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Introduction 

A finitely generated group G is called hyperbolic if  for some ~ > 0 geodesic 
triangles in the Cayley graph of  G are f-thin. This means that for any triangle 
in the Cayley graph of  G each side is in the f-neighborhood of  the union of  
the two other sides. 

In 1984 Cannon in [C] showed the existence of  a recursive structure on the 
set of  all geodesics o f  a cocompact discrete group of  isometries of  hyperbolic 
space. His result immediately generalizes to all hyperbolic groups. The precise 
formulation o f  his result in the language of  automatic groups is: 

Theorem l(Cannon). I f  a group is hyperbolic then it is strongly geodesically 
automatic. 

The main result o f  this paper is that the converse is also true: 

Theorem 2. I ra  group is strongly geodesically automatic then it is hyperbolic. 

The proof of  Theorem 2 is based on a simple geometric observation: If  
bigons in a graph are thin then triangles are also thin. In other words if there 
is an e > 0 such that any two finite geodesics with common endpoints are in 
the e neighborhood of  each other then there is a ~ > 0 so that all geodesic 
triangles are ~-thin. 

This o f  course gives an alternative definition of  hyperbolic groups, namely 
a group is hyperbolic if  for some e > 0 bigons in its Cayley graph are e-thin. 

We note that this characterization of  hyperbolicity is not valid for geodesic 
metric spaces in general as, for example, bigons are thin in the Euclidean 
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plane but triangles are not. It is true however that if  quasigeodesic bigons in 
a geodesic metric space are thin then the space is hyperbolic. 

We apply theorem 2 to produce a partial algorithm to recognize hyperbolic 
groups: using work of  [ECHLPT] we construct a partial algorithm which rec- 
ognizes strongly geodesically automatic groups. Epstein, Short and Holt have 
suggested improvements to the algorithm that we present here and it is hoped 
that these improvements will make it computationally efficient. The first partial 
algorithm recognizing hyperbolic groups was given by Gromov [G]. Gromov 's  
algorithm however was clearly impractical and it was impossible to apply it 
even in the simplest cases. 

1. Thin bigons 

In this section we prove that i f  bigons in a graph are "thin" then the graph is 
a (Gromov)  hyperbolic space. 

Definitions 

A metric space X is called a 9eodesic metric space if  for all points x, y in X 
there is an isometric map from the interval [0, d(x, y)] to a path in X joining 
x and y. We denote the image of  such an isometry by [xy]. 

In what follows X is a geodesic metric space. We assume paths in X to 
be always parametrized with respect to arclength. I f  c~ : [0, l] -~ X is a path 
we extend c~ : [0, oc) --, X by defining c~(t) = c~(l) for t > l. We consider 
connected graphs to be geodesic metric spaces by making each edge isometric 
to the unit interval or, if  the edge 's  endpoints are equal, to the circle of  length 
one. We define then the distance between two points to be the length of  the 
shortest path joining them. 

A geodesic metric space X is called 6-hyperbolic if  for any geodesic triangle 
xyz in X and any point w E [xy] we have that d(w, [xz] U [yz]) < 6. 

A group G given by a presentation (SIR) is called (5-hyperbolic if  the 
Cayley graph F(GIS ) is c~-hyperbolic. 

We will often omit the 6 and we will call a 6-hyperbolic space or group, 
hyperbolic. We say that e : Ill + --~ IR is a divergence function for X if  for all 
x E X, al lR E IR + and all geodesics 7 = [xy],7'  = [xz],e satisfies the following 
condition: I f  r > O,R + r < min(d(x ,y) ,d(x ,z)) ,d(7(R) ,7 ' (R))  > e(O) > 0 
and ~ is a path in X -  Bx(R + r) from 7(R + r )  to 7~(R + r )  then we have 
length (~) > e(r). 

We say that geodesics diverge in X if there is a divergence function e(r) 
such that limr__,~e(r) = oc. 

We say that geodesics diverge exponentially in X if there is an exponential 
divergence function. 

