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DETERMINISTIC APERIODIC TILE SETS

J. KARI, P. PAPASOGLU

Abstract

Wang tiles are square tiles with colored edges. We construct an aperi-
odic set of Wang tiles that is strongly deterministic in the sense that
any two adjacent edges of a tile determine the tile uniquely. Con-
sequently, the tiling group of this set is not hyperbolic and it acts
discretely and co-compactly on a CAT(0) space.

1 Introduction

Eberlein in [E1] posed the problem of characterizing algebraically compact
non-positively curved manifolds which do not admit a Riemmanian metric
of strictly negative sectional curvature. More precisely he asked if the fun-
damental group of such manifolds always contains a free abelian subgroup
of rank 2. Bangert and Schroeder [BaS| have shown that this is true under
the additional assumption that the manifold is analytic.

Gromov remarks in [Grl] that one can ask the same question in the
more general context of CAT(0) spaces: Let X be a locally finite, metric
polyhedron satisfying the CAT(0)-inequality and let G be a group acting
co-compactly on X. Assume moreover that X is not hyperbolic in the sense
of Gromov. Does then G contain a free abelian subgroup of rank 27

Eberlein in [E2] showed that if M is a compact, non-positively curved
manifold which does not admit a metric of strictly negative sectional curva-
ture, then there is an isometric embedding f : R? — M. Gromov in [Gr2,
sec.4.2C] (see also [Br]) showed that this generalizes to metric polyhedra
satisfying the CAT(0)-inequality and which are not hyperbolic.

Gromov in [Gr2, sec. 4.7.A], notices that there is an affinity between the
question mentioned earlier and the existence of aperiodic sets of tiles. Wang
in 1961 conjectured that if there is a tiling of the plane using a finite set
of tiles then there is a periodic tiling of the plane for the same set of tiles.
Periodic here means that Z? acts freely by color preserving translations on
this tiling. Berger in 1966 disproved this conjecture: He found a finite set
of colored square tiles such that no tiling of the plane by translates of these
tiles is periodic.
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Although the similarity between these two problems is striking to our
knowledge all examples of groups associated to tilings are not non-positively
curved. In this paper we describe a set of square tiles whose associated com-
plex satisfies the CAT(0)-inequality. Moreover the fundamental group of
this complex is biautomatic. However our example does not give a counter-
example for the question mentioned earlier as it contains a free abelian
subgroup of rank 2.

CAT(0) complexes have been studied recently by a number of authors
(see [GSho], [BBril,2], W], [BBuy], [H], [BuM]). Gersten and Short in
[GSho] showed that the fundamental groups of 2-dimensional CAT(0) com-
plexes satisfying small cancellation conditions (like the suare complexes
that we will be considering here) are automatic. The theory of automatic
and bi-automatic groups is, among other things, an attempt to define non-
positively curved groups (generalizing hyperbolic groups) in the framework
of combinatorial group theory. The abelian subgroup question is open in
this context as well: Does a (bi)automatic group which is not hyperbolic
contain a subgroup isomorphic to Z2 ?

Ballmann and Brin in [BBri2] show that the fundamental group of a
2-dimensional CAT(0) complex is either virtually Z? or it contains a non-
abelian free group of rank 2. They also show in [BBril] that the fundamental
groups of (3,6)-complexes (CAT(0)-complexes made out of hexagons) are
either hyperbolic or contain subgroups isomorphic to Z2. Wise in [W] con-
structed examples of 2-dimensional CAT(0) square complexes whose fun-
damental group is not residually finite and Burger and Mozes (see [BuM))
constructed such complexes with simple fundamental group. Ballmann and
Buyalo in [BBuy] show that there is a CAT(0) square complex whose fun-
damental group is hyperbolic which does not admit a metric of strictly
negative curvature.

A set of Wang-tiles T is a finite set of squares with colored oriented
edges placed on the plane with their edges horizontal or vertical. Conway
(see [CL]) has associated to a tile set T" a group, defined as follows:

Let C(T) be the complex obtained by gluing the squares in 7' along
the sides which have the same color respecting their orientation. If C(T")
is connected we define the tiling group of T', G(T'), to be the fundamental
group of this complex. Note that if the plane can be tiled by 7" and C(T')
is not connected then the plane can be tiled by a proper subset of T, 77,
whose associated complex C(T1) is connected.

