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Abstract. Let G, F be finitely generated groups with infinitely many ends and let π1(Γ,A),
π1(∆,B) be graph of groups decompositions of F, G such that all edge groups are finite and all
vertex groups have at most one end. We show that G, F are quasi-isometric if and only if every
one-ended vertex group of π1(Γ,A) is quasi-isometric to some one-ended vertex group of π1(∆,B)
and every one-ended vertex group of π1(∆,B) is quasi-isometric to some one-ended vertex group
of π1(Γ,A). From our proof it also follows that if G is any finitely generated group, of order at
least three, the groups: G ∗G, G ∗ Z, G ∗G ∗G and G ∗ Z/2Z are all quasi-isometric.
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Introduction

One of the most appealing and influential theorems in geometric group theory is
Stallings’ Ends Theorem, [St1], [St2]. This theorem says that a finitely gener-
ated group splits as a free product or HNN-extension with finite amalgamation
if and only if it has more than one end. The property of having infinitely many
ends is geometric, in particular, it is invariant under quasi-isometry. One of the
main goals of geometric group theory is to classify finitely generated groups up
to quasi-isometry. Given that splitting over finite subgroups is invariant under
quasi-isometry, it is natural to ask how the quasi-isometry type of a free product
with finite amalgamation is related to the types of its factors.

This question is not as straightforward as one might think. It is not true that
if G and G′ are quasi-isometric then G ∗ H and G′ ∗ H are. Examples of this
can already be seen among finite groups: Z/2Z ∗ Z/2Z and Z/2Z ∗ Z/3Z are not
quasi-isometric. Our first theorem shows that this is essentially the only source of
examples.

Theorem 0.1. Let A,B and C be nontrivial groups. If A and B are quasi-
isometric then A ∗C and B ∗C are quasi-isometric unless C, and one of A or B,
are of order 2.



134 P. Papasoglu and K. Whyte CMH

We note that some special cases of theorem 0.1 have been treated in [P], and
[W].

Stallings’ theorem gives splittings over finite subgroups, not free products. Our
next theorem shows that from the quasi-isometric point of view, finite amalga-
mated products are free.

Theorem 0.2. Let A and B be groups, and F a common finite proper subgroup.
Unless F is of index 2 in both A and B then A∗B and A∗F B are quasi-isometric.
Likewise, A∗F and A ∗ Z are quasi-isometric unless F has index 1 in A.

From these theorems we get a complete classification of the quasi-isometry
types of graphs of groups with finite edge groups:

Theorem 0.3. Let G,H be finitely generated groups with infinitely many ends and
let π1(Γ,A), π1(∆,B) be decompositions of G,H in graphs of groups such that all
edge groups are finite. If π1(Γ,A), π1(∆,B) have the same set of quasi-isometry
types of vertex groups (without multiplicities) then G and H are quasi-isometric.

It is natural to ask for a converse. As it may be possible to split a vertex group,
the naive converse cannot be true. By Stallings’ theorem, a vertex group splits if
and only if it has 2 or more ends. The obvious thing to do is to split until no more
splitting is possible, in other words, until all vertex groups are finite or one ended.
A finite graph of groups with this property is called terminal, and a group which
has a terminal splitting is called accessible.

The Grushko–Neumann theorem shows that finitely generated, torsion-free
groups, are accessible. It is also true that finitely presented groups are acces-
sible ([D1]). While it would be natural to think all finitely generated groups are
accessible, indeed this was a conjecture for quite a while, it is not true ([D2]). It
follows easily from the characterization of accessibility in [TW] that accessibility
is a quasi-isometry invariant. Together with the earlier theorems, this yields:

Theorem 0.4. Let G be an accessible group and let π1(Γ,A) be a terminal graph
of groups decomposition of G. A group G′ is quasi-isometric to G if and only if
it is also accessible and any terminal decomposition of G′, π1(∆,B), has the same
set of quasi-isometry types of one ended factors and the same number of ends.

