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1 Introduction

The study of the structure of cut points of continua has a long history. Whyburn
([10]) in 1928 showed that the set of cut points of a Peano continuum has the
structure of a ‘dendrite’. This ‘dendritic’ decomposition of continua has been
extended and used to prove several results in continua theory.

We recall here that a continuum is a compact, connected metric space and a
Peano continuum is a locally connected continuum. If X is a continuum we
say that a point c is a cut point of X if X − {c} is not connected.

Continua theory became relevant for group theory after the introduction of
hyperbolic groups by Gromov ([4]). The Cayley graph of a hyperbolic group
G can be ‘compactified’ and if G is one-ended its Gromov boundary ∂G is
a continuum. Moreover the group G acts on ∂G as a convergence group. It
turns out that algebraic properties of G are reflected in topological properties
of ∂G. A fundamental contribution to the understanding of the relationship
between ∂G and algebraic properties of G was made by Bowditch . In [1]
Bowditch shows how to pass from the action of a hyperbolic group G on its
boundary, ∂G, to an action on an R-tree. The construction of the tree (under
the hypothesis of the G-action) from the continuum is similar to the dendritic
decomposition of Whyburn. The difficulty here comes from the fact that the
continuum is not assumed to be locally connected.
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2 Panos Papasoglu and Eric Swenson

The second author in [8] (see also [9]) explained how to associate to any con-
tinuum a ‘regular big tree’, T , and conjectured that T is in fact an R-tree. It
is this conjecture that we prove in the first part of this paper.

Let X be a continuum without cut points. If a, b ∈ X we say that a, b is a
cut pair if X − {a, b} is not connected. In the second part of this paper we
show how to associate an R-tree to the set of cut pairs of X (compare [3]).
We call this tree a JSJ-tree motivated by the fact that if G is a one-ended
hyperbolic group then the tree associated to ∂G by this construction is the
tree of the JSJ-decomposition of G (in this case one obtains in fact a simplicial
tree). Continua appear in group theory also as boundaries of CAT (0) groups.
In [7] we use the construction of R-trees from cut pairs presented here to extend
Bowditch’s results on splittings ([1]) to CAT (0) groups. We show in particular
that if G is a one-ended CAT (0) group such that ∂G has a cut pair then either
G contains an infinite torsion group or G splits over a virtually cyclic group.

We would like to thank the referee for many suggestions that improved the
exposition and for correcting a mistake in the proof of Theorem 13.

This work is co-funded by European Social Fund and National Resources (EPEAEK
II) PYTHAGORAS

2 Preliminaries

Definition Pretrees: Let P be a set with a betweeness relation. If y is
between x, z we write xyz . P is called a pretree if the following hold:

1. there is no y such that xyx for any x ∈ P .

2. xzy ⇔ yzx

3. For all x, y, z if y is between x, z then z is not between x, y .

4. If xzy and z 6= w then either xzw or yzw .

Definition We say that a pretree P is discrete if for any x, y ∈ P there are
finitely many z ∈ P such that xzy .

Definition A compact connected metric space is called a continuum.

Definition Let X be a topological space. We say that a set C separates
the nonempty sets A,B ⊂ X if there are disjoint open sets U, V of X − C ,
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From continua to R-trees 3

such that A ⊂ U , B ⊂ V and U ∪ V = X − C . We say C separates the
points a, b ∈ X if C separates {a} and {b}. We say that C separates X if C
separates two points of X . If C = {c} then we call c a cut point. If C = {c, d}
where c 6= d and neither c nor d is cut point, then we call {c, d} a (unordered)
cut pair.

The proof of the following Lemma is an elementary exercise in Topology and
will be left to the reader.

Lemma 1 Let A be a connected subset of the space X and B closed in X .
If A∩ Int B 6= ∅, then either A ⊂ B or A ∩ ∂B separates the subspace A.

Lemma 2 Let X be a continuum and C ⊂ X be minimal with the property
that X−C is not connected. The set C separates A ⊂ X−C from B ⊂ X−C
if and only if there exist continua Y, Z such that A ⊂ Y , B ⊂ Z , Y ∪ Z = X
and Y ∩ Z = C .

Proof We first show that C is closed in X . There are disjoint nonempty
subsets D and E open in X − C with D ∪ E = X − C . By symmetry, it
suffices to show that D is open in X . Suppose that d ∈ D ∩ ∂D . There is
a neighborhood G of d in X such that Ḡ ∩ Ē = ∅. Since G 6⊂ D , there is
c ∈ C∩G. Notice that D∪{c} and E are disjoint open subsets of X− [C−{c}]
with (D ∪ {c})∪E = X − [C −{c}], and C is not minimal. Therefore C must
be closed.

Suppose now that C separates A from B . Thus there exist disjoint nonempty
U and V open in X − C (this implies open in X ) such that A ⊂ U , B ⊂ V ,
U∪V = X−C . Since ∂U separates X , by the minimality of C , ∂U = C = ∂V .
Suppose the closure Ū is not connected. Then Ū = P ∪Q where P and Q are
disjoint nonempty clopen (closed and open) subsets of Ū . Since Ū is closed, this
implies that P and Q are closed subsets of X . Since Ū 6⊂ C , we may assume
that P 6⊂ C . The boundary of P in Ū is empty, so ∂P ⊂ ∂Ū = ∂U = C . Again
by minimality ∂P = C . Since P is closed in X , C ⊂ P . Thus Q ⊂ U , and Q
is open in U since it is open Ū . Thus Q is clopen in X which contradicts X
being connected.

The implication in the other direction is trivial.

This next result is just an application of the previous result.

Lemma 3 Let X be a continuum and A,B ⊂ X .
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• The point c ∈ X is a cut point of X which separates A from B if and only
if there exist continua Y, Z ⊂ X such that A ⊂ Y − {c}, B ⊂ Z − {c},
Y ∪ Z = X and Y ∩ Z = {c}.

• The pair of non-cut points {c, d} is a cut pair separating A from B if
and only if there exist continua Y, Z ⊂ X such that A ⊂ Y − {c, d},
B ⊂ Z − {c, d}, Y ∪ Z = X , Y ∩ Z = {c, d}.

3 Cutpoint Trees

Let X be a metric continuum. In this section we show that the big tree con-
structed in [9] is always a real tree. For the reader’s convenience we recall briefly
the construction here.

For the remainder of this section, X will be a continuum.

Definition If a, b ∈ X we say that c ∈ (a, b) if the cut point c separates a
from b.

We call (a, b) an interval and this relation an interval relation. We define
closed and half open intervals in the obvious way i.e. [a, b) = {a} ∪ (a, b),
[a, b] = {a, b} ∪ (a, b) for a 6= b and [a, a) = ∅, [a, a] = {a}.

Definition We define an equivalence relation on X . Each cut point is equiv-
alent only to itself and if a, b ∈ X are not cut points we say that a is equivalent
to b, a ∼ b if (a, b) = ∅.

Let’s denote by P the set of equivalence classes for this relation. We can define
an interval relation on P as follows:

Definition If x, y ∈ P and c is a cut point (so c ∈ P ) we say that c ∈ (x, y)
for some (any) a ∈ x, b ∈ y , we have c ∈ (a, b).

For z ∈ P , z not a cut point we say that z ∈ (x, y) if for some (any) a ∈ x, b ∈
y, c ∈ z we have that

[a, c) ∩ (c, b] = ∅

If x, y, z ∈ P we say that z is between x, y if z ∈ (x, y). We will show that P
with this betweeness relation is a pretree. The first two axioms of the definition
of pretree are satisfied by definition.