We call a set of Wang tiles strongly deterministic if for all colors C7, Co
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there exists at most one tile with adjacent edges colored by C7,Cs. This
imposes interesting properties on valid tilings. It is easy to see that any
valid tiling is now uniquely determined by tiles along any continuous curve
that intersects every horizontal and vertical line of the plane. We say that
the tiles along the curve force all other tiles. In the same way, any connected
pattern forces the tiles on the smallest rectangle containing the pattern.

The following observation provides the connection between tilings and
the question mentioned earlier.

Fact. If T is an aperiodic and strongly deterministic set of Wang-tiles
then the (metric) complex C(T) satisfies (locally) the CAT(0) inequality.
Moreover the fundamental group of this complex, G(T'), is not hyperbolic.

To see this note that since T is strongly deterministic if v is a vertex of
C(T) every simple closed path in the link of v contains at least four edges.
Therefore C(T') is locally CAT(0). On the other hand, given a tiling of the
plane by T there is an obvious way to map isometrically the tiled plane to

—_~

the universal covering of C(T"). Therefore C'(T') is not hyperbolic.

This fact shows that to find a tiling group which acts discretely and
cocompactly on a CAT(0) space and which is not hyperbolic it is sufficient
to find a strongly deterministic set of Wang-tiles that tile the plane only
aperiodically. We do this in the rest of this paper.

2 Preliminaries

Wang-tiles are unit squares with colored edges. A tile set T is a finite
collection of Wang-tiles, placed with their edges horizontal and vertical. A
tiling is a mapping f : Z?> — T that assigns a Wang-tile at each integer
lattice point of plane. Tiling f is valid at point (z,y) € Z? if the four edges
of the tile in position (z,y) have the same color as the abutting edges of
the adjacent tiles, i.e. if the upper edge of f(z,y) has the same color as the
lower edge of f(x,y + 1), the left edge of f(x,y) has the same color as the
right edge of f(z —1,y), etc. Note that the Wang tiles may not be rotated.
Tiling f is valid if it is valid at all points (x,%) € Z2.

A tiling f is periodic with period (a,b) € Z*\ {(0,0)} iff f(z,y) =
f(x + a,y + b) for every (x,y) € Z2. If there exists a periodic valid tiling
with tiles of T, then there exists a doubly periodic valid tiling [R], i.e. a
tiling f such that, for some a,b > 0, f(x,y) = f(x + a,y) = f(z,y + b) for
all (z,y) € Z?. A tile set T is called aperiodic iff (i) there exists a valid
tiling, and (ii) there does not exist any periodic valid tilings. The existance
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of aperiodic tile sets was first proved by Berger [Be| in 1966. He used his
aperiodic tile set to prove that the tiling problem is undecidable: Given a
tile set the tiling problem asks whether there exists any valid tilings of the
plane. According to Berger’s result there does not exist any algorithm that
would solve the problem for all tile sets. A simplified proof was presented
later by Robinson [R], based on another aperiodic tile set. Since then many
other aperiodic tile sets have been constructed, see Chapter 7 of [GruSh].
The smallest known aperiodic set contains 13 tiles [Cu], [K2].

A tile set T is called NW-deterministic if there do not exist two differ-
ent tiles in 7" that would have same colors on their upper and left edges,
respectively. In other words, for all colors C; and C5 there exists at most
one tile in T" whose upper and left edges have colors C; and Cs, respec-
tively. It was shown in [K1] that there exist aperiodic NW-deterministic
tile sets. Based on such a set it was shown that the tiling problem is un-
decidable even in the restricted class of NW-deterministic tile sets. SW-,
NE- and SE-deterministic tile sets are defined analogously. In the present
work it is shown that there exists aperiodic tile sets that are deterministic
in all four directions simultaneously (Theorem 1). We call a tile set 4-way
deterministic if it is NW-, SW-, NE- and SE-deterministic.

An even stronger condition can be satisfied: There exist aperiodic tile
sets in which for all colors C7 and (5 there exists at most one tile having
two adjacent edges colored by C; and Cy (Corollary 1).

Let S and T be two tile sets, and let ¢ : S — T be a function. We say
that ¢ is a tile homomorphism if it respects colors, that is, ¢(s1) and (s2)
have identical colors on some edges if s1 and ss have identical colors on the
corresponding edges.