This can be viewed as a step in Gromov’s program ([G]) to classify finitely
generated groups up to quasi-isometry. It effectively reduces the classification of
accessible groups to the classification of one-ended groups. It would be very inter-
esting to have a similar reduction for the classification of non-accessible groups,
perhaps to some sort of quasi-conformal structure on the set of ends together with
the quasi-isometry types of one-ended factors.
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1. Basic construction

All of our spaces are the vertex sets of connected graphs of bounded valence. We
give these spaces the path metric of the graph, where every edge is considered to
have length 1. The primary motivating examples are the Cayley graphs of finitely
generated groups. Different finite generating sets give different graphs, but the
induced metrics on the group are bilipschitz equivalent.

If X is a graph, a net in X is a subset S which is coarsly dense, meaning that
there is an r > 0 so that every x in X is within r of some s ∈ S. The inclusion
map S → X is a quasi-isometry when S is given the induced metric. One can give
S a graph structure by connecting any two vertices within 2r by an edge. The
resulting metric is bilipschitz equivalent to the metric induced from X.

The free product, G ∗H, of two finitely presented groups has a nice geometric
model. Bass-Serre theory gives a tree T with a G ∗H action, free on edges, with
quotient an edge, and the stabilizers of the vertices the conjugates of G and H.
The model for G ∗ H is produced by “blowing up” the vertices of the tree to be
copies of the Cayley graphs of G and H, so that the G ∗H action becomes free.
The resulting space has all its vertices in these vertex subgraphs, and there is
exactly one edge at every vertex connecting to another vertex space. See [SW] for
more details and generalizations to more complicated graphs of groups.

We need to generalize this and define the free product of two spaces, X and Y .
Much of the tree of spaces structure of free products of groups makes sense for
arbitrary spaces: one wants a graph with distinguished subgraphs, each isomorphic
to X or Y , which are disjoint and cover all the vertices. Every edge not in one
of these subgraphs should connect a subgraph isomorphic to X to one isomorphic
to Y , and there should be precisely one such edge at every vertex. Finally, the
pattern of attachments of these subgraphs should be a tree.

This description is not quite sufficient to uniquely define a graph. To construct
such a tree of spaces, we start with, say, a copy of X and, at every vertex of this
X add an edge connecting to a copy of Y . Immediately we run into ambiguity –
connecting to a copy of Y at what point? This difficulty does not arise when build-
ing a free product out of Cayley graphs because they have transitive isomorphism
group, which makes all possible points of attachment equivalent.

To get around this, we give our spaces X and Y distinguished base points, x0

and y0. We can then construct a canonical free product of (X,x0) and (Y, y0) as
follows:

Let Γ0 be the graph which is the disjoint union of X and Y , with an edge
added connecting the base points. Observe that this graph satisfies all the above
conditions, except that some vertices are not incident to edges not in a subgraph,
although the base point of every copy of X or Y is.

Given Γn build Γn+1 as follows: For any v in Γn not incident to an edge which
connects to another subgraph, add a new subgraph, isomorphic to X or Y as
required, and an edge which connects to v and to the base point of the added
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graph. One has Γn embedded canonically as a subgraph of Γn+1, and the direct
limit (union) as n →∞ is (X,x0) ∗ (Y, y0).

The space (X,x0) ∗ (Y, y0) is characterized by:
• X ∗Y contains a disjoint collection of subgraphs, each with an isomorphism

to X or Y .
• Every vertex of X ∗ Y is contained in one of the subgraphs and is incident

to exactly one edge not in that subgraph.
• Every edge not in one of the subgraphs connects a subgraph isomorphic to

X and a subgraph isomorphic to Y , and is incident to the base point of one
of the components it connects. Further, there is a unique edge in X ∗ Y ,
called the base edge, which is incident to the base points in both components
it connects.

• The quotient graph in which each of the subgraphs is collapsed to a point is
a tree.

As discussed above, the construction does not depend on base points for groups.
For more general graphs as X and Y the choice of base points will affect the graph
constructed by the above. The bilipschitz class of metric space is independent of
these choices for a wider class of spaces.

We say that X is homogeneous if X has the property that for some L and
for any x1 and x2 in X there is a self L-bilipschitz map taking x1 to x2. Note that
this is much weaker than transitive isometry group.