For the remaining two axioms we recall the following lemmas (for a proof see
[2] or [8]).
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From continua to R-trees 5

Lemma 4 For any x, y ∈ P , if z ∈ (x, y) then x /∈ (y, z).

Lemma 5 For any x, y, z ∈ P , (x, z) ⊂ (x, y] ∪ [y, z).

Axiom 3 follows from Lemma 4 and Axiom 4 from Lemma 5.

Now consider the following example where X ⊂ R2 is the union of a Topologist’s
sine curve, two arcs, five circles and two disks:

X

P

T

The tree T is obtained from P by “connecting the dots” according to the
pretree relation on P . We will give the rigorous definition of T later.

We have the following results about intervals in pretrees from [2]:
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Lemma 6 If x, y, z ∈ P , with y ∈ [x, z] then [x, y] ⊂ [x, z].

Lemma 7 Let [x, y] be an interval of P . The interval structure induces two
linear orderings on [x, y], one being the opposite of the other, with the property
that if < is one of the orderings, then for any z, w ∈ [x, y] with z < w ,
(z, w) = {u ∈ [x, y] : z < u < w}. In other words the interval structure defined
by one of the orderings is the same as our original interval structure.

Definition If x, y are distinct points of P we say that x, y are adjacent if
(x, y) = ∅. We say x ∈ P is terminal if there is no pair y, z ∈ P with x ∈ (y, z).

We recall the following lemma from [8].

Lemma 8 If x, y ∈ P , are adjacent then exactly one of them is a cut point
and the other is a nonsingleton equivalence class whose closure contains this
cut point.

Corollary 9 If p ∈ P is a singleton equivalence class and p is not a cut point,
then p is terminal in P

Proof Let x ∈ X with [x] = {x}, and x ∈ (a, b) for some a, b ∈ P . Suppose
that x is not a cut point. By Lemma 8 there is no point of P adjacent to [x].
Thus there are infinitely many cut points in [a, x]. For each such cut point
c ∈ (a, x) choose a continuum Ac 3 a with ∂Ac = {c}. Considered the nested
union A =

⋃
Ac . We will show that ∂A = {x}.

First consider y ∈ A. There exists a cut point c ∈ (a, x), c 6= y , with y ∈ Ac .
Thus y ∈IntAc so y 6∈ ∂A.

Now consider z ∈ X − A with z 6= x. Since z 6∈ A, by definition x ∈ ([z], [y])
for any y ∈ A. Since x and [z] are not adjacent there is a cut point d ∈ ([z], x).
There exist continua Z,B such that Z∪B = X , z ∈ Z , x ∈ B and Z∩B = {d}.
Since x ∈ ([z], [y]) for any y ∈ A, by definition A ⊂ B , and z 6∈ ∂A.

The fact that x ∈ ∂A follows since b 6⊂ A, so X 6= A, and so ∂A 6= ∅.

We have the theorem (see [8], theorem 6):

Theorem 10 A nested union of intervals of P is an interval of P .
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Corollary 11 Any interval of P has the supremum property with respect to
either of the linear orderings derived from the interval structure.

Proof Let [x, y] be an interval of P with the linear order ≤. Let A ⊂ [x, y].
The set {[x, a] : a ∈ A} is a set of nested intervals so their union is an interval
[x, s] or [x, s) and s = sup A.

Definition A big arc is the homeomorphic image of a compact connected
nonsingleton linearly ordered topological space. A separable big arc is called
an arc. A big tree is a uniquely big-arcwise connected topological space. If all
the big arcs of a big tree are arcs, then the big tree is called a real tree. A
metrizable real tree is called an R-tree. An example of a real tree which is not
an R-tree is the long line (see [5] sec.2.5, p.56).

Definition A pretree R is complete if every closed interval is complete as
a linearly ordered topological space (this is slightly weaker than the definition
given in [2]). Recall that a linearly ordered topological space is complete if
every bounded set has a supremum.

Let R be a pretree, an interval I ⊂ R is called preseparable if there is a
countable set Q ⊂ I such that for every nonsingleton closed interval J ⊂ I ,
J ∩Q 6= ∅. A pretree is preseparable if every interval in it is preseparable.

We now give a slight generalization of a construction in [9], [8]. Let R be a
complete pretree. Set

T = R∪
⊔

x,y adjacent

Ix,y

where Ix,y is a copy of the real open interval (0, 1) glued in between x and y .
We extend the interval relation of R to T in the obvious way (as in [9], [8]),
so that in T , (x, y) = Ix,y . It is clear that T is a complete pretree with no
adjacent elements. When R = P , we call the T so constructed the cut point
tree of X .

Definition For A finite subset of T and s ∈ T we define

U(s,A) = {t ∈ T : [s, t] ∩A = ∅}

The following is what the proof of [8, Theorem 7] proves in this setting.
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Theorem 12 Let R be a complete pretree. The pretree T , defined above,
with the topology defined by the basis {U(s,A)} is a regular big tree. If in
addition R is preseparable, then T is a real tree.

We now prove the conjecture from [8]

Theorem 13 The pretree P is preseparable, so the cut point tree T of X is
a real tree.

Proof By the proof of [8, Theorem 7], it suffices to show that there are only
countably many adjacent pairs in a closed interval [a, b] of P . By Lemma 8,
adjacent elements of P are pairs E, c where E is a nonsingleton equivalence
class, c is a cut point and c ∈ Ē −E . Let’s assume that there are uncountably
many such pairs in [a, b]. By symmetry we may assume that E ∈ (a, c) for
uncountably many pairs (E, c), and for each such pair we pick an e ∈ E .

Since c separates e from b choose continua A, B such that X = A ∪ B ,
{c} = A ∩ B , e ∈ A and b ∈ B . Since e 6∈ B and B is compact d(e,B) > 0 .
Let εe = d(e,B).

In this way to each pair E, c we associate e ∈ E continua A, B and εe > 0.
Since there are uncountably many e, for some n ∈ N there are uncountably
many e with εe > 1/n. Let’s denote by S the set of all such e with εe > 1/n.
Consider a finite covering of X by open balls of radius 1

2n . Since S is infinite
there are distinct elements e1, e2, e3 ∈ S lying in the same ball. It follows that
d(ei, ej) < 1/n for all i, j .

The points e1, e2, e3 correspond to adjacent elements of P , say E1, c1 , E2, c2, E3, c3 .
Since all these lie in an interval of P they are linearly ordered and we may as-
sume, without loss of generality, that E1 ∈ [a, c2) and E3 ∈ (c2, b]. Let A1 and
B1 be the continua chosen for E1, c1 such that A1 ∩B1 = {c1}, A1 ∪B1 = X ,
e1 ∈ A1 , b ∈ B1 and d(e1, B1) = εe1 > 1/n. It follows that e3 ∈ B1 and so
d(e1, e3) ≥ d(e1, B1) > 1/n a contradiction.

The real tree T is not always metrizable. Take for example X to be the cone
on a Cantor set C (the so called Cantor fan). Then X has only one cut point,
the cone point p, and P has uncountable many other elements qc , one for each
point c ∈ C . As a pretree, T consists of uncountable many arcs {[p, qc] : c ∈ C}
radiating from a single central point p. However, in the topology defined from
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the basis {U(s,A)}, every open set containing p contains the arc [p, qc] for all
but finitely many c ∈ C . There can be no metric, d, giving this topology since
d(p, qc) could only be non-zero for countably many c ∈ C .

