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It is shown that D. Cohen’s inequality bounding the isoperimetric function of a group by the double
exponential of its isodiametric function is valid in the more general context of locally finite simply
connected complexes. It is shown that in this context this bound is ‘best possible ’. Also studied are second-
dimensional isoperimetric functions for groups and complexes. It is shown that the second-dimensional
isoperimetric function of a group is bounded by a recursive function. By a similar argument it is shown that
the area distortion of a finitely presented subgroup of a finitely presented group is recursive. Cohen’s
inequality is extended to second-dimensional isoperimetric and isodiametric functions of 2-connected
simplicial complexes.

0. Introduction

D. Cohen showed in [3] that the isoperimetric function (also called the Dehn

function) of a group is bounded by the double exponential of its isodiametric

function. It is an open question as to whether this bound is optimal. Gersten in [6]

gave a geometric proof of Cohen’s inequality. We show in this paper that Cohen’s

inequality is valid in the more general context of simply connected simplicial

complexes. Our proof is similar to that of Gersten. We construct an example showing

that the double exponential bound is optimal for locally finite simply connected

simplicial complexes. Gromov remarked in [9] that if one could show that the filling

length of a disk was bounded by its diameter, then one could improve Cohen’s double

exponential bound to a simple exponential (see [9, Section 5C] for definitions and a

precise statement). Frankel and Katz in [5], however, showed that this is impossible.

Their counterexample however does not show that Cohen’s inequality is optimal even

in the context of locally finite simply connected simplicial complexes. Indeed the disks

they construct are non-singular and for such disks it is easy to see that the area is

bounded by the exponential of their diameter.

We show that D. Cohen’s bound extends to second-dimensional isoperimetric

functions and that it is optimal in this context as well. If a group is of type FP
$
then

one can define its second Dehn function. We show that (in contrast with usual

Dehn functions) the second Dehn function of a group is always bounded by a

recursive function. By a similar argument we show that area distortion of subgroups

is also always recursive. This contrasts with the fact that length distortion of

subgroups can be non-recursive. Area distortion has been studied by Gersten [7] who

showed that the area distortion of subgroups of a group with solvable word problem

is recursive. Two-dimensional isoperimetric inequalities have been studied by several

people (see [1, 2, 4, 9, 10, 16]). A number of questions answered for usual Dehn

functions remain open for second Dehn functions. We mention some of them.
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Q 1.1. Are there groups whose second Dehn function grows faster than

exp(n)?

We remark that Otto and Madlener [12] have shown that for every recursive

function f there is a finitely presented group G which contains a subgroup H such that

the area distortion of H in G grows faster than f. If one could construct such a group

G of type FP
$

then the group Go
H

G would have a second Dehn function growing

faster than f. In fact it would be sufficient for this construction to embed G in a group

of type FP
$
, which suggests the following question.

Q 1.2. Can one embed any finitely presented group into a group of type

FP
$
?

This is a ‘higher dimensional ’ analogue of Higmann’s theorem stating that every

recursively presented group can be embedded into a finitely presented group.

The filling radius function, denoted by FR, of a group G (or a simply connected

complex) is defined as follows. The filling radius of a simple closed path c in the

1-skeleton of a Cayley complex of G is the smallest n such that c is contractible in

its n-neighbourhood. We define now

FR(n)¯max²filling radius of c where length(c)% n´.

It is shown in [8, Section 6] (see also [13]) that if FR(n) is sublinear then it is bounded

by M log(n) (M" 0). In fact if FR(n) is sublinear for a group G then G is hyperbolic.

Moreover it is not hard to see that if FR(n) is sublogarithmic (that is, for all M" 0,

FR(n)%M log(n) for almost all n) then it is actually bounded, which implies that G

is virtually free. Clearly the filling radius function can be generalized to higher

dimensions. Let us denote by FR
#

the second-dimensional filling radius function of

a group. We have then the following question.