Lemma 1.1. Let X and Y be homogeneous graphs. Let Z be a graph so that for
some L > 0:

• Z contains a disjoint family of subgraphs {Xi} and {Yi} whose union con-
tains all the vertices.

• Every edge of Z not in one of the subgraphs connects some Xi to some Yj,
and there is exactly one such edge at every vertex of Z.

• For every i, there is an L bilipschitz equivalence of Xi (resp. Yi) and X
(resp. Y ).

• The quotient graph obtained from Z by collapsing each of the subgraphs to
a point is a tree.

There is an M , depending only on L and the homogeneity constants of X and
Y , so that for any edge, e, in Z connecting an Xi and a Yj and any choice of base
points in X and Y , there is an M bilipschitz equivalence of Z to (X,x0) ∗ (Y, y0)
taking e to the base edge.

Proof. Note that as X is homogeneous there is a K so that for any Xi, any x ∈ Xi,
and any x′ ∈ X, there is a K bilipschitz equivalence Xi → X which takes x to x′.
The same holds for Yj ’s mapping to Y .

Call the edge e the base edge of Z. Choose bilipschitz equivalences of Xi → X
and Yj → Y , as above. As X and Y are homogeneous we may assume that the
endpoints of the base edge are x0 and y0. This gives a quasi-isometry between the
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union, Σ0, of Xi, Yj , and the base edge to the subgraph of X ∗Y which was called
Γ0 in the earlier construction. This map restricts to a bijection of the edges of
(X,x0) ∗ (Y, y0), not in X or Y , with an endpoint in Γ0 and the edges of Z, not
in Xi or Yj , with an endpoint in Σ0.

One now follows the construction of X ∗Y . At every stage we have a subgraph
Σn of Z with a quasi-isometry to Γn which induces a bijection of the incident edges
not in the distinguished subgraphs. LetΣn+1 be the subgraph of Z which contains
Σn, all the Xi and Yj which are adjacent to it, and the edges connecting them.
Extend the map to a bilipschitz equivalence of Σn+1 and Γn+1, by choosing, for
each new Xi and Yj a bilipschitz equivalence with the copy of X or Y attached at
the corresponding point of Γn which takes the point of attachment to x0 or y0.

These bilipschitz equivalences give, in the limit as n → ∞, the desired bilips-
chitz equivalence. ¤

In particular, if X and Y are homogeneous then the bilipschitz type of (X,x0)∗
(Y, y0) does not depend on the choice of basepoints so we will usually write simply
X ∗ Y . This also implies that X ∗ Y is also homogeneous. All the spaces we
consider are built out of coset spaces by passing to bilipschitz equivalent spaces
and the free product construction, and hence are all homogeneous.

The basepoints within each copy of X or Y in X ∗Y are, even for homogeneous
X and Y , a useful bookkeeping device. Choosing basepoints amounts to a choice
of base edge in X ∗ Y ; the base points of each copy of X or Y is determined by
being the closest point in that subgraph to the base edge.

To use Lemma 1.1, we need constructions of bilipschitz equivalences. The next
two lemmas are important examples of this, and clearly demonstrate the utility of
the generality of homogeneous spaces rather than simply coset spaces of groups.

Lemma 1.2. Let X be infinite. Define X+ as the graph obtained from X by
adding a vertex v which is connected by an edge to the base point of X. There is a
bilipschitz equivalence between X and X+, hence X ∗Y and X+ ∗Y are bilipschitz
equivalent for any Y .

Proof. As X is an infinite connected graph of bounded valence there is an infinite
embedded path in X, starting at the base point. Let x0, x1, . . . be such a path.
Define a map from X to X+ as follows:

• Send all points in X \ {xi} to their images under the inclusion of X in X+.
• Send x0 to v.
• For i > 0 send xi to xi−1.
It is easy to verify that this is a bilipschitz equivalence. ¤

Note that this bilipschitz equivalence of X+ and X implies that if X is homo-
geneous then so is X+, although it will almost never have a transitive group of
graph automorphisms.
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This technique of “sliding from infinity” along a path is used repeatedly in the
following constructions to produce bilipschitz equivalences.