It is possible however to equip T with a metric that preserves the pretree
structure of T . This metric is ‘canonical’ in the sense that any homeomorphism
of X induces a homeomorphism of T . The idea is to metrize T in two steps.
In the first step one metrizes the subtree obtained by the span of cut points of
P . This can be written as a countable union of intervals and it is easy to equip
with a metric.

T is obtained from this tree by gluing intervals to some points of T . In this
step on might glue uncountably many intervals but the situation is similar to
the Cantor fan described above. The new intervals are metrized in the obvious
way, e.g. one can give all of them length one.

Theorem 14 There is a path metric d on T , which preserves the pretree
structure of T , such that (T, d) is a metric R-tree. The topology so defined on
T is canonical (and may be different from the topology with basis {U(s,A)}).
Any homeomorphism φ of X induces a homeomorphism φ̂ of T equipped with
this metric.

Proof Let C be the set of cut points of X and let S be a countable dense
subset of C . Choose a base point s ∈ S . Denote by T ′ the union of all intervals
[s, s′] of T with s′ ∈ S . Now we remark that at most countably many cut
points of X are not contained in T ′ . Indeed if c ∈ C is a cut point not in T ′

then X − c = U ∪ V where U, V are disjoint open sets and one of the two (say
U ) contains no cut points. Let ε > 0 be such that a ball B(c) in X of radius
ε is contained in U . So we associate to each c not in T ′ a ball B(c) and we
remark that to distinct c’s correspond disjoint balls. Clearly there can be at
most countably many such disjoint balls in X . Thus by enlarging S we may
assume that T ′ contains all cut points, so T ′ is the convex hull of C in T , and
so is canonical.

Since S is countable we can write S = {s1, s2, . . . } and we metrize T ′ by an
inductive procedure: we give [s, s1] length 1 (Choose f : [0, 1] → [s, s1], a
homeomorphism, and define d(f(a), f(b)) = |a − b|). [s, s2] intersects [s, s1]
along a closed interval [s, a]. If [a, s2] is non empty we give it length 1/2 and
we obtain a finite tree. At the nth step of the procedure we add the interval
[s, sn+1] to a finite tree Tn . If [s, sn+1]∩Tn = [a, sn+1] a non-degenerate interval
we glue [a, sn+1] to Tn and give it length 1/2n . Note that if a, b ∈ T ′ then
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a ∈ [s, sn], b ∈ [s, sk] for some k, n ∈ N. Without loss of generality, k ≤ n
and so a, b ∈ Tn and d(a, b) is determined at some finite stage of the above
procedure.

We remark that each end of T ′ corresponds to an element of P and by adding
these points to T ′ one obtains a compact R-tree that we still denote by T ′ .
Here by end of T ′ we mean an ascending union ∪[s, si], (i ∈ N, si ∈ S) which
is not contained in any interval of T ′ . If Ci is the closure of the union of all
components of X − si which do not contain s we have that Ci ⊂ Ci−1 for all
i and

⋂
Ci is an element of P .

If x ∈ P does not lie in T ′ then x is adjacent to some cut point c ∈ T ′ . For each
such adjacent pair (c, x), by construction (c, x) is a copy of the unit interval
(0, 1) and this gives us the path metric on [c, x]. In this way we equip T with
a path metric d.

Clearly a homeomorphism φ : X → X induces a pretree isomorphism φ̂ : P →
P . By extending φ̂ to the intervals corresponding to adjacent points of P
(via the identity map on the unit interval, (0, 1) → (0, 1)) we get a pretree
isomorphism function φ̂ : T → T which restricts to a pretree isomorphism
φ̂ : T ′ → T ′ . For any (possibly singleton) arc α ∈ T ′ let Bα be the set of
complementary components of T ′−α. By the construction of d, for any ε > 0,
the set {B ∈ Bα : diam(B) > ε} is finite. It follows that φ̂ : T ′ → T ′ is
continuous (using the metric d) and therefore a homeomorphism. We extend φ̂
to T by defining it to be an isometry on the disjoint union of intervals T − T ′ .
Thus we get φ̂ : T → T a homeomorphism.

4 JSJ-Trees

Definition Let X be a continuum without cut points. A finite set S ⊂ X
with |S| > 2 is called cyclic subset if there is an ordering S = {x1, . . . xn} and
continua M1, . . . Mn with the following properties:

• Mn ∩M1 = {x1}, and for i > 1, {xi} = Mi−1 ∩Mi

• Mi ∩Mj = ∅ for i− j 6= ±1 mod n

•
⋃

Mi = X
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The collection M1, . . . Mn is called the (a) cyclic decomposition of X by {x1, . . . xn}.
This decomposition is unique.

We also define a cut pair to be cyclic.

Clearly every nonempty nonsingleton subset of a cyclic set is cyclic.

If S is an infinite subset of X and every finite subset A ⊂ S with |A| > 1 is
cyclic, then we say S is cyclic.

Clearly if A is a subset of a cyclic set with |A| > 1, then A is cyclic.

Lemma 15 Let X be a connected metric space without cut points. If the cut
pair a, b separates the cut pair c, d then {a, b, c, d} is cyclic, so {c, d} separates
a from b. Furthermore X − {c, d} has exactly two components and X − {a, b}
has exactly two components.

Proof By Lemma 3 there exist continua C,D with C∩D = {a, b}, X = C∪D
, c ∈ C and d ∈ D . Since c, d is a cut pair there exist continuum A,B such
that A ∪ B = X and A ∩ B = {c, d}. We may assume that a ∈ A. Since
B is connected, with c, d ∈ B and a 6∈ B , then b must be a cut point of B
separating c and d. Similarly a is a cut point of A separating c and d. Thus by
Lemma 3 there exist continua Ma,c , Ma,d Mb,c , Mb,d with c ∈ Ma,c , c ∈ Mb,c ,
d ∈ Ma,d , and d ∈ Mb,d , such that Ma,c ∪ Ma,d = A, Ma,c ∩ Ma,d = {a},
Mb,c ∪Mb,d = B and Mb,c ∩Mb,d = {b}. It follows that Ma,c ∩Mb,c = {c} and
that Ma,d ∩Mb,d = {d}. Thus {a, b, c, d} is cyclic.

Suppose that {c, d} separated A, then there would be non-singleton continua
F ,G with A = F ∪ G and {c, d} = F ∩ G. We may assume that a ∈ F .
Since a separates c from d in A, either c 6∈ G or d 6∈ G. With no loss of
generality d 6∈ G. Thus F ∪B and G are continua with X = (F ∪B)∪G and
{c} = (F ∪B)∩G, making c a cut point of X . This is a contradiction, so {c, d}
doesn’t separate A and similarly {c, d} doesn’t separate B . Thus X − {c, d}
has exactly two components.

Definition Let X be a metric space without cut points. A non-degenerate
nonempty set A ⊂ X is called inseparable if no pair of points in A can be
separated by a cut pair.

Every inseparable set is contained in a maximal inseparable set. A maximal
inseparable subset is closed (its complement is the union of open subsets).
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Example 16 A maximal inseparable set need not be connected, for example
let X be the complete graph on the vertex set V with 3 < |V | < ∞. The set
V is a maximal inseparable subset of X . V also has the property that every
pair in V is a cut pair of X , but V is not cyclic.

Lemma 17 Let S be a subset of X with |S| > 1. If every pair of points in S
is a cut pair and {a, b} is a cut pair separating points of S , then S ∪ {a, b} is
cyclic.