Q 1.3. Let G be a group of type FP
$

whose (usual) Dehn function is

quadratic. Suppose that the second-dimensional filling radius function of G, FR
#
(n),

is sublogarithmic. Is it then bounded? Suppose that FR
#
(n) is sublinear; is it then

bounded by c log(n)?

Of course this question makes sense for 2-connected complexes in general.

1. Isodiametric inequalities

Let X be a simply connected locally finite simplicial complex. Let f :S "MNX be

a simplicial map and let f a:DMNX be a simplicial map from the 2-disc to X such that

f a r¦(D)
¯ f. Let � be a vertex of S ". We define

diam
v
( f a)¯ max

u`D(!)

d
D
(")(�, u)

where d
D
(") is the singular metric induced on D(") by f a. In other words if �, u `D(") we

define
d
D
(")(�, u)¯min²length( f(p)) :p path joining � to u´

where length( f(p)) is the reduced length of f(p) as a path in X. We remark that if X

is the Cayley complex of a group and D is a Van Kampen diagram, then d
D
(") is the

word metric on D("). We define

diam
v
( f )¯min²diam f a: f a r¦(D)

¯ f ´.
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D. Cohen (see [3]) showed that there are constants a, b such that

area( f )% length( f ) ab
diam(f ).

To be more precise D. Cohen showed the inequality above in the case where X is the

Cayley complex of a finitely presented group. S. Gersten (see [6]) has given a

geometric proof of this result. It is not hard to see that Gersten’s proof applies

generally when X is a locally finite complex.

P 1.1. Let X be a locally finite simply connected simplicial complex.

There is a constant k such that for e�ery path f :S "MNX in X we ha�e

area( f )% length( f ) 3k
diam(f ).

Proof. Let � be a vertex of f lying on f(S "). We consider the set S of all loops lying

in X (") of the form pup−", where p is a path in X (") of length less than or equal to

diam( f ) and u is a path going around a 2-simplex of X. We use the set S to construct a

labelled 2-complex Y as follows. We associate to a path pup−" in S a simplicial

segment consisting of as many edges as p joined with a 2-simplex. We map the 1-

skeleton of this complex to the path pup−" in the obvious way and we map the 2-

simplex to the 2-simplex in X having u as boundary. We label now the simplices of this

complex by their image in X (that is, the ‘alphabet ’ used in this labelling is the

simplices of X ). To form Y we identify all the complexes corresponding to paths in

S, along the first vertex (the one labelled by �) of their corresponding segments.

It is clear that Y satisfies a linear isoperimetric inequality. In fact for every closed

path q in Y we have
area(q)% "

$
length(q)

so if we denote by δ
Y

the Dehn function of Y we have δ
Y
(n)% n}3. We now perform

a ‘folding’ operation: if e
"
, e

#
have a vertex in common and they are labelled by the

same edge of X then we identify them. We create in this way a complex Y
"
. If there

are still edges that can be folded we continue doing so, creating successively

complexes Y
#
,Y

$
,… ,Y

n
. Since the number of edges of Y is bounded by kdiam( f ), where

k is greater than or equal to the cardinality of star(x) for all x `X, we have

n%kdiam( f ). (1)

Consider now Y
i
,Y

i+"
and let δ

i
, δ

i+"
be their corresponding Dehn functions. We claim

that
δ
i+"

(n)% δ
i
(3n)

for all n.

Let h :Y
i
MNY

i+"
be the folding map from Y

i
to Y

i+"
. We have then h(e

"
)¯

h(e
#
)¯ e for some oriented edges e

"
, e

#
of Y

i
. Let q be a closed path in Y

i+"
. If q can be

lifted to a closed path in Y
i
by h then the area of q in Y

i+"
is less than or equal to the area

of q in Y
i
. If on the other hand q cannot be lifted then q goes through the endpoint

of e. We associate then a path q« to q as follows. We consider h−"(q). If d
"
, d

#
are

successive edges of q and the endpoint of h−"(d
"
) is not equal to the origin of h−"(d

#
)

then we join them by the path e−"

"
e
#
. In this way we obtain a path q« in Y

i
with

length(q«)% 3 length(q).