Given X and Y , define the wedge of X and Y as the space obtained from the
disjoint union by adding an edge connecting the base points. Notice that even if
X and Y are homogeneous the wedge, in general, is not. Thus the choice of a
base point is nontrivial. We will pick one of the endpoints of the edge joining the
halves.

One important reflection of the fact that free products are tree-like is the
following:

Lemma 1.3. Let X and Y be infinite homogeneous space, and let Z = X ∗ Y .
There is a bilipschitz equivalence between Z and the wedge of any finite number of
copies of Z.

Proof. By induction, we only need to prove that the wedge of two copies of Z is
bilipschitz equivalent to Z.

The base edge divides Z into two infinite, connected subgraphs. Thus Z is
bilipschitz equivalent to the wedge of these two halves. Each half is almost X ∗ Y
– it is covered by disjoint families of copies of X and Y , connected alternately in
a tree of spaces. The way in which the halves differ from X ∗ Y is that in a single
subgraph (isomorphic to X in one half and to Y in the other) the base point is
not connected to any other subgraph.

Consider the half in which the deficient subgraph is X. In that copy of X,
choose a path, p, from the base point to infinity. Let ei, for i > 0, be the edges
connecting p(i) to points yi in copies of Y . Modify the graph structure by removing
the edges ei and adding edges e′i which connect p(i − 1) to yi. This does not
change the bilipschitz type, and, by Lemma 1.1, the resulting graph is bilipschitz
equivalent to X ∗ Y = Z.

After the analogous modification in the other half, the graph is bilipschitz
equivalent to Z wedge Z, completing the proof. ¤

Note that this implies that for X and Y homogeneous, and Z = X ∗ Y , that a
wedge of two (and hence any finite number) of copies of Z is homogeneous.

As we observe in the introduction, it is not true, even for groups, that if G and
G′ are quasi-isometric then G ∗ H and G′ ∗ H are quasi-isometric. Thus one is
motivated to ask, as in [G], when quasi-isometric groups are bilipschitz equivalent.
In [P] it is shown that all non-abelian free groups are bilipschitz equivalent. In [W],
where the general question of when a quasi-isometry is at bounded distance of a
bilipschitz map is resolved, it is shown that any two quasi-isometric non-amenable
groups are bilipschitz equivalent. No example of infinite groups which are quasi-
isometric but not bilipschitz equivalent is known, but [BK] and [McM] show there
are graphs quasi-isometric to Z2 which are not bilipschitz equivalent to Z2.

Consider the special case of Theorem 0.1 where A is a subgroup of finite index
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of B. There is a natural homomorphism from A ∗ C to B ∗ C, but unless C is
trivial, it has infinite index image. There is a subgroup of B ∗ C of finite index
built out of A and C; it is isomorphic to A ∗ C ∗ . . . ∗ C with [A : B] copies of C.
Thus, Theorem 0.1 implies that A ∗ C and A ∗ C ∗ C are quasi-isometric. That
special case, generalized to arbitrary spaces, is one of the key constructions in the
proof of the later theorems.

Lemma 1.4. If X and Y are infinite homogeneous spaces then X ∗ Y and X ∗
(Y ∗ Y ) are bilipschitz equivalent.

Proof. By lemma 1.2, X ∗ Y and X+ ∗ Y are quasi-isometric. Here we consider
X+ as a space with distinguished base point the vertex x0 which is the base point
of the copy of X inside it, and we let v be the vertex in X+ \X.

We claim X+ ∗ Y is bilipschitz equivalent to X ∗ (Y ∗ Y ). We prove this by
modifying the graph structure of X+∗Y without changing the bilipschitz type, and
then verifying that the modified graph satisfies the properties which characterize
X ∗ (Y ∗ Y ).

We first modify X+∗Y as follows: in every copy of X+, the vertex v is connected
to a base point y0 of a copy of Y and to the base point x0 of the copy on X within
X+. The vertex x0 is also connected to a vertex y1 in a copy of Y . We add an
edge connecting y0 to y1 and delete the edge connecting v to y0. Call this modified
graph G0.