We need a result proved in [P]. For the reader 's  convenience we recall here 
the proof  of  this result. 
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y(R) ~ / / )  

~R+r) 

Fig. I. 

T h e o r e m  1.1. Let X be a geodesic metric space. IJ" geodesics diverge in X 
then geodesics diverge exponentially in X. 

Proof Let f ( r )  be a divergence function for X such that l i m r ~ f ( r )  = cxx 
We define e(r) = inf{length(~) : ~ is a path from 7(R + r) to 7'(R + r) 
in X -  Bx(R + r) and d(y(R),7'(R)) > f (O)  where 7,7' are geodesics and 
7(0) = 7'(0) = x} where the infimum is taken over all geodesics 7, 7 ~ all x E X 
and all R E IR +. It is clear that e(r) is a divergence function for X and that 
l i m , . ~ e ( r )  = ~ .  (e(r) >= f ( r )  for every r). Let 

N' = sup{r : e(r) < 9e(0)} . 

Let N = N t + 1 + 3e(0). Let 

u = s u p { t : e ( t )  < 4 N + 2 } .  

We will prove that if r > u + N  then e(r) > ~ e ( r -  N). 

Lemma 1.2. Let 7,7' be geodesics such that 7(0) = ?~(O),d(7(R),7~(R)) > 
e(O). Then d(7(R + N),  7'(R + N))  > 3e(0). 

Proof Suppose that d(7(R + N),7 ' (R + N ) )  < 3e(0). Let /~' be a geodesic 
joining 7(R + N), 7~(R + N).  Consider the arc 

fl = [7(R + N - 3e(0))7(R + N)]  U fl' U [7'(R + N - 3e(0))7'(R + N)]  

Fig. 2. 

(R+N) 
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7(R) ~ ~ - - ' - - - ' - ~ ( t  1 ) 
Y(~+N) ~ / 

Fig. 3. 

It is clear that 
fl C X - Bx(R + N - 3e(0)) 

Also length (/?) = 6 e ( 0 ) §  length(/?') < 9e(0). But length (/?) > e ( N -  
3e(0)) ~ 9e(0) since N - 3e(0) = N '  + 1 > N ' .  This is a contradiction and 
the lemma is proved. 

Let r > u + N  and let Y,7' be geodesics such that 7(0) = 7'(0) = x,d(7(R), 
7'(R)) > e(0) and let a be an arc in X - B x ( R  + r) such that ~(0) = ~(R+r) ,  
a(M) = y'(R + r) and M = length(a) < e(r) + 1. 

Let 
tl = sup{t "a ( t )  r B x ( R + r + N ) , t  < M/2} 

t2 = inf{t : a( t )  E Bx(R + r + N ) , t  > M/2} 

Let ci,cz be geodesics from x to ~(tl) ,~(t2) respectively. Then 

d(v(R + N) ,  cl (R + N) )  + d(Cl (R + N),  c2(R § N ) )  + d(c2(R + N), 7'(R + N ) )  

> d(7(R + N),7 ' (R  + N) )  > 3e(0) 

so one of  the three summands is greater than e(0). Suppose that d(cl(R + 
N),  c2(R + N ) )  > e(0). Then length(a] [t~ ,t2] ) < length(a) - 2N < e(r) + 1 - 2N < 

e(r). So we have a path joining ~(tl ), a(t2),contained in X - Bx(R + r + N),  
of  length less than e(r), which is impossible. We assume without restriction 
of  generality that 

d(7(R + N),c l (R  + N) )  > e(O) 

We consider now the path a '  = ~[[o,q] U [c1(R + r ) , a (q ) ] .  Then length(~') =< 
M + N < (e(r) + 1)/2 + N. On the other hand length(~') > e(r - N) .  So 
2 = 

1 e ( r -  N )  <= �89 § N § g =r e(r) >= 2 ( e ( r - N ) - N - � 8 9  

1 > 3 e ( r _ N ) ,  so B u t e ( r - N )  >= 4 N  + 2 ~ e ( r  - N )  - N - ~ = 

e(r) >__ 3 e (r - -  N)  

It is proved in [ABC] that if  geodesics in a geodesic metric space diverge 
faster than linearly then the space is (Gromov)  hyperbolic. So we have the 
following: 
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Corol lary  1.3. I f  geodesics diverge in a geodesic metric space then the space 
is hyperbolic. 

