus this spectal tvpe of geometry 82
possible cholee for the fsvestigation of geomelrodynamics
altowing Lorentz violations [13-171.

The deformation of the group TSTM(Z) leads w the
construction of a Finslerian line clement proposed by
Bogoslovsky (see [1E], and references theren). The whols
set of Lorentz tansformations are replaced by the de
formed group of tansformations DISTM (2 which is a
subgroup of the Weyl group, The line element ds =
it bs no tonger preserved under the DISIM(Z)
tanstormations. The oo cloment that 38 preserved ander
these transformations is the non-Ricmannian {19}

dy == (?}gjd.)&-‘ifiiff"){l .mjg}j?bmkdxézﬁ_

5

The vector field 27 0y Interpreted a8 2 spuriom vecws
field” and it defines the direction of the “actheral” mo-
tion's 4-velocity, The dependence of the metrie function on
the vector o' indicates the andsotropic charscier of space-
time. The parameter b is dimensiontess and is restricted by
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various experiments [19200 1t is inserted ioto the mass
fensor

(1.2}

migp e AL bl 8k b

of gvery particle coming from 2 Lagrangian constructed in
{181, The cansaical momenta satielles the mass-shell con-
dition g7, = dlag{+ 1, —1, 1, ~ 1}]

) N N £, TR
9 gy = el - f?‘”?(*"ﬁﬁi”m) B

which upoen quanfization keads 1o the Klein-Gordon equa-
ton

v SoinE
'“"h;f; S g {;ﬁi}(wm {j“ {1}
¥

a{l ~ b}
The dispersion relation {13} fmplies that the relationship
of energy and momentom s affccied by te lype of the
metiic geomedy, The actwr-drift cxporiments ostrict b
within the very dght Timits 1B <0 10770 [197 and the an-
motropy of inertia impies (5 < 1073 {208 The modified
dizpersion relation constrocted by Gibbons «f al in [18]
has also been reprodoced ko a Randers-type Finsler space
121}

Wi proceed by constucting the geometrical machinery
of space-time using the Finslerian connection and curva-
ture coming from an osculating Riesmnn metrie 121 The
metie function of the Finsler space s the one preseribed
by Bogodovsky where the Minkowski metric tensor is
substittded by the Fricdmann-Roberson-Walker (FRW)
metsic defined fn standard cosmology, The derivation of
the gravitational ficld equations is stmilae to the ane thay
appeared in 151 The Friedmanmn equntion of motion for a
ineatizedd spurion vector Held paraliel 1w the Hold fow
lines leads us to a selfaccelerated cosmological model.
The kinmmatical egoations of @ scalar field are also can-
sicdered providing an inflalionary solution for the scale
fackor.

2671453 4
) o= 0

L BOGOSLOVSKY'S METTRIC APPLIED
TO COBMOLOGY

The effecis of local Lorenty violathon are Hkely appli-
cable oo cosmelagical contexis, such as those involving the
cosmodogioal constant, dark watter, and duek encrgy. The
homogeneous FRW cosmological solitions may sequire
anisotropic corrections, leading to a realistic anisotropic
cosmology complied 1o the observational dara | 101

Bogostovsky’s metric may shed Haht on some problems
of modern cosmology which are compatible to locad an-
motropies of the geometrical structures of space-time. We
canr comsiruct 8 geometricst machinery of cosmalogy by
niroductog comoving coordinates w the meiric lmction

Flx yi = (vl i 02 (40, (2.1}

We replace the Minkowskion metric with the Robertson-

(1.3
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Walker ons

5. (o, —-az{f}rzgi'nsﬂ)?
2.

where 1 i the cosmie proper time, £, @, and ¢ the comoving
spherienl coordinates, ko= O, 31, and a{f) the soalds Tactor
of the exparding volume. The new meiric function