We have not changed the vertex set, and the identity map on vertices is bilips-
chitz between X+∗Y and G0. Further, G0 is vertex-covered by subgraphs identified
with X+ and Y . In each copy of X+ the v vertex is now only connected to x0,
and not to any copies of Y . We wish to remove these vertices. Consider the full
subgraph of G0 which consists of all the vertices except these v vertices and their
incident edges. Call this subgraph G1.

The graph G1 is connected, and consists of copies of X and copies of Y and
edges connecting them. By running the points in G0−G1 to infinity in the incident
copies of X, as in the proof of lemma 1.2, one sees that G1 and G0 are bilipschitz
equivalent.

If we delete all edges of G1 that connect a copy of X to a copy of Y , what
remains divides into two types of components: copies of X and components that
are made up of copies of Y ’s joined by edges. We call the latter components of
Y ’s.

We need to understand the pattern in which the copies of Y are connected in a
component of Y ’s. The edges connecting copies of Y can be described as follows:
for every copy of X+ in X+ ∗Y we have, in G1, an edge connecting the two copies
of Y that are connected in X+ ∗ Y to the base point and the “extra” point, v. In
X+ ∗Y , every non base point in a copy of Y connects to the base point of an X+.
Thus, every non base point in a copy of Y in G1 connects to another copy of Y .

We now “slide” edges in the components of Y in G1 so that every vertex
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connects to another copy of Y . For any component of Y in G1 whose base point
does not connect to another copy of Y , choose a simple path, p, to infinity in that
Y , starting at the base point. Modify the edge structure of G1 as follows: for i > 0
let ei be the edge at p(i) connecting to another copy of Y , and let yi be the other
endpoint of ei. Remove all the ei, and add edges e′i connecting p(i− 1) to yi. Let
G2 be the resulting graph.

It is clear that G2 is bilipschitz equivalent to G1. The graph G2 now contains
subgraphs isomorphic to X and subgraphs bilipschitz equivalent to Y ∗Y (in fact,
isomorphic to Y ∗ Y aside from choices of basepoints, which does not change the
bilipschitz type, by Lemma 1.1), and edges connecting them. The only difference
between G2 and X ∗ (Y ∗ Y ) is that not every point in each Y ∗ Y connects to a
copy of X: the base points of those components which, in X+ ∗ Y , connect to the
“extra” vertex v in copies of X+ do not connect to copies of X in G2.

To fix this we again slide edges. In every copy of Y in G2 whose base point
does not connect to a copy of X, choose a p starting at the base point and running
to infinity. Now let ei, for i > 0, be the edges connecting p(i) to xi in copies of
X. Let G3 be the graph constructed from G2 by removing the ei and adding e′i
which connects p(i− 1) to xi.

The graph G3 consists of copies of X and of Y ∗Y connected as in Lemma 1.1,
and so is bilipschitz equivalent to X ∗ (Y ∗ Y ). It is, by construction, bilipschitz
equivalent to X+ ∗ Y and therefore to X ∗ Y , completing the proof. ¤

As discussed above, the lemma is false for some cases of finite X or Y . It is
not difficult, using the above techniques, to determine the truth in that case, but
the answer is somewhat complicated. For the cases arising from groups, this is
analyzed at the start of the proof of Theorem 0.1 in the next section.

2. Building quasi-isometries

In this section we show how to use the constructions of the last section to build
quasi-isometries between various graphs of groups, proving Theorems 0.1, 0.2, and
0.3.

We start with the proof of Theorem 0.1.

Proof. First, if A (and therefore B) and C are finite, one knows that A∗C and B∗C
are virtually free. Under the assumptions on cardinality, they are not virtually
cyclic, and hence are quasi-isometric.

Second, if A and B are finite, but C is infinite, then A ∗ C and B ∗ C contain
subgroups of finite index isomorphic to C ∗ . . .∗C (|A| factors) and C ∗ . . .∗C (|B|
factors) respectively. These are quasi-isometric by lemma 1.4.

Likewise, if A and B are infinite, but C is finite, then A ∗C and B ∗C contain
subgroups of finite index isomorphic to A ∗ . . . ∗A and B ∗ . . . ∗B, both with |C|
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factors. Again, by lemma 1.4 A ∗ . . . ∗A is quasi-isometric to A ∗A and B ∗ . . . ∗B
is quasi-isometric to B ∗B.