Let us apply ¢ to tilings by applying ¢ to all tiles separately:

Va,y € Z: p(t)(x,y) = ¢(t(z,y)) -
If ¢ is a homomorphism then it preserves valid tilings, that is, if f is a valid
tiling using S then ¢(f) is a valid tiling using 7.

Our general framework for constructing a 4-way deterministic aperiodic
tile set is the following: Let T be an aperiodic tile set. We use Robinson’s
aperiodic tile set [R] (see Figure 1) as T. Consider a fixed valid tiling f
using 7T'. It is enough to construct a 4-way deterministic tile set S that
can produce the same tiling f, in the sense that there exists a valid tiling
g using S and a tile homomorphism ¢ : S — T that maps ¢ into f. Then
tile set

{(s;t) e S xT | p(s) =t}
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where adjacent tiles have to match in both S- and T-components is aperi-
odic and 4-way deterministic. It is 4-way deterministic because S is 4-way
deterministic and the S-components uniquely determine the T-components
of the tiles. It does not allow any valid periodic tiling because T does
not allow any valid periodic tilings. And there is at least one valid tiling,
obtained from g and f.

3 A Deterministic Aperiodic Tile Set

In this section we describe a detailed construction of an aperiodic 4-way
deterministic tile set. Robinson’s aperiodic tile set is shown in Figure 1.
There are seven different tiles: one cross and six arms. The tiles may
be rotated freely, which increases the number of tiles to 28. Instead of
colored edges the tiles have incoming or outgoing arrows on the sides: The
tiling is valid if each arrow meets an arrow with the same direction in the
neighboring tile. The arrows are used in order to make tilings more readable
— they can be naturally replaced by colors that code the directions and
positions of the arrows.

Each tile contains central arrows in the middle of their edges and pos-
sibly some additional side arrows. A central arrow together with a side
arrow is called a double arrow, a central arrow alone is a single arrow.

a) b)

Figure 1: Robinson’s seven basic tiles: a) a cross and b) arms.

The first tile containing outgoing arrows on all four edges is called a
cross. The cross is said to face to the two directions of its double arrows.
The cross shown in Figure 1 faces up and to the right.

The other tiles are called arms. Every arm contains a principal arrow:
the central arrow running across the tile from one side to the opposite
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side. The arm is said to point to the direction of its principal arrow. The
arm may also have a side arrow parallel to the principal arrow. The side
arrow may be on either side of the principal arrow. Each arm also has
two incoming arrows at right angles to the principal arrow. If the incoming
arrows have side arrows then they must be toward the head of the principal
arrow.

As in [R], a cross must be forced to occur in alternate columns in al-
ternate rows. This is accomplished by adding a new component — a parity
tile — to every basic tile. The four parity tiles are depicted in Figure 2. In
every valid tiling of the plane the parity tiles alternate both horizontally
and vertically.

A A

3 4

Figure 2: The parity tiles.

The parity tiles are attached to the basic tiles so that parity tile 1 in
Figure 2 is attached only to the crosses. Parity tiles 2 and 3 are attached
to vertical and horizontal arms, respectively. Finally, parity tile 4 may be
attached to any of the basic tiles. Each basic tile has two possibilities for
the parity tiles so that the total number of tiles becomes 56. The index
1,2,3 or 4 of the parity tile will be called simply the parity of the tile.

The set of 56 tiles described above is exactly the same that was used
by Robinson in [R], so that his analysis of possible tilings can be used. For
each positive integer n, four (2" — 1)-squares are defined recursively. A
cross with parity 1 is a 1-square. There are four 1-squares because there
are four possible orientations of the cross.

For every n > 2 a (2" — 1)-square consists of four (2"~ — 1)-squares
facing each other, separated by a cross and rows of arms leading radiately
out from the center (see Figure 3). The cross in the center is called the
central cross of the (2" —1)-square. There are four (2" —1)-squares because
the orientation of the central cross is arbitrary. The (2" — 1)-square is said
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(21 —1)-square (2=t —1)-square
facing down and facing down and
to the right to the left

Y
A
(2"~ — 1)-square (2"~ — 1)-square
facing up and facing up and
to the right to the left

Figure 3: Constructing a (2™ — 1)-square facing up and to the right.

to face to the same directions as its central cross. For examples of 3- and 7-
squares see [R] or [GruSh|. Because the tiling is valid inside (2" —1)-squares
for all n, there exist valid tilings of the infinite plane.