Proof It suffices to prove this when S is finite. Let c, d ∈ S be separated by
{a, b}. By Lemma 15 , X −{c, d} has exactly two components, X −{a, b} has
exactly two components, and there are continua Ma,c , Ma,d Mb,c , Mb,d whose
union is X such that Ma,c∩Ma,d = {a}, Mb,c∩Mb,d = {b}, Ma,c∩Mb,c = {c},
Ma,d ∩Mb,d = {d}.

Now let e ∈ S−{a, b, c, d}. We may assume e ∈ Ma,c . Now {a, b} separates the
cut pair {d, e} and so by Lemma 15, {d, e} separates a from b. It follows that
e is a cut point of the continuum Ma,c . Thus there exist continua Ma,e 3 a
and Me,c 3 c such that Ma,e ∪Me,c = Ma,c and Ma,e ∩Me,c = {e}. The set
{a, b, c, d, e} is now known to be cyclic. Continuing this process, we see that
S ∪ {a, b} is cyclic.

Corollary 18 If S ⊂ X with |S| > 1 and S has the property that every pair
of points in S is a cut pair, then either S is inseparable or S is cyclic.

Definition By Zorn’s Lemma, every cyclic subset of X is contained in a
maximal cyclic subset. A maximal cyclic subset with more than two elements
is called a necklace. In particular, every separable cut pair is contained in a
necklace.

Lemma 19 Let S be a cyclic subset of X , a continuum without cut points.
If S separates the point x from y in X , then there exists a cut pair in S
separating x from y .

Proof Suppose not, then for any finite subset {x1, . . . xn} ⊂ S with M1, . . . Mn

the cyclic decomposition of X by {x1, . . . xn}, x and y are contained in the
same element Mi of this cyclic decomposition. There are two cases.
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In the first case, we can find a strictly nested intersection of (cyclic decompo-
sition) continua C 3 x, y , with the property that |C ∩ S| ≤ 1. Nested intersec-
tions of continua are continua, so C connected, and similarly using Lemma 15,
C − (C ∩ S) is connected, so S doesn’t separate x from y .

In the second case there is a cut pair {a, b} ⊂ S and continua M,N such
that x, y ∈ M , N ∪ M = X , N ∩ M = {a, b} and S ⊂ N . It follows that
{a, b} separates x from y in M , so there exist continua Y, Z with M = Y ∪Z
where Y ∩ Z = {a, b} y ∈ Y and x ∈ Z . Since (N ∪ Y ) ∩ Z = {a, b} and
(N ∪ Y ) ∪ Z = X , it follows that {a, b} separates x from y in X .

Definition Let S be a necklace of X . We say y, z ∈ X − S are S equiv-
alent, denoted y ∼S z if for every cyclic decomposition M1, . . . Mn of X by
{x1, . . . xn} ⊂ S , both y, z ∈ Mi for some 1 ≤ i ≤ n. The relation ∼S is clearly
an equivalence relation on X − S . By Lemma 19, if y, z are separated by S
then y 6∼S z , but the converse is false.

The closure (in X ) of a ∼S -equivalence class of X − S is called a gap of S .
Notice that every gap is a nested intersection of continua, and so is a continuum.
Every inseparable cut pair in S defines a unique gap. The converse is true if
X is locally connected, but false in the non-locally connected case.

Let s ∈ S . Choose distinct x, y ∈ S − {s} and take the cyclic decomposition
M1,M2,M3 of X by {s, x, y} with M1∩M3 = {s}. For each i, take a copy M̂i

of Mi . Let M̂ be the disjoint union of the M̂i . For i = 1, 2, 3 let si, yi, xi be
the points of M̂i which correspond to s, x, y respectively whenever they exists
( for instance there is no s2 since s 6∈ M2 ). Let X̂ be the quotient space of
M̂ under the identification yi = yj and xi = xj for all i, j . The metrizable
continuum X̂ is clearly independent of the choice of x and y . The obvious map
q : X̂ → X is one to one except that {s1, s3} = q−1(s). We will abuse notation
and refer to points of X − {s} as points of X̂ − {s1, s3} and vice versa.

The cut points of the continuum X̂ are exactly S − {s}. Consider the cut
point pretree P for X̂ . By Corollary 9, the cut points of X̂ will be exactly the
singleton equivalence classes in P other than {s1} and {s3}. The closures of
non-singleton equivalence classes in P are exactly the gaps of S . Thus every
gap of S has more than one point. The cut point real tree T is in this case
an arc (see Lemma 15), so there is a linear order on P corresponding to the
pretree structure. Let A ∈ P be a non-singleton equivalence class (so Ā ⊂ X
is a gap of S ) with s 6∈ Ā. Let U = {x ∈ X̂ : [x] < A} and let B = q(Ū ∩ Ā).
Similarly let O = {x ∈ X̂ : A < [x]} and let C = q(Ō∩ Ā). The two closed sets
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B and C are called the sides of the gap Ā. Notice that ∂A = C ∪B . Since X
has no cut points B and C are nonempty.

Definition Let D be a gap of S with sides B and C . If B ∩ C = ∅, then
we say D is a fat gap of S . Each fat gap is a continuum whose boundary
is the disjoint union of its sides. It follows that every fat gap has nonempty
interior. Distinct fat gaps of S will have disjoint interiors. Since the compact
metric space X is Lindelöf (every collection of nonempty disjoint open sets is
countable), S has only countably many fat gaps. If X is locally connected then
there are only fat gaps because the sides of a gap form (with local connectivity)
an inseparable cut pair.

Consider the following example where X is a continuum in R2 containing a
single necklace S and five gaps of S . The three solid rectangles are fat gaps,
and the two thin gaps are limit arcs of Topologist sine curves.

X

Lemma 20 The union of the sides of a gap of S is a non-singleton inseparable
set.

Proof Take A, U ,O , B , C , s and q : X̂ → X as above. We show that B∪C
is a non-singleton inseparable set. Suppose that B ∪C = {b}. Then ∂A = {b}
and since gaps are not singletons, b is a cut point of X . Thus B ∪ C is not a
singleton.
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Now suppose that d, e ∈ B ∪C and {r, t} is a cut pair separating d and e. Let
E = q(O)∪ q(U). Since O and U are nested unions of connected sets they are
connected and since s ∈ q(O) ∩ q(U), E is connected. Thus for any P ⊂ X ,
with E ⊆ P ⊆ Ē , P is connected. Since d, e ∈ Ē it follows that {r, t} must
separate E . Since the gap Ā 3 d, e is connected it follows that {r, t} must
separate Ā. Notice that E ∩ Ā consists of sides of A which are points of S , so
|E∩Ā| ≤ 2 and if |E∩Ā| = 2 then E∩Ā = {e, d}. It follows that {r, t} 6⊂ EĀ.

First consider the case where one of {r, t}, say r is in E ∩ Ā. It follows that
r ∈ S is one of the sides of Ā, say {r} = B . Thus d, e ∈ C , the other side of Ā.
Since q(O) is connected and its closure contains C , it follows that t ∈ q(O)∩S .
Since B is not a point of S , there are infinitly many elements u ∈ S such that
{r, u} separates t from C , Replacing t with such an u, we may assume that
r are t are not inseparable and so X − {r, t} has exactly two components by
Lemma 15. One of these components will contain s and the other will contain
Ā− {r}. Thus {r, t} doesn’t separate d from e. Contradiction.