Now a filling disk for q« projects to a filling disk for q by h. This clearly implies that

δ
i+"

(n)% δ
i
(3n).

We see therefore inductively that if q is a closed path in Y
n

area(q)% δ
Y
(3n length(q))% 3n length(q). (2)
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Let g :Y
n
MNX be the map sending each simplex in Y

n
to each label (we recall that

the labels are simplices of X ).

We note now that the path f can be lifted by g to a path f « in Y
n
. A filling disk for

f « projects by g to a filling disk for f. By inequalities (1) and (2) we have

area( f )% length( f ) 3k
diam(f ). *

We will show that the inequality above is the ‘best possible ’ for locally finite

simplicial complexes. More precisely we have the following theorem.

T 1.2. There are a locally finite simply connected simplicial complex X and

paths f
n
:S "MNX such that

(1) length( f
n
)¯ 4n;

(2) area( f
n
)& 2#

n ;

(3) diam( f
n
)% 7n.

Proof. It suffices to construct singular simplicial disks D
n

such that ¦D
n

satisfy

conditions (1), (2), (3) of the theorem. Then we can take X to be the set of these disks

joined by paths.

Our basic building blocks are circular bands b
n
. The bands b

n
are simplicial

complexes homeomorphic to S "¬[0, 1]. They have the property that

length(S"¬²1´)¯ 2 length(S"¬²0´)¯ 2n.

Moreover they satisfy area(b
n
)¯ 3n (see Figure 1 for b

%
).

F 1. The band b
%
.

It is easy to construct a simplicial disk C
"

with

length(¦C
"
)¯ 4n, area(C

"
)¯ 6[(2n−"®1).

Moreover each vertex of C
"

belongs to at most seven 2-simplices.

Let c
"
¯ ¦C

"
(see Figure 2).

F 2.
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We will now use the band b
%n

, 2n times. Note that one component of the boundary

of b
%n

has length 8n (the component S "¬²1´). We identify this to c
"

by using a

‘doubling map’. This is clearly possible since length(c
"
)¯ 4n.

Thus this component of the boundary of b
%n

goes around c
"

twice. If we denote

by c
#
the component of the boundary of c

#
corresponding to S "¬²0´ (the ‘short side’

of the boundary) it is then clear that

area(c
#
)" 2 area(c

"
) and length(c

#
)¯ length(c

"
).

We can now take one more copy of the band b
%n

and repeat, that is, identify the ‘ long

side’ of its boundary, using a doubling map, with c
#
.

Let c
#
n be the path we get after we do this gluing 2n times. Then

area(c
#
n)" 2#

n area(c
"
)" 2#

n and length(c
#
n)¯ length(c

"
).

On the other hand
diam(c

#
n)" 2n.

We now fold some edges in order to decrease diam(c
#
n). Let s be a simple edge

path in C
"
, of length 2n such that the initial vertex of s, �, lies on c

"
. Let p be a path

of length 2n lying in the union of the copies of the band b
%n

and satisfying p(0)¯ �

and such that p(i) is a vertex lying on the band glued in the ith step of the gluing

procedure described above.

We identify now s with p by an isometry fixing �. We call the resulting complex

D
n
. Let f

n
be the image of c

#
n in D

n
. It is easy to see that

diam( f
n
)! 7n, area( f

n
)¯ area(c

#
n), length( f

n
)¯ 4n.