Definitions 
A bigon in a graph F is a pair of  geodesics 7,7 / with 7(0) = 7~(0) and 
7(1) = 7 ' ( l )  where l = length(v). We say that bigons in a graph F are e-thin i f  
for any bigon 7,7' with 7(0) = 7/(0) and 7(1) = 71(l) we have d(7( t ) ,7 ' ( t ) )  < e 
for every t, 0 < t < I. We say that a bigon 7,~' is M-thick  if  for some 
t ,d(7(t),71(t)) > M 

Theorem 1.4. Let  G be a f ini tely  generated group and let F = F(G[S)  be the 
Cayley graph o f  G associated to a f ini te  generating set S. I f  there is an e 
such that bigons in F are e-thin then G is' hyperbolic. 

Proo f  Assume that G is not hyperbolic. We will prove that for any M C N 
there is a M-thick bigon. We define f ( r )  = inf{d(7(R + r) ,  7'(R + r ) )  where 
7,7' are geodesics such that 7(0) = 7 '(0)  = e and d(7(R) ,v ' (R))  > 2M 2} 
where the infimum is taken over all geodesics 7, 7 t in F and all R E N and e 
is the vertex corresponding to the identity in G. 

It is obvious that i f  lira . . . .  f ( r )  = oc then geodesics diverge in F which 
implies that G is hyperbolic. 

We can therefore assume that l i m i n f r _ ~ f ( r ) =  K < oc. 
Note that since F is a graph, K is an integer and f ( r )  = K for infinitely 

many values o f  r. 
We distinguish now two cases: 

Case 1. Suppose that there are two geodesics 7,7' such that 7(0) = 7 ' (0)  = e, 
d(7(R) ,7 ' (R))  > 2M 2 and for some integers tl < t2 

d(7(R + tl ) ,7 '(R + tl )) > Md(7(R + t2),7'(R + t2)) > 0 

We show now how to construct an M-thick bigon in this case. 
Let a be a geodesic arc such that a (0)  = 7(R + t2), a(l)  = y'(R + t2). 
Let b0 = 71[0,R+t2],bl = 7'l[0,R+t21 and let bi, 1 < i < l -  1 be geodesic arcs 

such that bi(O) = e, bi(li) = a(i)  where li = length(bi). 
We note now that 

l--1 

MI <= d(7(R + tl ) ,7 '(R + tl )) _-< ~ d ( b i ( R  + tl ),bi+l(R -[- tl )) 
i=0 

so at least one of  the terms in the sum has to be greater or equal to M,  i.e. 
d ( b j ( R + t l ) , b j + l ( R + t l ) )  > M for some j ,  0 < j  _< l -  1. 

I f  length(bj)  < length(bj+l)  then we get an M-th ick  bigon defined by the 
geodesics bj+l and b ~ where 

b'( t)  = bj(t), 0 < t <- lj, b'(t) = a(j  + t -  lj),  lj < t < lj + 1 
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y'(R+t~) 

e _ ~ t 2 1  

~(R+tl) 
Fig. 4. 

Similarly we define an M-thick bigon in case length(bj+l) < length(bj). 
I f  length(bj) = length(bj+l) then we get an M-thick bigon defined by the 
geodesics b' and b" where 

b ' ( t ) : b j ( t ) ,  0 <- t <- lj, b ' ( t ) = a ( j + t - l j ) ,  

b"(t) = bi+l(t), 0 < t <- lj+l, 
1 b " ( t ) = a ( j + l - t + l ) + j ) ,  lj+l <- t < lj+l+ 

1 lj < - t < - l j + ~  

Case 2. We assume that no pair o f  geodesics 7, 7' as described in case 1 exist. 
In this case there are pairs o f  geodesics which start from the same point, 

go far apart and then stay almost 'parallel'. To construct an M-thick bigon we 
have to use a pair of  almost 'parallel' geodesics which are sufficiently long. 