Now we have the case where {r, t} ∩ (E ∩ Ā) = ∅. It follows that one of them
(say r) is a cut point of E and the other t is a cut point of Ā. Since r is a cut
point of E , it follows that r ∈ S , and since r is not a side of Ā, with no loss
of generality r = s. Thus t is a cut point in X̂ and so t ∈ S . But S ⊂ E and
t 6∈ E . Contradiction.

Corollary 21 Let X be a continuum without cut points. Suppose that for
every pair of points c, d ∈ X there is a pair of points a, b that separates c, d.
Then X is homeomorphic to the circle.

Proof Let S be a necklace of X . Using Lemma 15, we can show that S is
infinite and in fact any two points of S are separated by a cut pair in S . If
X − S 6= ∅ then there is a gap A of S . The union of sides of the gap A is a
non-singleton inseparable subset of X . There are no non-singleton inseparable
subsets of X , so S = X . Thus X is homeomorphic to the circle. This follows
from theorem 2-28, p.55 of [5](our Theorem 22 also proves this)

Theorem 22 Let S be a necklace of X . There exists a continuous surjective
function f : X → S1 , with the following properties:

(1) The function f is one to one on S .

(2) The image of a fat gap of S is a non-degenerate arc of S1 .
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(3) For x, y ∈ X and a, b ∈ S :

(a) If {f(a), f(b)} separates f(x) from f(y) then {a, b} separates x
from y .

(b) If x ∈ S and {a, b} ⊂ S separates x from y , then {f(a), f(b)}
separates f(x) from f(y)

The function f is unique up to homotopy and reflection in S1 . In addition, if
G is a group acting by homeomorphsims on X , which stabilizes S , then the
action of G on S extends to an action of G on S1 .

Proof We use the strong Urysohn Lemma [6, 4.4 Exercise 5] If A and B are
disjoint closed Gδ subsets of a normal space Y , then there is a continuous
f : Y → [0, 1] such that f−1(0) = A and f−1(1) = B . In a metric space,
all closed sets are Gδ . Since X has a countable basis, the subspace S has a
countable dense subset Ŝ . Since the fat gaps of S are countable the collection
R of all sides of fat gaps of S is countable. Let {sn : n ∈ N} = Ŝ ∪ R. Notice
that now some of the elements of {sn : n ∈ N} are points (singleton sets) of
S and some of them are sides of gaps (and therefore closed sets of X ). In
particular all inseparable cut pairs of S are in {sn : n ∈ N}.

For the remainder of this proof, we will maintain the useful fiction that each
element of {sn : n ∈ N} is a point (which would be true if X were locally
connected), and leave it to the reader (with some hints) to check the details for
the non-singleton sides of gaps .

Notice that the elements of {sn : n ∈ N} are pairwise disjoint.

We inductively construct the map f . We take as S1 , quotient space of the
interval [0, 1]/(0 = 1) with 0 identified with 1. Since {s1, s2, s3} is cyclic,
there exist cyclic decomposition M1,M2,M3 of X with respect to {s1, s2, s3}.
We define f3 : M1 → [0, 1

3 ] by f3(s1) = 0, f3(s2) = 1
3 and then extend to M1

using the strong Urysohn Lemma so that f−1
3 (0) = {s1} and f−1

3 (1
3) = {s2}.

Similarly we define continuous f3 : M2 → [13 , 2
3 ] such that f−1

3 (1
3) = {s2} and

f−1
3 (2

3) = {s3}. Lastly we define f3 : M3 → [23 , 1] such that f−1
3 (2

3) = {s3} and
f−1
3 (1) = {s1}. Since 0 = 1 we paste to get the function f3 : X → S1 .

Now inductively suppose that we have N1, . . . Nk a cyclic decomposition of X
with respect to {si : i ≤ k} (when the si are sides of gaps the definition of
cyclic decomposition will be similar), and a map fk : X → S1 such that for
each 1 ≤ j ≤ k , fk(Nj) = [fk(sp), fk(sq)] where ∂Nj = {sp, sq} and q, p ≤ k ,
satisfying f−1

k (f(sj)) = {sj} for all j ≤ k . If sk+1 ∈ Nj with ∂Nj = {sp, sq}
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then there exists continua A,B such that A∪B = Nj , A∩B = {sk+1}, sp ∈ A
and sq ∈ B (in the case where sk+1 is the side of a gap, then one of A, B will be
a nested union of continua, and the other will be a nested intersection). Using
the strong Urysohn Lemma, we define fk+1 : Nj → [fk(sp), fk(sq)] such that
f−1

k+1(fk(sp)) = {sp}, f−1
k+1(fk(sq)) = {sq}, f−1

k+1(
sq+sp

2 ) = {sk+1}, fk+1(A) =
[fk+1(sp), fk+1(sk+1)] and fk+1(B) = [fk+1(sk+1), fk+1(sq)]. We define fk+1

to be equal to fk on X − Nj and by pasting we obtain fk+1 : X → S1 . By
construction, the sequence of functions fk converges uniformly to a continuous
function f : X → S1 . Property (2) follows from the construction of f .

For uniqueness, consider h : X → S1 satisfying these properties. Since the
cyclic ordering on S implies that f : S → S1 is unique up to isotopy and
reflection [1], we may assume that h and f agree on S . Thus for any fat gap
O of S , h(O) = f(O) = J , an interval. Since f and h agree on the sides of O ,
which are sent to the endpoints of J , we simply straight line homotope h to f
on each fat gap. Clearly after the homotopy they are the same.

The action of G on S gives an action on f(S) ⊂ S1 , which preserves the cyclic
order. Thus by extending linearly on the complementary intervals, we get an
action of G on S1 . This action has the property that for any g ∈ G, f ◦g ' g◦f

Notation Let X be a continuum without cut points. We define R ⊂ 2X

to be the collection of all necklaces of X , all maximal inseparable subsets of
X , and all inseparable cut pairs of X . For the remainder of this section, X is
fixed.

Lemma 23 Let E be a non-singleton subcontinuum of X . There exists Q ∈ R
with Q ∩ E 6= ∅.

Proof Let c, d ∈ E distinct. If {c, d} is an inseparable set, then there is a
maximal inseparable set D ∈ R with c, d ∈ D .

If not then there is a cut pair {a, b} separating c from d. It follows that
E ∩ {a, b} 6= ∅. There is a necklace N ∈ R with {a, b} ⊂ N , and so E ∩N 6=
∅.

Theorem 24 Let X be a continuum without cut points. If S, T ∈ R are
distinct then |S ∩ T | < 3 and if |S ∩ T | = 2, then S ∩ T is an inseparable cut
pair.
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Proof If S or T is an inseparable cut pair, then the result is trivial. We are
left with three cases.

First consider the case where S and T are necklaces of X Suppose there are
distinct a, b, c ∈ S ∩ T . Since S, T are distinct necklaces, there exists d ∈
S − T . Since {a, b, c, d} ⊂ S is cyclic, renaming a, b, c if needed, we have
X = A∪B∪C∪D where A,B, C, D are continua and A∩B = {b}, B∩C = {c},
C∩D = {d}, and D∩A = {a}, and all other pair-wise intersections are empty.
Thus {b, d} separates a and b, points of T . It follows by Lemma 17 that d ∈ T .
This contradicts the choice of d so |S ∩ T | < 3. Now suppose we have distinct
a, b ∈ S ∩ T . If {y, z} is a cut pair separating a from b in X then, by Lemma
17, {y, z} ⊂ T and {y, z} ⊂ S , so |S∩T | > 3. This is a contradiction, so {a, b}
is an inseparable cut pair.