Therefore it suffices to prove the theorem when A, B, and C infinite. We
assume now that this is the case. By lemma 1.4, it suffices to prove that A ∗C ∗C
and B ∗C ∗C are quasi-isometric. So we assume, from now on, that C splits as a
free product of infinite groups.

Let f : A → B be a quasi-isometry. There are nets X in A and Y in B so
that f induces a bilipschitz equivalence X → Y . We can choose such X and Y
to include the base points of A and B. Let r1 : A → X and r2 : B → Y be
projections onto the nets, moving points a uniformly bounded distance. Choose
these projections so that only the base point of A maps to the base point of X,
and likewise only the base point of B maps to the base point in Y .

Consider the space A ∗C. Inside each copy of A, for each vertex a, there is an
edge e which connects a to some c in a copy of C. Remove that edge, and replace
it by an edge connecting c to r1(a). Since the distance between a and r1(a) is
uniformly bounded, the new graph is bilipschitz equivalent to A∗C. All the edges
leaving each copy of A do so at a point of X, hence we can replace each copy of A
by a copy of X without changing the quasi-isometry type.

What we now have is not quite X∗C, since each point of X connects to possibly
more than one copy of C. For each x in a copy of X, pick one of the copies of C
connected to x, and slide all the edges connecting x to other copies of C to connect
to the chosen copy of C instead of x. Note that if there is more that one copy of
C connected to x, x is not the base point of X, and so connects to the base point
of the copies of C.

The resulting graph is a tree of spaces, with copies of X connecting to spaces
which are made of copies of C attached to each other by edges joining their base
points, in other words, wedges of finite number of copies of C. Since C splits as a
free product of infinite groups, Lemma 1.3 shows each of these wedges is bilipschitz
equivalent to C. Thus A ∗ C is quasi-isometric to X ∗ C by Lemma 1.1.

By the same construction B ∗C is quasi-isometric to Y ∗C. Since X and Y are
bilipschitz equivalent, X ∗C and Y ∗C are bilipschitz equivalent, which completes
the proof. We note that the proof goes through unchanged for homogeneous spaces
rather than groups. ¤

Stallings’ Ends theorem says that any group with infinitely many ends splits
non-trivially over a finite group, thus we want to extend Theorem 0.1 to cover
such splittings. This is the content of Theorem 0.2, which we now prove.

Proof. To start, consider a free product with amalgamation A ∗F B, with F a
finite normal subgroup of both A and B. In this case we have F as a normal
subgroup of A∗F B, with quotient (A/F )∗ (B/F ). Thus A∗F B is quasi-isometric
to (A/F ) ∗ (B/F ). Since A/F is quasi-isometric to A and B/F is quasi-isometric
to B, Theorem 0.1 proves A ∗B and A ∗F B are quasi-isometric.
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When F is not normal in A or B, we make the same argument, but now A/F
and B/F are spaces rather than groups. In the tree of spaces modeling A ∗F B
(see [SW]), one has copies of A and B, but rather than single edges connecting
copies of A to B, one has an F coset in A joined to an F coset in B by |F | edges.

Choose X in A so that X contains one point of each coset aF . Give X the
structure of a graph by joining x and x′ by an edge if there is an edge joining
points in the corresponding cosets. Likewise, choose Y in B which intersects every
F coset in one point. Replacing each A by X and B by Y , with an edge joining
x ∈ X and y ∈ Y if and only if the corresponding cosets are connected in A ∗F B,
gives a quasi-isometry between A ∗F B and X ∗ Y . As X is quasi-isometric to A
and Y is quasi-isometric to B, it follows exactly as in the proof of Theorem 0.1
that A∗B is quasi-isometric to X ∗Y . Thus A∗F B and A∗B are quasi-isometric.

The situation for A∗F is similar. The model for A∗F is a tree of spaces, each
of which is copy of A. The edges between copies of A are directed, attaching a
coset of the first embedding of F in A in one copy of A to a coset of the second
embedding of F in A in another copy of A. Every point is connected to two other
copies of A, once as an initial vertex and once as a terminal vertex.