It is clear that each vertex in D
n

belongs to at most 14 2-simplices. Clearly if we take

X to be the complex obtained by joining the D
n
, n¯ 2, 3,… , by edges then X satisfies

all the conditions of the theorem. *

2. Higher dimensional isoperimetric inequalities

Let X be a 2-connected locally finite simplicial complex. We identify the 2-sphere

S # with the boundary of the standard 3-dimensional simplex and we consider

simplicial maps f :S #MNX. By our hypothesis on X, f extends to a simplicial map

from the 3-ball B$ to X. Using the simplicial approximation theorem (see for example

[15], p. 128]) we see that there exists a simplicial refinement of the 3-ball (which we

will still denote B$) and a map f a:B$MNX such that

f a r¦B$
¯ f r¦B$

which sends each i-dimensional simplex of B$ to a simplex of X of dimension less than

or equal to i. We define the �olume of f a, V( f a), to be the number of the 3-simplices of

B$ which are mapped onto 3-simplices of X. We define the volume of f, V( f ), to be

V( f )¯min²V( f a)´

where f a is an extension of f with the properties mentioned earlier. We define the area

of f, A( f ), to be the number of 2-simplices of S # which are mapped onto 2-simplices

of X by f.

If there is a group G acting discretely and co-compactly on X we say that X

is a 2-Dehn complex of G. In this case we define the second Dehn function of X,

δ#
X

:.MN., by
δ#
X
(n)¯ max

A( f )%n

²V( f )´

where f is a simplicial map f :S #MNX.
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Note that if Y is another 2-Dehn complex of G then one has δ#
Y
(n)%Cδ#

X
(Cn)C

for some constant C" 0.

We remark that there is a difference between δ#
X

and δ
X
, the Dehn function of X ;

there are only finitely many closed paths of length n in X, modulo the action of G,

while there are infinitely many inequivalent simplicial maps f :S #MNX with A( f )% n,

so a priori it is not even clear that δ#
X
(n) is finite for all n `.. The following

proposition however insures that δ#
X

is well defined and in fact subrecursive. This

again contrasts with the fact that there are groups G for which δ
X

is not bounded by

any recursive function. The idea of the proof that follows is that 2-spheres of area n

correspond to ‘Van Kampen diagrams’ of area n (by cutting the sphere along an edge

one obtains a disk) and such Van Kampen diagrams can be listed.

P 2.1. Let X be a 2-Dehn complex of a finitely presented group G. Then

δ#
X

is bounded by a recursi�e function.

Proof. We consider first simplicial maps f :S #MNX for which there is a

simplicial subdivision of S # such that f restricted in the interior of each 2-simplex of

the subdivision is a homeomorphism. We call such maps non-singular. It is easy to

see that, modulo the action of G, there is a finite number of such maps of area n.

Indeed there is a finite number of inequivalent subdivisions of S # into n 2-simplices.

For each such subdivision we pick a vertex * (base point) and we consider maps

taking * to a fixed vertex, e, of X. Each such map f induces a labelling of the simplices

of the subdivision of S #, namely each simplex σ is labelled by the simplex p( f(σ))

where p :XMNX}G is the natural projection map. We denote the label of σ by l(σ).

We call such labelled simplicial subdivisions of S # spherical diagrams. It is clear that

there is a finite number of such diagrams of area n and in fact it is easy to construct

them all. Indeed we can construct all possible simplicial subdivisions of S # into

n simplices and consider all possible labellings of their simplices. A labelling

corresponds to a spherical diagram if for all simplices σ, τ we have l(τ)Z l(σ) when

τZσ.

Moreover a map f is completely determined by its corresponding based labelled

diagram. Every simplicial map f :S #MNX for which there is a simplicial subdivision

of S # such that f restricted in the interior of each 2-simplex of the subdivision is a

homeomorphism is equivalent under the action of G to a map h :S #MNX described

by a based spherical diagram (that is, f¯ gh, g `G).

Let f now be a map given by a spherical diagram S. We know that f can be

extended to f a:B$MNX where f a r¦B$
¯ f r¦B$

. Indeed we can enumerate all simplicial

subdivisions of B$. For each one of them we see if there is a labelling such that the

labelling of ¦B$ is equal to S. Again we consider only labellings for which we have

l(τ)Z l(σ) when τZσ. Since we know that f admits an extension f a we will eventually

find such a subdivision of B$. The number of 3-simplices of this subdivision which are

labelled by 3-simplices of X}G gives a bound for Vol( f ). Since there is a finite number

of inequivalent non-singular maps of area n we can find a bound for the volume of

all these maps.