Flx, }:} - {ﬁw}:ﬁ_ﬁyaf}yi - ff}_f?:(npyp}{? (2.3

is a direct resolt of 3 coondinate Hoear transTormation (221
{Z2.43

ad it directly determines the meltic of the Pinslerian
space-fime

f,ay{,xr ¥ "1“ ““"“ﬁ“j““{“““ {x ¥k (2.5
This straightforward generalization for onrved space-times
and Machian gravitationad theories is used |3} to give an
gxplanation of local anisotropies in terms of geometrical
phuse transitions. The consideration of such a metrie fune-
tion embodies two bypes of geowetries: the dynamies s
deseribed by the Finslerian meinic produced by Flx v}
while alt the nformation about gravity is encoded o e
FRW matric g,,. A simitar formalation iy deduced by
Bekonstein in [23] contemplating a differsnt approach for
Fingder geomatry, The vanables »# ‘%{« represent the 4
veloeity components of the Huid fow Hoes, hence p# =
{10,005

A null or Hmelike spurionic vector fleldP--The study of
general very speciyd relativity (OYSR) wequires the exis-
tenee of o adl spurionic veotor Held. However, this pref-
evential direction of ether is most naturally expected to be
tangent 1o the fow lines of the cosmclogioed flurd ke
every primordial vector feld {241 Thus, o must be par-
allet s the velecity of the comoving observer, L.,

4

‘,Izﬂ' s 4"1}?’“} {2‘{1}

Henee, the spurion vector feld beeomes of tmelike chur-

acter at 2 laiz tme poriod of the eniverse with [a#] « 1,
Therelore, 0 is written in coordingte form
n# e {m{ry, 0,0, 0 2.5

with the tme component very small, The tmelike spue
inic veutor fiekd doss not essentially affect the mass-shedl
conditfon (3.3 since only quadestic terms of ## turoup at
the contractions of canonical momenium p, = m ;5
The oscnlating space and the groavitational field equa-
tong-Adl the seometrical quantities of Finsler geometry
depand both en coordinates and velocity, However, we can
study the seometrical properbies of a Hinsler space by
restricting the vector fleld »* 1o belong 10 an ndividual
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tangent space for a given position coordinate. In sueh a
case the veloCity soordinates are functions of the position;
therefire we can measure disiances by asing the metric
Lh2]

gadr= [0 vl (2.5y
This method, known as the oscduring Rieponnian ag-
prosch (for details see [I2]) can be specialized for the
tangeny vector feld vl of the cosmological finid fow
lines.

We are interested in producing the Eistein fleld equa-
tioms s in [13] After calenlaing the connection and the
curvatore for the Ricmammian oscalating metric g, {v) we
are Ted 10 [17]

LAl

i e el .
- T {2.9}

L;w T L‘ﬁ?uu =
where afl the guantities fn (29) are functions of {x vl y =
virk The energy-momentum temsor for the dimsfare
{+, —. =, — ) is defined to be

Ty =P+ (ot Ply,v. (2303

£
where £ 18 the pressure and z is the energy density of an
ideal cosmic fuld
The dispersion refafon (1.3} 3 also modified alter plug-
ging the FEW meiric and the veotor 7% into {11}

{11 THE FRIEDMAR EQUATION FOR A
LINEARIZED VECTOR FIELD

The caleuiation of the curvature and the Ricol tenser
feads to the construction of the Fredmann sguation of
mnton for a locally anlsoropic universe, We can approsi-
mate the G-component of the prismordial-spurionc vecior

field % at fest order approsch
mif) ~ Ar + R, (3.1}

The special foror (1) 1s & Tavior type approximation

:’Z[(f} i »'I{{g}} % FT(i@}{f o fg} kS {}[{?’ """" £§3}.2), (52}
wliere
A aligh, B n{nd— i) (33}

Sinee all of the other componeats of the spurionic wector
field vanish, only the dingonal elements of the wetric and
the Ricel wnsor survive, Under the assomption of ¢ weak
Loreniz vielation we can restrict our purameter 4 (o be
small enough

A = ?%{ff;} Y {3-4}

cowsidering an almost constant value of the Hekd
Connpection aid curveture—By virue of e meiie
(283 we are sble w ealeniate the Chustoffel symbols
and the curvatgre (see Appendix A) The Riccl tensors
Loyw can be approximated for b — 4, A-— 0, and this
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irophies the following components:

g b 2t b 2k

WA S oy,
BT

1 s =%

. . SA .
Loy = = Pad + 2% + 2k} - m;; briai + OAY,

=
i

s Mad 4 287 4 2hsintd - E;ér""am;m”!?