Let 7,7 ~ be geodesics with 7(0) = 7'(0) = e, d(7(R),7'(R)) > 2M 2 and 
d(7(R + r),7'(R + r)) = K for some r >= (2 xM - 1)(KM) 2. (Such geodesics 
exist because of  our hypothesis that l i m i n f r ~ f ( r )  = K). 

We claim that 

2M < d(7(R +t) ,7 '(R + t ) ) < K M ,  0 < t < r, t E N  

Indeed if for some integer t > 0, 2M > d(7(R + t), 7'(R + t)) then 

d(7(R),y'(R)) >= Md(7(R + t) ,7 '(R + t)) 

and 7, 7' satist~ the hypothesis o f  case 1 with tl = 0, t2 = -  t. 

...~a0+l) 
b j+l 

Fig. 5. 
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Similarly i f  for some integer t > 0 

d(7(R + t), 7'(R + t))  >__ KM 

then 

d(7(R + t) ,7'(R + t))  >= Md(7(R + r),?/(R + r))  

and 7,7 ~ satisfy the hypothesis o f  case I with tj = t, tz = r. 

Note that for integer t, d(7(R + t), 7~(R + t ) )  is also an integer. We define 
a map: 

g(t) = d(7(R + t), 7'(R + t ) )  

where t is an integer and 0 _< t _< r. By the previous c la im g(t) is an integer 
and 2 M  ~ g( t ) ~= KM. 

Since r ~ (2 KM - 1 ) (KM) 2 there is a J ,2M < J < KM such that the 
cardinali ty of  g - l ( j )  is greater than (2 KM - 1)(KM).  

We will prove that there is a J /2- thick bigon.  Since J/2 >= M this will 
finish the proof  of  the theorem. 

Call  a point  P on 7 or on 7' a J -p o i n t  i f  P = 7 ( 0  or P = 7~(t) for some 
integer t and d(7(t) ,7 ' ( t ) )  = J. 

I f  PI,P2 are two J -po in t s  on 7,P1 = 7(fi) ,P2 = 7(t2) we define their J 
distance, dj(P1,P2)  = Card{t  �9 7 ( 0  is a J -po in t  and t C [tl,t2]} - 1 

It is easy to see that dj is a distance function. We define similarly the J 
distance be tween two points on 7' and we denote it also by d j .  

It is clear that dj(P1,P2)  <= d(P1,P2). 

L e m m a  1.5. Assume that there is not a J/2-thick bigon in F. Let  P = 7 (0  
be a J point. I f  Q = 7'(t'), t' >= t is a J point with d j (Q,  7'(t)) = (2 n - 1)J  
then d(P, Q) < t' - t + J - n. 

Proof  We will prove this by  induct ion on n. It is obviously  true for n = O. 

Suppose that it is true for n = m. Let P = 7(0 ,  Q = 7 ' ( t ' ) ,  t '  > t be J points  
such that 

dj (Q,7 ' ( t ) )  = (2 m+l - l ) J  

Let Qj = 7 ' ( t l ) ,  t~ => t, Q2 = 7'(t2),t2 > t be such that 

d j (Qi ,7 ' ( t ) )  = (2 m - 1 ) J  

dj(Q2, 7 ' ( t ) )  = 2mJ 

Let PI = 7( t l )P2  = 7(tz). Using the inductive hypothesis we have 

d(P, Q1) <= t l - t + J - m  
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Q~ Q2 Q 

P P1 

Fig. 6. 