We consider now singular simplicial maps f :S #MNX of area n. Let S be the

simplicial subdivision of S # induced by f. We collapse successively the simplices of S

mapped to simplices of strictly lower dimension by f. S is then transformed to a

collection of spheres S
"
,… ,S

r
joined by simple paths, or intersecting along simple
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paths. f induces a labelling to each of these spheres. Now the volume of f is clearly

bounded by the sum of the volumes of f r
Si

, i¯ 1,… , r. As r% n and area(S
i
)% n,

i¯ 1,… , n, our analysis of non-singular maps permits to find a bound of the volume

of all simplicial maps f :S #MNX of area n. In fact we gave an algorithm to find this

bound which shows that δ#
X

is bounded by a recursive function. *

Proposition 2.1 has been generalized recently to second order Dehn functions of

finite derivation type monoids by Pride and Wang (see [14]).

It is known that there is a relationship between distortion of subgroups and

isoperimetric inequalities. In particular one can construct examples of groups whose

Dehn function grows faster than any recursive function by amalgamating groups

along subgroups whose distortion function grows faster than any recursive function.

There is an analogous relationship between area distortion of subgroups and second

Dehn functions. We recall here the definition of area distortion (see [7, 9]).

D 2.2. Let H be a finitely presented subgroup of a finitely presented

group G. Let 0¯©A rRª, 1¯©B rTª be finite presentations of H and G respectively.

We choose 1 so that AZB, RZT. Let w be a word on A representing the identity

in H. We denote by area0(w) the area of w with respect to the presentation 0 and

by area1(w) the area of w with respect to the presentation 1. We define the area

distortion function of H in G, f :.MN., by

f(n)¯ max
area1(w)%n

area0(w)

where w runs over all trivial words on A.

Proposition 2.1 suggests then that the area distortion of subgroups is bounded by

a recursive function. Indeed we have the following proposition.

P 2.3. Let G, H, 0, 1, f be as in Definition 2.2. Then f is a recursi�e

function.

Proof. We will describe an algorithm which computes f(n).

We first show how to compute a bound for f(n). We consider the set of all words

w on A with area1(w)% n. A minimal Van Kampen diagram D of a word w is

topologically a union of disks D
"
,… ,D

r
with simple paths joining them. Clearly r%

n. If w
i
is the boundary of D

i
we have length(w

i
)%Mn where M¯max²length(r) :

r `T ´. Therefore

w
i
¯0

k

j="

u
j
r³

"
j

u−"
j

where k% n, length(u
j
)% (M1) n, r

j
`T and the equality is in F(B). It is clear that

there is a finite number of products 0k

j="
u
j
r³
j

u−"
j

, with the above restrictions ; we can

therefore enumerate them and find all words on A which could be boundaries of a

diagram D
i
as above. All these words represent the identity in G ; hence they are trivial

in H also. Therefore we can calculate their areas. Suppose the maximum area of all

these is equal to C. Then clearly f(n)% rC% nC, that is, we have found a computable

bound for f(n).
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We used above the fact that if we know that a word w is trivial in a group H¯
©A rRª then we can calculate its area. This is done as follows. We first enumerate all

products of the form 0k

j="
u
j
r³

"
j

u−"
j

(u
j
`F(A), r

j
`R) until we find a product such that

w¯0
k

j="

u
j
r³

"
j

u−"
j

.

Then we know that A(w)%k and therefore we only need to check if w is equal to an

expression of the form 0m

j="
u
j
r³
j

u−"
j

with m!k. There are infinitely many such

expressions but it is enough to check only these expressions for which length(u
j
)%

klength(w) as the diameter of a Van Kampen diagram for w of area m is bounded

by mlength(w) (see for example [11, Chapter 6]).

We now give an algorithm to compute f (n), given the bound f (n)% nC that we

calculated above.