Now consider the case where S and T are maximal inseparable subsets of X .
Since S and T are distinct maximal inseparable sets, there exist y ∈ S , z ∈ T
and a cut pair {a, b} separating y from z . It follows that y 6∈ S and z 6∈ T .
Thus M = C ∪D where C and D are continua, y ∈ C , z ∈ D and C ∩D =
{a, b}.By inseparability, S ⊂ C and T ⊂ D . Clearly S ∩ T ⊂ C ∩D = {a, b}.
If S ∩ T = {a, b} then {a, b} is inseparable.

Finally consider the case where S is a necklace of X , and T is a maximal
inseparable set of X . By definition, every cyclic subset with more than three
elements is not inseparable. It follows that |S ∩ T | < 4. The only way that
|S ∩ T | = 3 is if S = T which is not allowed. If |S ∩ T | = 2 then S ∩ T
is inseparable (since T is) and cyclic (since S is) and therefore S ∩ T is an
inseparable cut pair.

Lemma 25 If S, T ∈ R, then S doesn’t separate points of T .

Proof Suppose that r, t ∈ T − S with S separating r and t. First suppose
that S is cyclic (so S is a necklace or an inseparable cut pair). In this case by
Lemma 19, there exists a cut pair {a, b} ⊂ S such that {a, b} separates r from
t.

If {r, t} is a cut pair, then by Lemma 15, a and b are separated by {r, t}, so S is
not an inseparable pair. Thus S is a necklace and it follows by Lemma 17 that
r, t ∈ S (contradiction). Thus {r, t} is not a cut pair, and so T is a maximal
inseparable set, but {a, b} separates points of T which is a contradiction.

We are left with the case where S is a maximal inseparable set.
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If T is also a maximal inseparable set, then there is a cut pair A separating a
point of S from a point of T . Thus there exist continua N and M such that
N ∪M = X , N ∩M = A and, since S and T are inseparable, we may assume
T ⊂ N and S ⊂ M . Since A doesn’t separate points of T , and S ∩N ⊂ A, it
follows that S doesn’t separate points of T .

Lastly we have the case where S is maximal inseparable, and T is cyclic. Thus
{r, t} is a cut pair. So there exist continua N,M such that N ∪M = X and
N ∩M = {r, t}. Since S is maximal inseparable, S is contained in one of N,M
(say S ⊂ M ). However r, t ⊂ N and since r, t 6∈ S , S∩N = ∅. Thus S doesn’t
separate r from t.

Definition We now define a symmetric betweeness relation on R under which
R is a pretree. Let R,S, T be distinct elements of R. We say S is between R
and T , denoted RST or TSR, provided:

(1) S is an inseparable cut pair and S separates a point of R from a point
of T .

(2) S is not an inseparable pair and:

(a) R ⊂ S , so R is an inseparable cut pair, and R isn’t between S and
T (see case (1))

(b) S separates a point of R from a point of T , and there is no cut pair
Q ∈ R with RQS and TQS (see case (1))

For R, T ∈ R we define the open interval (R, T ) = {S ∈ R : RST}. We now
defined the closed interval [R,S] = (R,S)∪{R, T} and we define the half-open
intervals analogously. We will show that R with this betweeness relation forms
a pre-tree [2]. Clearly for any R,S ∈ R, by definition [R,S] = [S, R] and
R 6∈ (R,S).
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X

The preetree R

The cut pair tree T 

Consider the example above where X ⊂ R2 , the union of 6 non-convex quadri-
laterals (meeting only at vertices) and a topologist’s sine curve limiting up to
one of them. There are two Necklaces, one being the Topologist’s sine curve and
the other consisting of the four green points. The cut pair tree T is obtained
from R by connecting the dots (definition to be given later).

Lemma 26 For any R,S, T ∈ R, we have that [R, T ] ⊂ [R,S] ∪ [S, T ].

Proof We may assume R,S, T are distinct. Let Q ∈ (R, T ) with Q 6= S .

If Q is an inseparable pair then Q separates a point r ∈ R from a point t ∈ T .
Thus there exist continua N ,M such that N ∪M = X , N ∩M = Q, r ∈ N
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and t ∈ M . Since S 6⊂ Q, either (S − Q) ∩ N 6= ∅ implying Q ∈ (S, T ), or
(S −Q) ∩M 6= ∅ implying Q ∈ (R,S).

Now consider the case where Q is not an inseparable pair.

Suppose that one of R,T (say R) is contained in Q, so R ⊂ Q is an inseparable
cut pair and R 6∈ (Q,T ). If R 6∈ (Q,S) then by definition Q ∈ (R, S) as
required. If on the other hand R ∈ (Q,S) then there exist continua N,M
and q ∈ Q − R and s ∈ S − R such that q ∈ N , s ∈ M , N ∪ M = X and
N ∩M = R. Since R 6∈ (Q,T ), it follows that (T − R) ⊂ N . If T ⊂ Q, then
since T 6= R, it follows that T 6∈ (Q,S), and so Q ∈ (T, S). If T 6⊂ Q, then
there is t ∈ (T −Q) ⊂ (T − R) ⊂ N and it follows that Q separates s from t
since R separated them, thus Q ∈ (S, T ) as required.

Where are now left with the case where Q is not an inseparable pair, R 6⊂ Q,
and T 6⊂ Q (see (2b)). Thus by definition there exists r ∈ R−Q, t ∈ T−Q and
disjoint continua M,N with r ∈ M and t ∈ N , N ∪M = X and N ∩M ⊂ Q.
If S 6⊂ Q then there exists s ∈ S−Q and either s ∈ M in which case Q ∈ (S, T )
or s ∈ N in which case Q ∈ (S, R). If on the other hand S ⊂ Q, then by (2b),
either S 6∈ (Q,R) implying Q ∈ (S, R) or S 6∈ (Q,T ) implying Q ∈ (S, T ).

Lemma 27 For any R, T ∈ R, if S ∈ (R, T ) then R 6∈ (S, T ).

Proof First consider the case where S is an inseparable cut pair. We have
r ∈ R − S , t ∈ T − S and continua N 3 r and M 3 t such that N ∪M = X ,
N ∩M = S . In fact by Lemma 25 R ⊂ N and T ⊂ M .

If S 6⊂ R, then |R ∩ S| < 2. Since X has no cut points, no point in S is a cut
point of M , so M − R is connected. Thus R doesn’t separate S from T , so
R 6∈ (S, T ).

If S ⊂ R, then by definition since S ∈ (R, T ) then R 6∈ (S, T ).

Now consider the case where S is not an inseparable pair. If R ⊂ S , then R
is an inseparable pair and R 6∈ (S, T ) as required. We may now assume that
R 6⊂ S . If T ⊂ S , then T is an inseparable pair and T 6∈ (R,S). By Lemma
25 R cannot separate a point of T from a point of S , since R 6⊂ S , it follows
that R 6∈ (S, T ).

We are left with case (2,b) , so S separates a point r ∈ R − S from a point
t ∈ T − S . Thus there exists continua M,N with r ∈ M , t ∈ N , N ∪M = X
and N ∩M ⊂ S . In fact by 25 R ⊂ M and T ⊂ N . Since X has no cut points
and |R ∩ S| < 2, then N −R is connected, and so R 6∈ (S, T ).
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Definition We say distinct R, S ∈ R are adjacent if (R,S) = ∅.

Lemma 28 If R, S ∈ R are adjacent then R ⊂ S , S ⊂ R, or (interchanging
if need be) R is a necklace and S is maximal inseparable with [R̄−R]∩S 6= ∅.