+ AT (3.5)

The extra ferms appearing at the Ricet componerds are the
dominant ones since they are multiplied by the patumeter
Al B, where B is nocessarity small (o enable the curvature
additional torms (0 be moeasursble (n# <« 1), Following
the usual procedure we can construct the equation. of
maotion for the seate factor alf} 125]
JeN [ 5 X %]
{“} + {‘2 ratpd M‘N[ g2 Z:,»F(r + ‘["’ }m@)}
¢ @ B o 3 B A
(3.6
The (3.6) form of the Friedmann squation may not be wel
suited for late thine scceleration sinee the pressie temm s a

“sign of an garly aniverse vegime, where the linearization

approach possibly breaks down. As the universe evolves
we expec the asisofropic matare of space-lime to by con-
vortisd W a smoother structare. Therefore the Hnesrtzed
approach of the present model Is more convendent for 3
miatter-dotinated phase.

The equation of motan for a matier-dominated wni-
verse--Taking into account that there s no pressure i a
matter-dominated universe we cag obtaln the following
eguation of motion:

Bk 4 a4  BaG
(“} PN S S ikl (AT
@ @ B a 3

We emphasize the exiva contribution generated by the
geometrodynamical term 2;; & ‘; - f the sign of the parame-
tor ARJB is fixed up o be negative, the exma lerm at the
eguation of mogon (A7) will create » sellacoslerating
cosmology, Despite the Iact that the additional term oreales
accelemtion and might replace dark energy contributions,
it cannot give au answer to the question why the vicuum
does nof gravitate? This difficuity gives rise to the compli-
cated task of distinguishing modifications of curvatuee
from dark energy {26]. However, the extra acceleraling
term can be comdenplaied as & relie left back by an earlier
phase where the Finslerizs geometrodynamics was char-
acterized by a nonlinesr nnture [a(28), b{} relativedy large].
The same Fricdmann eguation 13 also produced Tor the
LGP cosmology for a spatially flal space-time with a
differunt contipuity equation 1271 We also remark that
the substiliion gz, = 2.%,& revesls z correspondence of
the present model to the FRW cosmwological model de-
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sorfbed in |13 constrocted by a Banders-Flosler-type met-
rie funciion,

Matter density and contingity squativa"The continuity
equation fov the cosmological fhuid of the untverse cun be
divectly produced by the comservation law of the enorgy-
mormenium tensor ¥, 799 == (0, where the covarlant desiva-
e comes Troma the connection of e oscolating Ricmann
spave-time, The zevo component of the conservation law
1% = () implies

1
et (ZASG + 2;‘1;”) o PLE -
fal

+ P[{J - gm}(zxﬁ;ﬂ + fzg_gf) + 2 gHAl - g‘}“} == (),

beury ]

38

I we mako use of the eguation of siate w = P/ u and the
copnection componenis caloulated in Appendix B, the
approximation for A — 0 lsads o
Ak W
- I Jt& ,.§. - -
& B b ARSI v 2B
bl e b A B =0, {(3.9)

where & is a function of time, the paramoters, amd the
upknowns g, 4, In the case of o mattes-dontinated universe,
where w o 0, the differemtial cquation can be integrated
and zives back the solation

. o - 3AL
FTEE R R 44! i:xg}(mwgwf i')

(3.3}
which i ia alliates o the one ound i [13L

The Friedmuon eguaton in terms of £ s--The whole
picture of the cosmelogical model can be effectively de-
pieted by exploring the relation of the O parametors. Using
thie usual delmitions of the Hubble parameter and the {3
parsmeters, we cun rewrite (17} to the form