First we consider all ordered k-tuples (with repetition) (r
"
,… ,r

k
), where the r

i

are relators of 1 and k% n. To each such k-tuple, say q, we associate a product

0k

i="
x
qi

r
i
x−"
qi

, where the x
qi

are distinct variables. Clearly there are finitely many

such products.

Similarly, we consider k-tuples of relators of 0 and products as before, where

k% nC. Again, there are finitely many different products of relators.

We consider all systems of equations and inequations on F (B ) (the free group

generated by B, the set of generators in 1), obtained as follows. Each system has as

the first equation x¯ a product of conjugates of relators of 1 as above, and for each

product p of conjugates of relators of 0 as above either the equation x¯ p or the

inequation x1 p is in the system.

We note that all variables appearing in different products are distinct, and x is a

variable that does not appear in any product.

We have a finite number of systems of equations and inequations as above, and

each one of them can be algorithmically solved by a result of Makanin [17]. We note

that such a solution determines area0 (w) for a word w with area1 (w)% n. By solving

all these systems, we can obtain the value of f (n). *

D. Cohen’s result can be extended to higher dimensions.

T 2.4. Let X be a locally finite 2-connected simplicial complex. There are

constants a, b such that if f :S #MNX is a simplicial map from the 2-sphere to X then

vol( f )% area( f ) ab
diam(f ).

Moreo�er this ‘double exponential ’ bound of �olume in terms of area is ‘best possible ’.

Proof. We consider the 2-skeleton of X, X (#). If � is a vertex in X (#) lying in the

image of f, a set of generating elements for π
#
(X (#)) is given by the set of spheres

corresponding to boundaries of 3-simplices of X, joined to � by paths. Let us denote

this set by A. By the Hurewicz isomorphism theorem the set of boundaries of 3-

simplices of X gives a set of generators also for H
#
(X (#)). Let c¯ [ f ] be the homology

class of f in H
#
(X ). We have then

c¯k
"
s
"
k

#
s
#
…k

n
s
n

(3)

where k
i
`., s

i
`A, i¯ 1, 2,… , n.



        105

By our hypothesis we know that there is a set of s
i
verifying (3) such that the

distance of each s
i
from � is less than diam( f ). If we consider this set of s

i
we have

n% b(diam( f )) (4)

where b is a constant depending only on X (to be precise we take b to be an integer

bigger than the number of simplices adjacent to any given simplex of X ).

c is represented by a chain:

c¯m
"
t
"
m

#
t
#
…m

r
t
r

where m
i
`. (i¯ 1,… , r) and t

i
(i¯ 1,… , r) are 2-simplices of X. Clearly we can

choose m
i
so that 3r

i="
rm

i
r% area( f ) for all i.

By substituting each s
i
in (3) by a sum of four 2-simplices and c by the equation

above, we reduce (3) to a linear system of at most 4n equations with unknowns

k
"
,… ,k

n
. We note that the coefficient of each k

i
in every equation of the system is

®1, 0 or 1. Moreover it is different from 0 in at most b equations.

Therefore if we take n linearly independent equations of the linear system

considered above, the determinant of the system of these n equations will be bounded

by bn. Hence (3) admits a solution where rk
i
r% area( f ) bb

diam(f ) for all i. By the

Hurewicz isomorphism theorem equation (3) is valid in π
#
(X (#)) as well which clearly

implies the double exponential bound stated in the theorem.

We can see that this ‘double exponential ’ bound is optimal in the same way as in

Theorem 1.2. We construct a locally finite 2-connected complex and a sequence of

balls with volume greater than the double exponential of their diameter. Our basic

building blocks are homeomorphic to S #¬[0, 1] with a simplicial subdivision so that

area(S #¬1)¯ 2 area(S #¬0). Using these ‘blocks’ we construct a ball B with

boundary area and diameter C n and volume C 2n. We identify the boundary of this

ball with the ‘outer sphere’ of our building block using a ‘doubling map’. We repeat

this 2n times and finally we decrease the diameter of the singular ball obtained in the

same way as in Theorem 1.2. *
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