Proof We need only consider the case where R,S are adjacent and neither is
a subset of the other.

First consider the case where one of R, S (say S ) is an inseparable set. There is
no maximal inseparable set containing both R and S , so there exists r ∈ R−S
and cut pair A separating r from from a point of S . Notice that A is contained
in some necklace T . Since A, T 6∈ (R,S), it follows that T = R and that S is
maximal inseparable.

Let G be the gap of R with S ⊂ G. Let Q be a side of G and p ∈ Q. if
p 6∈ S , then there exists a cut pair B separating p from S . Since (R,S) = ∅,
B doesn’t separate R from S . It follows by definition of side, that B separates
points of R which implies that B ⊂ R. This contradicts the the fact that Q
is a side of the gap G ⊃ S . If both sides of G are points, then they form an
inseparable cut pair in (R,S). Thus they are not both points so [R̄−R]∩S 6= ∅.
We are left with the case where R and S are each necklaces with more than 2
elements. Again let G be the gap of R with S ⊂ G, and let Q,P be sides of
G. Since Q ∪ P is inseparable, there is a maximal inseparable set A ⊃ Q ∪ P .
It follows that A ∈ (R,S) which is a contradiction.

Using the pre-tree structure on R, we can put a linear order (two actually) on
any interval of R. We recall that the order topology on a linearly ordered set
I is the topology having as basis the sets: Iy = {x : x > y}, Jy = {x : x <
y},Ky,z = {x : z < x < y} where y, z range over elements of I . The suspension
of a Cantor set is a continuum with uncountably many maximal inseparable sets,
but this doesn’t happen for inseparable cut pair and necklaces.

Lemma 29 Only countably many elements of R are inseparable pairs or neck-
laces.

Proof We first show that any interval I of R contains only countably many
necklaces and inseparable pairs.

Let Q be the set of all cut pairs in I which have more than two complementary
components, union the set of necklaces in I . Let A ∈ Q.
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• If A is a cut pair, then since X −A has more than two components, and
∪Q will intersect two of the components, A will separate [∪Q]−A from
some other point of X . Using Lemma 3, we find subcontinua Y, Z of X
such that Y ∪ Z = X , Y ∩ Z = A where [∪Q] − A ⊂ Y . We define the
open set UA = Z −A

• If A is a necklace, then |A| > 2 and there is a cut pair {a, b} ⊂ A doesn’t
separate [∪Q]−A. Using Lemma 3, we find subcontinua Y, Z of X such
that Y ∪ Z = X , Y ∩ Z = A where [∪Q]− A ⊂ Y . We define the open
set UA = Z − {a, b}

Notice that for any A,B ∈ Q, UA∩UB = ∅. Since X is Lindelöf, the collection
{UA : A ∈ Q} is countable and therefore Q is countable.

It is more involved to show that inseparable cut pairs {a, b} of I such that
X−{a, b} has 2 components are countable. Let S the set of inseparable cut pairs
{a, b} in I such that X −{a, b} has 2 components. We argue by contradiction,
so we assume that S is uncountable.

Let {a, b} be a cut pair of S and let CL, CR be the components of X − {a, b}.

We say that {a, b} is a limit pair if there are inseparable cut pairs {ai, bi} and
{a′i, b′i} in S such that {ai, bi} ⊂ CL , {a′i, b′i} ⊂ CR , and for each limit pair
{a′, b′} 6= {a, b} of S one of the two components of X − {a′, b′} contains at
most finitely many elements of the sequences {ai, bi} and {a′i, b′i}.

We claim that there are at most countable pairs in S which are not limit pairs.
Indeed if {a, b} is not a limit pair and I = [x, y] let CL, CR be the components
of X − {a, b} containing, respectively, x, y (L,R stand for left, right). Since
{a, b} is not a limit pair for some ε > 0 one of the 4 sets

CL ∩Bε(a), CR ∩Bε(a), CL ∩Bε(b, ), CR ∩Bε(b)

intersects the union of all cut pairs of S at either a or b.

We remark now that for fixed ε > 0 there are at most finitely many pairs {a, b}
in S such that (say) CL ∩ Bε(a) intersects the union of all cut pairs of S in a
subset of {a, b}. Indeed if we take all pairs {a, b} with this property the balls
B ε

2
(a) are mutually disjoint so there are finitely many such pairs. The same

argument applies to each one of the 3 other sets CR ∩Bε(a), CL ∩Bε(b, ), CR ∩
Bε(b). This implies that non limit cut pairs are countable.

So we may assume S has uncountably many limit pairs. Let {c, d} be a limit
pair in S , let CL, CR be the components of X − {c, d} and let {ci, di} ∈ C̄L ,
{c′i, d′i} ∈ C̄R be sequences of distinct pairs in S provided by the definition of
limit pair.
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Let Ci
R be the component of X − {ci, di} containing c, d. We claim that there

is an ε such that for all i there is some xi ∈ CL ∩ Ci
R with d(xi, {c, d}) > ε.

Indeed this is clear if the accumulation points of the sequences ci and di are
not contained in the set {c, d}. Otherwise by passing to a subsequence and
relabelling, if necessary, we may assume that either ci → c, di → d or both
ci, di converge to, say, c.

In the first case we remark that there is a component Ci of X−{c, d, ci, di}, such
that its closure contains both c, di or both d, ci . Indeed otherwise {c, d, ci, di}
is a cyclic subset which is impossible since we assume that {cj , dj}, (j > i) are
all inseparable cut pairs.

Since di → d and ci → c there is an ε > 0 and xi ∈ Ci such that d(xi, c) >
ε, d(xi, d) > ε for all i.

In the second case we remark that since c is not a cut point there is some e > 0
such that for each i there is a component Ci of CL ∩Ci

R with diameter bigger
than e. It follows that there is an ε > 0 and xi ∈ Ci such that d(xi, c) >
ε, d(xi, d) > ε for all i.

By passing to subsequence we may assume that xi converges to some xL ∈ CL .
Clearly d(xL, c) ≥ ε, d(xL, d) ≥ ε. It follows that d(xL, CR) > 0.

We associate in this way to a limit pair {c, d} in S a point xL and a δ > 0
such that:

(1) xL ∈ CL

(2) d(xL, CR) > δ

Since there are uncountably many limit pairs in S there are infinitely many
such pairs for which 1, 2 above hold for some fixed δ > 0. But then the
corresponding xL ’s are at distance greater than δ (by property 2 above). This
is impossible since X is compact. Thus S is countable.

Thus for any interval I of R, the set of necklaces and inseparable cut pairs of
I is countable.

Let E be a countable dense subset of X . For any A, a necklace with more than
one gap or an inseparable pair, there exist a, b ∈ E separated by A. Thus the
intervals I = [[a], [b]] contains A. There countably many such intervals, so the
set of necklaces with more than one gap is countable, and the set of inseparable
cut pairs of X is countable.

If a necklace N has less than two gaps, there is an open set U ⊂ N . By
Lindelöf, there are at most countably many such necklaces, and thus there are
at most countably many inseparable cut pairs and necklaces in X .
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Lemma 30 The pre-tree R is preseparable and complete.

Proof Let [R,W ] be a closed interval of R.