P2 

and 

d(P2, Q) < t' - t2 + J - m 

I f d ( P ,  Ql )  < t l - t + J - m  then 

d ( P , Q )  <= d(P, Q i ) + d ( Q 1 , Q )  <= t j - t + J - m -  l + t ' - t l  

= f l - t + J - ( m +  l)  

and the lemma is proved. Similarly we are done if  d(Pz, Q) < t ~ -  t2 + J -  m. 
We assume therefore that 

d(P, Ql)  = tl - t + J -  m 

and 

d(Pz, Q) = t' - t2 + J - m 

We conclude as before that d(P, Q) < t' - t + J - m. 
If  d(P, Q) < t ~ -  t + J - m  we are done (we remind the reader that d(P, Q) 

is an integer). We assume therefore that d ( P , Q )  = t ' - t  + J -  m. Consider 
the arcs ~l = [PQ1 ] U [Q1 Q] and O~ 2 = [PP2] t_J [P2Q]. By our assumption ~l, ~2 
define a bigon. We claim that cq,cr is a J/2 thick bigon. More precisely we 
claim that d(P2, cq ) > J/2. 

Indeed, i f  d (Pz ,R)  < J/2 for some R on [Q1Q] then d(R, Q2) > J/2. 
We have then 

d(e, P2) < d ( e , R ) + d ( R ,  P2) < d(e, Q2) 

which is a contradiction since by hypothesis d(e, P 2 ) =  d(e, Q2). 
Similarly if d(Pz ,R)  < J/2 for some R on [PQ1] we have 

d(P ,R)  > d(P, P z ) - J / 2  > d(P, P 1 ) + J / 2  

On the other hand 

d(P, Ql)  ~ d(P, P I ) + d ( P 1 , Q 1 )  = d(P, P 1 ) + J  

Combining the previous two inequalities we get 

d(R, Q1) = d(P, Ql)  - d (P ,R)  < J / 2  

So 
d(P2, Q1) ~ d(P2,R)  + d ( R ,  Qj )  < J 
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Q1 

e c s  
P P~ 

Fig. 7. 

qz 
0 

Pz 

which implies that d(e, P2) < d(e, Q2), a contradiction. This completes the 
proof of  the lemma. 

Since there are more than (2 KM - 1)KM > (2 J+l - l ) J  J-points on 7 we 
conclude that there are J-points P, Q where 

P = 7(t),Q = 7 ' ( t ' ) , t '  > t with dj(Q,'/(t)) : (2  J + l  - 1)J 

We conclude using the previous lemma that 

d(P,Q) <= t ' - t  + J - ( J  + t ) = t ' - t - 1  

This however contradicts the fact that 7 ~ is a geodesic. 
We arrived at this contradiction by assuming that there are no J/2-thick 

bigons in F. We conclude therefore that there is a J/2-thick bigon in F. 

Remarks 1.6. 1 ) By refining the previous argument one can give an estimate 
o f  6 in terms of  e. 
2) One can give a similar characterization of  (Gromov) hyperbolic geodesic 
metric spaces. Namely, if for a space X there are e > 0, k > 0 such that all 
(1 ,k)  quasigeodesic bigons are e. thin then X is hyperbolic (see [Po]). 

2. Strongly geodesically automatic  groups 

Preliminaries. A (q + 3)-tuple (S,M, Mo,M1 . . . . .  Mq) is called an automatic 
structure for a group G if the following hold: 

i) S = {so, sl . . . . .  Sq} is an inverse closed set of  generators for G, with 
So = identity. 

ii) M is a finite state automaton with alphabet S such that the natural map 
p from the language accepted by M, denoted by L(M),  to G is onto; we denote 
p(w) by ~.  

iii) For 0 <_ i __< q we have that Mi are finite state automata such that 
(wl,w2) E L(Mi) if and only if wlsi = w2 where wt,w2 both belong to L(M). 

Let S* be the free monoid on S. 
Any word w C S* defines a path in the Cayley graph of  G starting at the 

identity. We denote this path also by w and we denote by w(t) the prefix of  
the word w of  length t. 