[ren ’i LAl Balp (345
a & 3
which fmplies the equation
Ly v Lp o+ Gy = {3.12}
where
{3.13)

is the density parameter produced by the esten were of the
Fricdmann equation, The wrm £y might give a significant
confribution fo the acceleration conpared o the dark en-
ergy parameter £, =07,

Order of magnivede of wdmewn parameters.—Sinee the
ths of (3.11) is positive, we restrier 42 > |242 11 We can
estimate the order of magaivede of the guantity %;*i Hmease it
dominates the expansion over A, where

PHYSICAL REVIEW D79, 104011 {3604
Ak A
B s

Given a typical value of the Hubble puramotor Hy =
71 kmi/s/Mpe ~ 1079 see 7 and the cosmological con-

(3.14)

stant A ~ 10757 gy 2 124) we deduce
Ak L .
iﬁi Y e 3.1

measared in Hubble undis.

. ENERGY EVOLUTION

The calculation of the connection componenis coming
from the osculating metric (2.8} can give us a plctuge of
how the energy of g parficle is affected by the upiverse
expansion and the extra patameters introduced isto the
metric funclios {211

Energy of @ massiess pasticla~The 4-momenrom of a
massless particle is defined by P# = 45 where P% = E s
the energy of the particle. The parameter & is {he evolution
parameter of the particie’s path described hy the geodesic
equalion

Bt da® cixf? N 1)

W e ga da -
and the zero component of the geodesic equstion yieldy
fzs]

F B A?fﬁ? pe ;:u,f}
Al B
e (B ayl PG {1 B @ a P (4.2)
f ~ )
The particle iy massless, m o=, and thus the dispersion

wlatton (1.3 s simplified t©o the wsual form B e
- ay P hence (4.2) Baplies

PdE & 2AL
el e e Y e e b (A (4.3
T 1 5 A% @3
which can be integrated divectly and gives back
, 2AD
Fiey = gb i exp:(“ e :)-_ (4.4

The solution (443 possesses wn additonal redshili effect
due o the Lorentz violations inhertied by the parameler &
and the spurion vector field, The soiution behaves as K(f) =
L a() i she extra terms gl the egquation of motion (3.7} ane
vegligible.

Energy of a mussive nonrelasivisile particle -We con-
sidler & massive nonrelativistic particle of muss s traveling
em 4 geodesto of the space-time

- (4.5)

The 4-momentim of the particle i defined in natural wnits

HHGI <
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(o= 1) as P mdh ) where v
e, The chain rale appled 1o the derivative ﬁ:‘ amplies

4 L E 4 (4.6)
dr  m i

in virtue of (1.3 the zero compenent of (4.5} leads o the
differential eauation for the energy

473
di i w7

since w4 P m® = 0 for a massive nonselativistic parti-
¢le. The integration of the differential equation implies

. . 2AR
Fow= By axp(w Eg :

{4.83
We can calodlate (he effect of geometrodynamics by mea-
surbng the amount of tme for 4 vardation of energy 0. 1% E,y
and find ¢~ 105 see, where we used the f”’ estimation

fres Z%.vﬁi‘},

V. THE GENERALIZATION OF THE
KLEIN.GORDON EGUATION

Sinee the geomelry of spaw-mm, 15 dewermined by the
process of oscilating a Finslerian spacs 1o a Riemannian
ane, e meiric is only position dependent. As long as the
velocity is fixed up o be ¥ = y(x), a Riemanniaa metric is
defined, Therefore we can apply the general covariance
principle and construct a curved vession of the Kleln-
ordon equation {143

(3.5

in A )
Dl + (3 — B* } ~~~~~~~~ e N G o= i),
The ¥, operator is the covarlant derfvative coming from
the Al connection {see Appendix BY, and the box operater
is

Cip o g,V gp = g — gAY b (5.2

gmd m# i% am xpuritm d{*{iﬂm in 2 "f} ;mﬂ ("i i) We tmpose

ga.mﬁily with n,spml t0 wmtk mza}niz vmmimns Aﬂ.u"
expanding for small values of b, we end up with the
foilowing approximation:

.y 2Ab N, 2ab ALY
Cieb (t ; z)s’> # ’"’ifffi’( R ’%BH)
O, .3

A smait A and b spprovimation Tor the m*{] - Py X

LV, PO gperaror

is the particle’s proper.
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" A 254 o
= ey b 2t D) 4 m}f! - wt e

+ W ind wtg + OlAT) £5.43

lemds 1o the kinematical equation of the sealar field

o :?.‘
P+ -:-3(11; + nf.%.)(ﬁ + e ( L 4ah

F + 28 in {;)
+ AT = 14,

(5.5}

where 2mPhig — O sinee b -+ (0 is fuster than the loge-
ritheic term . The time derivatives of the scaluy fleld
come from the covariant version of the box operator
therefore the potential of the scalar fiekd is
U B A
V{eh, 1} = %m“'a‘}')" i+ 23 i+ AT L (5.6}
We can climinate H i we combine the Klein-Gordon
equation with the Fricdmann equation of molion producing
a ditferential equation for the scalar fleld &,
The energy-momentam tensor it expressed by [29]
T s g9V ep By — G*d b - VIE )EE (5T
anid deterreines directly the energy denstiy and the pressure
- éﬁtﬂjd)“ 4 V, B Fgéiﬁf ,,,,, 1 ijg}
Thus we can tngert (3.8) into (3.6) and {ind the Priedmann
gquaton of motion

it Ay
g7

1 _
+ ;éx?azef;"*'(lf + 2hink

[ B 2 ind)

+al? z) + (){»‘;2‘)}
B

5.5
The etimingtion of & from {(5.3) and (59} yields
A f
4 120G P g ol " - Flt b, D)

F2hInE  gln b b)Y d ﬁ{Aﬁ =0, (5.00)
where

fin ¢, &)=~ + dwtrep

+ 2t g ’}’3‘(4((}) gty

5114
and
ot b, b = P — WITRC(H? + m2g?) 12
X (G = P {5.12)
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are functions of & and irs first derivative (for detsls, see,
.. 291
The limis b < s —Tn this spocial cass the potentind
is much Jarger compared 1o the kinetie energy; thus we can
devive the simplified differential equation
" Ak y : S
&+ m?(; + 4500 2?3?;'18)-@ w50
The solution of (513 is expressed with the wid of Alry
Functions 1301

bty = O ANy + OB, £5.143
where
. g1 AR b .

The arpument of the Afry Tunction s fxed upas £~ - i by
{—2m ;f%}?*fl*, given (he small values of the parameter 475
hence we can regard ¢ 1o be Independent of time. We can
approximate the Punction $ir) using the asympietics of the
Adry function after taking invo consideration the negative
sign of argement ¢ [30L The substitution of (3,14} 1o the

Friedmunn equation (3.9 yields

) _ Ab o L
alfy = expl| — S t) axpthln], {(5.1%)
where
2 ; Al _ 341
#lry == % Cg{g’jl’f?‘(} + ?--Ié{x ! 21;;;;;3) (5173

Ciiven the positive sign of 40 in (516}, the solstion
seeures an inflationary phase for a tme Interval where
the high potential lkes over the expunsion,

V1. DESCUSSION

The essentind result of our approach is the adoption ol a
Fimslerian metric functon applied to cosmology, coming
from Coben and (lashow’s very specind relativity (81 The
caiculation of Binstein's field equations for an osoufating
Riemannian spaee-time pgives back a Friedmann equation
for a self-aceelerating universe under the assumption that
the sign of the exira paramefer is negative, The estimation
of the energy evolation wplied by the modified geodesic
equations wmay lead W cxperimental comstrainy lor the
VSR theory asing observational duta from the large scale
structure. The specific Tt for & massive nonrelativistic
vhjcel faplies o smadi varintion of onergy within 2 period
of time close o the age of the andverse restricting our
caloulations within the acceptable obsereational lumis
even [ the case where the model wing totally over the
dark energy.
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The construction of the kinematcal eguation of o sealar
fietd [ 181 with the aid of the Finslerizn metric (2.8) and the
Friecmunn equation {3.7) cas lead o & better understand-.
fng of the natwe of the Finslerian gravitational field.
Indesd, the Loventy, violations provide s modified potential
for the curved Klein-Cordon egumtion (5.5) alfecting the
vatidity of the strong engrgy conditions, Given a large
potential compared to the kinetic energy, the solulion of
the geate Factor imphics mn inflating phase of the expansion
depeniting on the OVBR assumptions isherited by the
metric function (2.1, An intoresting task for futore work
is the study of the model’s early time behavior producing
an inflaticuary selntion without the aid of a scalar field,
congidering stronger effecty of Lorentz symmetry brosk-
ing. A similar infationary scenario hus also been produced
by wravitational mechanisms, a3 & direet result of Lorentz
violations not depending on the vacuum’s {fuctuations and
arand unified theories {311