The following lemma was proved in [R]. It proves that Robinson’s tile
set is aperiodic.

LEMMA 1. In any valid tiling of the plane using Robinson’s tiles every
1-square (i.e. a cross with parity 1) belongs to a unique 3-square, 7-square,
15-square, etc. Consequently the tiling is aperiodic. O

Let us see next how deterministic Robinson’s tile set is. Assume that
the arrows on two adjacent edges of a tile are known. The following three
cases are possible.

1. On both edges the arrows point away from the tile: The tile has to
be a cross. Its orientation is determined uniquely by the location of
side arrows on the two known edges.

2. One edge contains incoming and one edge outgoing arrows: The tile
is an arm directed towards the outgoing arrow. The position of side



360 J. KARI, P. PAPASOGLU GAFA

arrows is determined uniquely by the side arrows on the two known
edges.

3. On both edges the arrows point into the tile: Also in this case the tile
has to be an arm. However there are two possibilities for its direction.
The positions of side arrows are determined uniquely.

Case 3 shows that Robinson’s tile set is not deterministic in any diagonal
direction. We modify the tile set in such a way that the orientation of an
arm is determined by its neighbors. It is sufficient to know whether the
arm is horizontal or vertical.

The new tiles have labeled arrows on their edges. Each arrow has to
meet an arrow with the same label and direction in the next tile. Each edge
contains three arrows, all of which have the same direction. (We could as
well use just one arrow whose label is a triple.) The arrow in the center is
called a central arrow, the other two arrows are side arrows.

a) vrc b)  y1yays vy c cyw
A
v IR c 7 1 X1 T X1 T
x x ) o X9 o X9 X9
€Tl —h T3 T3 I3 xr3 X3 XT3
Yy vy
T T h Y1Y2Y3 vYc cYyv

(x1,x2,23) € Sp (x1,22,23) € Sy (x1,22,23) €S,
(y17y27y3) S S’u

Y1Yy2Y3 vYc cywv
c c c c c c
Y1 [ ly3 o Il<dldc c Lo
h h h h h h
Y1Y2yYs3 vYc cYywv

(y17y2ay3) € Sv

Figure 4: The seven types of modified tiles. Variables x and y denote any label
in {v, h, c}. Labels (x1, z2,x3) come from Sy, = {(z,z,v), (v,z,2) | £ = v, h or ¢},
and labels (y1, y2,y3) from S, = {(y,y, h), (h,y,y) | y = v, h or ¢}. When tiles are
rotated by 90° labels h become v, and vice versa. Solid arrows correspond to the
arrows on Robinson’s tiles.

Labels h,v and ¢ will be used (referring to horizontal arms, vertical
arms and crosses, respectively). Available tiles are shown in Figure 4. Tile
a) is a cross — the others are arms. The direction of an arm is the direction
of its principal arrow, i.e. the central arrow that goes through the tile. The
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tiles may be rotated arbitrarily, but whenever a tile is turned 90° each label
v has to be changed to h and vice versa. Parity tiles of Figure 2 will be
attached in the same way as in the case of Robinson’s tiles: Parity tiles
1,2 and 3 are combined with crosses, vertical arms and horizontal arms,
respectively, and parity tile 4 may be combined with any tile.

In Figure 4 some arrows are drawn solid and some dashed. This indi-
cates how the tiles relate to Robinson’s tiles: If the dashed lines and labels
are removed from a tile, the corresponding Robinson’s tile is obtained. This
is explained in more detail below.

Note that only some triples of labels are possible: On vertical arrows
triples in

Sy = {(:U,:U,h) and (h,z,x) } x arbitrary }
correspond to single arrows, and triples in
D, = {(v,:l:,c) and (¢, x,v) { x arbitrary }
correspond to double arrows. Similarly for horizontal arrows, elements of
Sp = {(z,z,v) and (v,z, ) | z arbitrary }
represent single arrows, and
Dj, = {(h,z,c) and (c,z,h) | x arbitrary }
represent double arrows. It is important to note that, in the case of arms
having incoming double arrows at right angles to the principal arrow (i.e.
the tiles on the lower row in Figure 4), the incoming central arrows have
the same labels as the side arrows of the principal arrow. This is indicated
in Figure 4 by small dots at the intersection points.