To carry out the same argument, one needs to find a subset X of A which is
simultaneously a set of coset representatives for both embeddings of F in A. That
such an X exists is a standard application of Hall’s Marriage Lemma ([GW]).
Given such an X, the argument above. ¤

Having proven Theorems 0.1 and 0.2, it is straightforward to deal with an
arbitrary graph of groups with finite edge groups, as such a graph of groups is
simply iterated free products with finite amalgamation and HNN extensions over
finite subgroups ([S]).

In order to prove Theorem 0.3, we prove a slightly different result which clearly
implies it, but is somewhat more awkward.

Theorem 2.1. Let G be a graph of groups with finite edge groups. Let S be the
set of quasi-isometry types of vertex spaces, without repetition. Let G′ be the free
product of a finite set of groups with quasi-isometry types representing every type
of S exactly once. Let F and F ′ be any (possibly trivial or cyclic) free groups so
that G ∗ F and G′ ∗ F ′ have the same number of ends, then G ∗ F and G′ ∗ F ′ are
quasi-isometric.

Proof. We prove this by induction on the number of edges in the graph. If there are
no edges the result is essentially a tautology, given that one knows the number of
ends is a quasi-isometry invariant which classifies free groups up to quasi-isometry.

As a graph of groups with n+1 edges can be built out of graphs with fewer edges,
either by free product or HNN extension, the result follows from the following,
which is immediate from Theorems 0.1 and 0.2.
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Theorem 2.2. If A is quasi-isometric to A′ and B is quasi-isometric to B′, and
F a finite proper subgroup of A and B, then A ∗F B is quasi-isometric to A′ ∗B′

unless both products are virtually free. Likewise A∗F is quasi-isometric to A′ ∗ Z
unless both are virtually free. ¤

3. Obstructing quasi-isometries

In this section we prove Theorem 0.4, a partial converse to the earlier theorems. In
view of Theorem 0.3, and the fact that accessibility is a quasi-isometry invariant
([TW]), this comes down to:

Theorem 3.1. Let G1 and G2 be quasi-isometric groups, both of which are fun-
damental groups of terminal graphs of groups. If H is a one-ended vertex group
of G1 then there is a one-ended vertex group of G2 which is quasi-isometric to H.

Lemma 3.2. Let G be the fundamental group of a terminal graph of groups, and
let H be a one-ended group. For any (A,B) there is an R so that for any (A,B)
quasi-isometric embedding f of H → G there is a (necessarily unique) vertex space
X in G with H contained in the R neighborhood of X.

Proof. Let D be the maximal diameter of an edge space of G. For any such
edge space E, the pre-image f−1(E) in H has diameter at most A(D + B). By
one-endedness, there is some D′ so that all but one of the components of the
complement of any set S of diameter at most A(D + B) lie entirely within D′ of
S.

Thus, for any edge space E, the image of f(H) is contained in the AD′+B +1
neighborhood of one side of E. If f(H) is not contained within twice this distance
of any vertex, then we can orient every edge to point towards the half containing
f(H), and there is at least one edge pointing away from every vertex. Thus there
are unbounded oriented rays. On the other hand, if v is a vertex space which
has nontrivial intersection with f(H), then every edge more than AD′ + B + 1
from v must be oriented towards v, which contradicts the existence of unbounded
oriented rays. Thus the hypothesis that f(H) is not contained in a 2(AD′+B +1)
neighborhood must be false. ¤

Theorem 3.1 now follows easily. The lemma shows f(H) must be contained in
a neighborhood of a vertex space K of G2. Applying the lemma to the inverse
quasi-isometry, f ′, gives f ′(K) contained in a neighborhood of some H ′ in G1.
Thus f ′f(H) is contained in a neighborhood of H ′. Since f ′f is within bounded
distance of the identity map, the implies H is contained in a neighborhood of H ′

which implies H = H ′. Further, the fact that a neighborhood of f ′f(H) contains
H implies that a neighborhood of f(H) contains K, so f restricts to give a quasi-
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isometry between H and K.
Theorem 0.4 reduces the large scale geometry of accessible groups to the large

scale geometry of one-ended groups. It would be very interesting to understand
the geometry of non-accessible groups.
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