We first show that any bounded strictly increasing sequence in [R,W ] con-
verges. Let (Sn) ⊂ [R,W ] be strictly increasing. Let Cn be the component of
X−Sn which contains R. Let C = ∪Cn . Clearly C is contained in the closure
Q of the component of X −W which contains R, and so ∂C ⊂ Q. Clearly ∂C
is not a point (since it would by definition be a cut point separating R from
W ). The set ∂C is inseparable, and so ∂C ⊂ A, a maximal inseparable set. It
follows that A ∈ [R,W ]. If Sn 6→ A, then there is B ∈ [R,A) with Sn < B
for all n. As before, we have C contained in the closure D of the component
of X − B containing R. This would imply that A ∈ [R,B], a contradiction.
Thus every strictly increasing sequence in [R,W ] converges.

We now show that there are only countably many adjacent pairs in [R,W ].
We remark that if A,B is an adjacent pair in R at most one of the sets
A,B is a maximal inseparable set. By Lemma 29 there are only countably
many inseparable cut pairs and necklaces in X . It follows that there are only
countably many inseparable pairs in [R,W ]

We have shown thus that R is a complete preseparable pretree. By gluing in
intervals to adjacent pairs of R we obtain a real tree T as in theorem 13.

Corollary 31 There is a metric on T , which preserves the pretree structure
of T , such that T is an R-tree. The Topology so defined on T is canonical.

Proof We metrize T as in theorem 14. We metrize first the subtree spanned
by the set of inseparable cut pairs and necklaces (which is countable) and then
we glue intervals for the inseparable subsets of R which are not contained in
this subtree.

We call this R tree the JSJ Tree of the continuum X since in the case X =
∂G with G one-ended hyperbolic our construction produces a simplicial tree
corresponding to the JSJ decomposition of G.
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5 Combining the two trees

When X is locally connected, one can combine the constructions of the pre-
vious 2 sections to obtain a tree for both the cut points and the cut pairs of
a continuum X . The obvious application would be to relatively hyperbolic
groups, and we should note that in that setting, the action of the tree may be
non-nesting. We explain briefly how to construct this tree.

Let X be a Peano continuum and let P be the cut point pre-tree.

Lemma 32 Let A ∈ P be a non-singleton equivalence class of P . Then the
closure Ā is a Peano cutinuum without cut points.

Proof We first show that Ā is a Peano continuum. Since Ā is compact, and
X is (locally) arc-wise connected, it suffices to show that A is convex in the
sense that every arc joining points of Ā is contained in Ā.

Let a, b be distinct points of Ā and let I be an arc from a to b. Suppose
d ∈ I − A. Thus either c is a cut-point adjacent to A, or there is a cut-point
c ∈ A separating d from A, but then I cannot be an arc since it must run
through d twice.

Let a, b, e ∈ Ā. Since e doesn’t separate a from b in X , there is an arc in
X from a to b missing e. By convexity, this arc is contained in Ā, and so e
doesn’t separate a from b in Ā. It follows that the continuum Ā has no cut
points.

Let A be a non-singleton equivalence class of the cut point pre-tree P , and
let TA be the ends compactification (well, it will not be compact, but we glue
the ends to the tree anyway) of the cut pair tree for Ā Since X is locally
connected, for any interval (B,D) 3 A there are cut points a1, a2 ∈ Ā with
a1, a2 ∈ (B,D). Not every point of Ā is contained in one of the defining sets of
the cut pair pre-tree for Ā. Some of the points of Ā are not contained in a cut
pair, or in a maximal inseparable set with more than two elements, and these
appear as ends of the cut pair tree RĀ for Ā.

For each non-singleton class A of a the cut point tree T we replace A by T−A.
The end of the component of T − A corresponding to a cut point a1 ∈ Ā is
glued to the minimal point or end of TA containing a1 .

To see that this construction yields a tree, we use the following Lemma.
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Lemma 33 The set of classes of P with non-trivial relative JSJ-tree in any
interval of P is countable.

Proof Let [u, v] be an interval of P and let A be a class of [u, v] with non
trivial JSJ-tree. Since X is locally connected, Ā contains some cut point of
[u, v]. If c is a cut point of [u, v] in Ā we have that c, A are adjacent elements
of [u, v]. But we have shown in theorem 13 that there are at most countable
such pairs.

Clearly any group of homeomorphisms of X act on this combined tree.

6 Group actions

The R-trees we construct in the previous sections usually come from group
boundaries and the group action on them is induced from the action on the
boundary, so it’s an action by homeomorphisms. In this section we examine such
actions and generalize some results from the more familiar setting of isometric
actions.

We recall that the action of a group G on an R-tree T is called non-nesting
if there is no interval [a, b] in T and g ∈ G such that g([a, b]) is properly
contained in [a, b]. An element g ∈ G is called elliptic if gx = x for some
x ∈ T . If g is elliptic we denote by fix(g) the fixed set of g . An element which
is not elliptic is called hyperbolic.

Lemma 34 Let G be a group acting on an R-tree T by homeomorphisms.
Suppose that the action is non-nesting. Then if g is elliptic fix(g) is connected.
If g is hyperbolic then g has an ‘axis’, i.e. there is a subtree L invariant by g
which is homeomorphic to R.

Proof Let g be elliptic. We argue by contradiction. If A,B are distinct
connected components of fix(g) let [a, b] be an interval joining them (a ∈
A, b ∈ B ). Then g([a, b]) = [a, b]. Since [a, b] is not fixed pointwise there is a
c ∈ [a, b] such that g(c) 6= c. So g(c) ∈ [a, c) or g(c) ∈ (c, b]. In the first case
g([a, c]) ⊂ [a, c) and in the second g([c, b]) ⊂ (c, b]. This is a contradiction since
the action is non-nesting.

Let g be hyperbolic. If a ∈ T consider the interval [a, g(a)]. We consider all
x ∈ [a, g(a)] such that g(x) ∈ [a, g(a)]. This is a closed set. If c is the supremum
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of this set then there is no x ∈ [c, g(c)] such that g(x) ∈ [c, g(c)]. We take L
to be the union of all gn([c, g(c)]) (n ∈ Z). Clearly L is homeomorphic to R
and is invariant by g .

Proposition 35 Let G be a finitely generated group acting on an R-tree T
by homeomorphisms. Suppose that the action is non-nesting. Then if every
element of G is elliptic there is an x ∈ T fixed by G.

Proof We argue by contradiction. Let G =< a1, a2, ..., an >. If fix(a1) ∩
fix(a2)∩ ...∩fix(an) = ∅ then fix(ai)∩fix(aj) = ∅ for some ai, aj . We claim
that a−1

i a−1
j aiaj is hyperbolic. Indeed if a−1

i a−1
j aiaj(x) = x then aiaj(x) =

ajai(x). Let A = fix(ai), B = fix(aj). We remark that the smallest interval
joining aiaj(x) to A ∪ B has one endpoint in A while the smallest interval
joining ajai(x) to A∪B has one endpoint in B so these two points can not be
equal. This is a contradiction.

Proposition 36 Let G be a group acting on an R-tree T by homeomorphisms.
Suppose that the action is non-nesting. Then if every element of G is elliptic
G fixes either an x ∈ T or an end of T .

Proof Suppose that G does not fix any x ∈ T . Then there is a sequence
gn ∈ G and xn ∈ T such that xn ∈ fix(gn), xn /∈ fix(gn−1) and xn goes to
infinity. The sequence xn defines an end e of T . If r is a ray from x0 ∈ T
to e then any g ∈ G fixes a ray rg contained in r . Indeed if this is not the
case, for some n, fix(g) and fix(gn) are disjoint. It follows as in the previous
proposition that g−1g−1

n ggn is hyperbolic, a contradiction.
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