There exists a tile homomorphism from the new tile set into the Robin-
son’s set. The homomorphism is obtained if each triple of labeled arrows
on an edge are replaced by single and double arrows as follows:

e On vertical arrows elements of .S, represent single arrows. Combina-
tions (v, x,c) (and (¢, z,v)) belonging to D, represent double arrows,
where the side arrow is on the left side (right side, respectively) of
the central arrow. (The side arrow is on the same side as label v.)

e On horizontal arrows elements of S, represent single arrows, and com-
binations (h,z,c) and (c,z,h) of Dy, represent double arrows, where
the side arrow is on the same side as label h.

In Figure 4 the solid arrows indicate the homomorphic images of the tiles:
the tiles are in the same order as their images in Figure 1.

The homomorphic preimages of (2" — 1)-squares will be called simply
(2™ — 1)-squares. Because there is a tile homomorphism to Robinson’s



362 J. KARI, P. PAPASOGLU GAFA

aperiodic tile set, there are no valid periodic tilings by the new tile set.
In fact, in every valid tiling each tile with parity 1 belongs to a unique
(2™ — 1)-square, for every n > 2 (see Lemma 1).

A B

(2™ — 1)-square

5]
=

Figure 5: Interpretation of labels: a,b, ¢ and d in the central cross of a (2™ — 1)-
square characterize tiles A, B, C' and D outside the square, respectively.

The idea behind the labels is to code information about tiles outside
the corners of a (2" — 1)-square in its central cross. Consider the (2" — 1)-
square of Figure 5, and the four tiles denoted by A, B, C' and D immediately
outside its corners. The labels a, b, c and d of the side arrows in the central
cross characterize tiles A, B,C' and D, respectively. For example, a = v,
a = h or a = ¢ mean that tile A is a vertical arm, a horizontal arm or a
cross, respectively. The label x of the central arrow characterizes the tile
in the corner that is opposite the faces of the square. For example, x = ¢
on a cross facing up and to the right.

Keeping this interpretation of labels in mind, one can easily build arbi-
trarily large (2" —1)-squares. As an example, Figure 6 contains the 7-square
facing up and to the right. The labels of the central cross uniquely deter-
mine all other labels. Note especially how the arms in the middle of the
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rows of arms leading out from the central cross transmit information cor-
rectly to the quadrants: The arms are of the type represented on the lower
row of Figure 4, so that the meeting central arrows have the same labels as
the side arrows of the principal arrow.

vt 1 i IEEEEN IR ht T i
v h h c
v} 4 €] ¢ 4 Y] U}y i € v 10
vt bt h C
) &

) c C 3]

L1 Jy Py Iy
vt i et 1 1y vt 1 gl ct 11y
[ v ™ T ¢ gl < ¢ 7 H v i e
Uy 4 ih hi v i€ Ci v ih i 4 0
v c
T
x h
Jf..?v ih] I C?..C. ct . ih] I U?P.
<Ul 3 vc> <cv ﬁ; 474 vC> <Cv LJ
vt t *c C U
T h
ki h s s h h .

}] T > <C- T U> ;U T --C> <C T U>
.z h.. h h.
%y 4 il i v ih T v iR hi v ih]

Figure 6: The 7-square facing up and to the right. Only the principal arrows and
their side arrows of the arms are drawn. Labels are given in the crosses where the
rows of arrows start. Label x is arbitrary. Arrows that are removed by the tile
homomorphism into Robinson’s tile set are drawn dashed, arrows that remain are
drawn solid.

Finally a restriction is imposed that makes the tile set deterministic in
all four diagonal directions. Consider a tile with parity 4, as in Figure 7.
The tiles on its right and left sides are horizontal arms (since they have
parity 3), and the tiles above and below are vertical arms (parity 2). Its
diagonal neighbors are crosses (parity 1). It will be required that the labels
of the closest meeting side arrows in the parity 2 and 3 tiles characterize
the tile with parity 4. In Figure 7 this means that label z is v,h or ¢
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if the parity 4 tile in the center is a vertical arm, a horizontal arm or a
cross, respectively. This restriction is satisfied on (2" — 1)-squares, since
the crosses with parity 1 form 1-squares, and according to the interpretation
above, the labels of their side arrows characterize correctly their diagonal
neighbors, that is, tiles with parity 4.

gt Pt

————|parity 4|————

- L

RY be b

Figure 7: The restriction on tiles with parity 4: Label = has to characterize the
tile in the center.