An explanation of acceleration lies on the fact that dark
energy acts as & repulsive Torce introducing a cosmological
constant at the Binsieln feld equations. 1n such @ case the
cosmological constant s a faely tned grownd stite of 2
potential implying negative pressure at the equasions of
mation. A wniverse with pressure free matter can be self-
accelerating urder the restriction of 2 modified Riec cur
vatare which Imposes sa asymploticaily de Sitter goometry
of space-time. The machinery of osculuting a Finslerian
space to a Riemannian one leads st first order approach
direcdy to an asymptotically de Sitter universe, However,
the classification of the present model as a low curvatue
modification fe.g., AUDM, DGP) needs to be proven. This
is a vital task since all soch cosmological models reproduge
Newtonian gravity loeally 1321

A possible esthstiva of the sparionic vector field (from
Bigh energy physics or other methods), within the Hinits of
the present cosmologieal model, con set forth an answer (o
the vital question about the smadl value of b posed by
Cibbons ef al. [18, connecting Loventz violations (o the
dark energy problem. A lather investigation of the present
madel taking 810 accoust the caleutation of cosmological
pertirbations and the eosmic microwave background dat
may relate Loroitz viotations to the problom of large angle
anisorropies and inhomogenaities.

The mtrodustion of Finsler geomelry 25 a goometry of
space-time opens Bp a new direction loward the study of
geometric phase transidons, The concept of geemettic
phase transitions gencrated by Bogoslovsky’s fine clement
{1.1) has aircady been studied o [51 for the special cass of
a fld Finslerian space-time. An interasting generalization
can be applied to a curved Finsler space Tor a Better under-
sanding of how Lorentz violations, with o varying & =
A, may evolve as the universe expands. Since Lorest
violations produce anisofropies, it & natoral for them o
“dilate” 1o thermal energy and 2 lage amount of eatopy
1241: thersfors the special Hmit of the present model wil be
asymplotically recovered.
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APPENDIX A: THE METRIC 7,

The definition of the Tinsler mewic function (2.1 im-
plies the cadeulation of the space-time’s metzie, Assuming
the comoving charaoter of the spmisl coordinates snd the
veotor field mpgent o the cosmie fow lines, the computa-
thon of the mesric components of the oseulating Riemann
space-time are simplified to the form {4, = 1,2, 3und a,,

ts the Roberison-Watker metrle (223

o o 1 2lnlAr+ BB+ O o
{A;J
g = a toagl2m{ar + B~ ik + 00,

which  implies  the connection AL, = g#¢ Lo
(Gapw t Gowg ™ Luny) and the curvature Lh s

PRYSICAL REVIEW D 79, 104011 (2009}
Ay o Al g T AlcAy — AL AT The Ricel tensor

components {3 :)_} wre caleulated for tho Hmit A — 0L

APPENDIX B: THE CONNECTION
COMPONENTS AL,

Ab
' Am b '“};};‘" & {)(A )
i Af)

A‘{]}'l = Aéz = Aéﬁ = :.: * 3 o {}{% }

& Ab
f"i% = {1 o f?) z‘i dy H tdi; + {){/33}, {Bf}
Aly = Al = (1 = k%)
- " . i
ALy = = rsint0() = ke, A AL =
A%g = - gind cosd, Ady = cotd.
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