The restriction can be implemented by labeling arrows on the parity
tiles using labels v, h and ¢, as shown in Figure 8. All arrows of the parity
tile 4 are labeled by the same label. If the label is v (h or ¢, respectively)
the tile may be combined only with a vertical arm (horizontal arm or cross,
respectively). The incoming vertical arrows of the parity tile 2 are labeled
but the horizontal arrows are unlabeled. The labels of the incoming arrows
may be different on the upper and lower edges. The tile may be combined
with vertical arms, in which the side arrows of the meeting arrow heads
are labeled with the same labels used in the parity tile (see Figure 8).
Symmetrically, the horizontal arrows of the parity tile 3 are labeled. The tile
may be combined with horizontal arms, in which the side arrows have the
same labels. The parity tile 1 remains unlabeled and it may be combined
with any cross.

The tile set is now complete. Clearly the tiles can be made Wang-
tiles having colored edges. The color of each edge consists of labels and
directions of the arrows on the edge together with the position, possible
label and the direction of the arrows on the parity component.

Let us count the number of different tiles. There are 87 tiles in Figure 4.
This includes all possible choices of labels. The tiles may be rotated freely,
and each tile has two alternatives for its parity component. This gives
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parity 1 parity 2 parity 3 parity 4
Tz T x
x Y x x
y T y T T
Yy ‘ T
) ) ) )
z Y
any Cross cross, if x = ¢
T x

horizontal arm, if x=h
vertical arm, if x = v

Figure 8: The labels on the parity tiles. Tiles that they may be combined with
are shown below the parity tile.

altogether 87 -4 -2 = 696 tiles. Not all tiles appear on (2" — 1)-squares, so
the set contains some unnecessary tiles.

Theorem 1. The tile set above is 4-way deterministic, and aperiodic.

Proof. There exist valid tilings, because the tiling property is satisfied on
(2™ — 1)-squares for all n. None of the valid tilings is periodic, because
there exists a tile homomorphism into Robinson’s aperiodic tile set. Thus
our tile set is aperiodic.

Let us prove that the set is deterministic in all four directions. Assume
that the colors of two adjacent edges of a tile are known. Clearly the parity
component is uniquely determined. (Any one edge alone determines it.)

Consider then the main component. If both edges have outgoing arrows
the tile has to be a cross. Because S, N D = 0 and S, N D, = 0, the
orientation of the cross is uniquely determined by the labels on the two
known sides. (The cross faces the directions where the labeling triples
belong to Dy and D,. The other two edges have triples belonging to Sp
and Sy.) The variable z in Figure 4a is also fixed by the triples: it is the
label of the central arrows.

Assume then that one edge has an outgoing arrow and the other known
edge an incoming one. The tile is an arm directed in the direction of the
outgoing arrow. Using the facts that S, N D, = 0 and S, N D, = 0 it
is possible to find out the type of the arm among the six types of arms
in Figure 4. (Top three tiles have horizontal labels from S, lower three
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from Dy,. Two leftmost tiles have vertical labels from S,,, other four have
vertical labels from D,. The remaining ambiguity is resolved by the location
of the side arrow: the side arrow is either on the left or on the right side
of the principal arrow.) In all six types of tiles the unknown labels are
determined uniquely by the two known edges.

Finally, assume that both edges have incoming arrows. The tile is an
arm. If its parity is 2 it is vertical, if the parity is 3 it is horizontal. If the
parity is 4 the labels on the parity tile tell whether the arm is horizontal or
vertical (see the discussion above the theorem). Since the arm is directed
away from one of the known edges, its direction is uniquely determined.
The labels are determined in the same way as above.

In all cases the colors of two adjacent edges fix the tile, that is, the tile
set is NW-, SW-, NE- and SE-deterministic. O

Consider the following stronger condition. We call a tile set strongly
deterministic if for all colors C7 and C9 there exists at most one tile with
adjacent edges colored by C; and Cs. The condition is stronger because it
is not known which two edges have the given colors.

COROLLARY 1. There exists an aperiodic, strongly deterministic tile set.

Proof. In the construction we use an arbitrary aperiodic tile set T' that is
4-way deterministic. According to Theorem 1 such tile sets exist. For each
Wang-tile ¢ in T we introduce 4 new tiles ¢; ;, i,j € {0,1}, and for each
color C' 4 colors Chj for horizontal edges and 4 colors C; for vertical edges
(1,7 € {0,1}). If the colors of the left, upper, right and lower edges of t are
A, B,C and D, respectively, the edges of ¢; ; are colored by AY ],Bzhj, iy
and Di,j 41, respectively (see Figure 9). The calculation of indices is done
modulo 2, i.e. 141 =0.

B Bl
A t C = Aj; tij i1,
h
D Dy

Figure 9: Modifying tiles to get a strongly deterministic tile set. Computation of
indices is done modulo 2, and 4, j € {0,1}

The new tile set is aperiodic: A wvalid tiling is obtained from a valid
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tiling by T if tile ¢ in position (z,y) is replaced by tile

2 mod 2,y mod 2
for each x,y € Z. On the other hand, mapping each ¢;; into ¢ is a tile
homomorphism into 7', so that there are no valid periodic tilings with the
new tiles.

Finally, let us show that the new tile set is strongly deterministic. Let
X, and kaJ be two arbitrary colors, where a,b € {h,v}, i,7j,k, 1 € {0,1},
and X and Y are colors used in 7. Assume t, , is a tile having two adjacent
edges colored by X and ka, ;» respectively. Clearly a and b determine
which one of the two colors appears on a horizontal edge and which one
on a vertical edge. If (i,5) = (k,l) then the colors must be on the left
and upper edges of the tile. If (k,l) = (i + 1, ;) then the colors are used
on upper and right edges, and if (k,l) = (4,5 + 1), then they are used on
left and lower edges. (All computations are done modulo 2.) Finally, if
(k,1) = (i+1,j + 1) then the colors must appear on the right and lower
edges. In this way it is uniquely determined which two edges are colored
by the given two colors.

Now the tile ¢, , is uniquely determined: Since 7' is deterministic in all
four diagonal directions, tile t is determined by colors X and Y, and indices
x and y are determined by indices ¢ and j of the color on one edge. O

4 Final remarks

We note that the CAT(0)-complex we construct in this paper has similar
properties to the complex used by Wise in [W] to produce examples of
non-residually finite groups acting discetely and co-compactly on a CAT(0)-
space (in Wise’s terminology our complex contains many ‘anti-tori’). One
can obtain a CAT(0) complex with a non-residually finite fundamental
group by gluing two copies of the complex constructed here along a closed
geodesic.

As we pointed out in the introduction our complex contains tori. It is
easy to see that in the complex associated to the Robinson tile set there is
a torus: indeed the first two arms on the first line and the first two arms in
the second line of Figure 1 are glued together in this complex and form a
torus. This torus is not destroyed by the labelling we introduce in the rest
of the paper, so in our complex there is also a torus. Since our complex
is CAT(0) the fundamental group of the torus injects in the fundamental
group of the complex.
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In order to construct a CAT(0) complex whose fundamental group is
not hyperbolic and does not contain Z?2, it is reasonable to consider the
following tiling problem: Let S be a finite set of tiles with colored oriented
edges placed on the plane with their edges horizontal and vertical. We say
that S is closed under reflection if for each tile in S the reflection of this
tile along a horizontal or vertical line is also in S. We consider then the
following tiling rule: A tiling of the plane using tiles from a set of tiles S
which is closed under reflection, is valid if two adjacent tiles meet along
an edge with the same color and orientation and two tiles that are the
reflection of each other are never adjacent.

The question now is: Is there an aperiodic reflection-closed set of tiles?
If there is one one can ask if there is a strongly deterministic such set of tiles.
Such a set would give an example of a CAT(0) complex whose fundamental
group is not hyperbolic and does not contain a subgroup isomorphic to Z?2.
This complex is obtained as follows: For each tile 7" in S there are 3 more
tiles in S obtained by successively reflecting 7. Call T" and these 3 tiles
equivalent. To construct the complex associated to S pick one tile from
each equivalence class and glue these tiles as usual respecting the colors
and orientation of sides.
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