We denote by [w I the length o f  the word w and by the length o f  the 
shortest word on S representing ~.  
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A group G is called automatic if it can be equipped with an automatic 
structure. I f  the language of all shortest words in S representing elements of 
G is the language of an automatic structure for G we say that G is strongly 
geodesically automatic. We can order the words in S* in the following way: 
First order the elements of  S and then define for two words v < w if and only 
if  v is shorter than w or they are of equal length and in the first letter that 
they differ the letter of  v is smaller than the letter of w. 

A shortlex automatic structure for a group G is an automatic structure 
whose language consists of the smallest representatives in S*, with respect to 
the order just defined, of  elements of G. In this case we say that G is shortlex 
automatic. We recall some basic facts about automatic and hyperbolic groups: 

Proposition 2.1. ([ECHLPT], Lemma 2.3.2). Let G have an automatic struc- 
ture (S,M, Mo,M1 . . . . .  Mq). There is a constant k depending on the auto- 
matic structure such that if  (wl, we) is accepted by one of  the Mi's then 
Iwl(t)-Iw2(t)i < k for every t. 

Actually if  a is equal to the maximum of  the number of states of any of the 
automata Mi then k = 2a - 1 satisfies the above requirement. 

We call k the fellow traveller constant of the automatic structure. 

Proposition 2.2. ([ECHLPT], Theorem 3.4.5) Let G be a 6-hyperbolic group 
and let S be any set o f  semigroup generators for G. Then the shortest words 
over S representing elements o f  G form a regular language, and this language 
is part o f  an automatic structure jbr G. 

Proposition 2.1 implies that if G is strongly geodesically automatic then bigons 
are k thin in the Cayley graph of  G, F(G[S). 

Proposition 2.2 simply says that if a group is hyperbolic then it is strongly 
geodesically automatic. Note that if a group is strongly geodesically automatic 
then it is shortlex automatic. (see [ECHLPT], 2.5.2) 

Combining these with theorem 1.2 we have 

Corollary 2.3. A group is hyperbolic i f  and only i f  it is strongly geodesically 
automatic. 

The algorithm 

We will describe an algorithm which, given a presentation (SIR) of a group G 
will terminate if and only if G is strongly geodesically automatic. 

We find first a shortlex automatic structure for G. An algorithm which does 
this is described in [ECHLPT], ch. 6. 

The automatic structures for groups having as generating set S can be 
enumerated ([ECHLPT], ch. 5). 

We carry out a number of procedures 'simultaneously'. 
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We list the automatic structures which have prefix closed languages con- 
taining the language of  the shortlex automatic structure and having S as an 
alphabet. 

We check for each one of  them if the relators R are satisfied. For the ones 
for which R is satisfied we start checking if the rest o f  the defining relators of  
the group defined by the given automatic structure follow from R. 

I f  this is so for an automatic structure we compute the fellow traveller 
constant k o f  the structure. 

Let m be the number of  states of  the automaton generating the regular 
language of  the automatic structure. 

We check if the words in this language of  length less than or equal to 
m2[S] k + 1 represent all the geodesic paths from the identity to elements of  
G in the ball of  radius m2[Sl k + 1 in the Cayley graph of  G. (Note that we 
can construct the Cayley graph of  G since we assume that we have found an 
automatic structure for G). I f  not we disregard this automatic structure and we 
continue the execution of  the algorithm. 

I f  G is strongly geodesically automatic the algorithm will terminate, i.e. 
for some automatic structure the words in the regular language of  length less 
than or equal to m21S[ k + 1 represent all the geodesic paths from the identity 
to elements o f  G in the ball of  radius m2[SI k + 1 in the Cayley graph of  G. 

Lemma 2.4. The language o f  this strueture consists o f  all the shortest words 
on S representing elements o f  G. 

Proo f  We prove by induction on the length of  the words that a word belongs 
to the language of  the automatic structure if and only if it is shortest. 

By hypothesis the assertion holds for all words o f  length less or equal to 
m21S[ k + 1. We assume that the assertion holds for all words of  length less or 
equal to n where n > m2[S] k + 1. 

Let wx be a word in the language of  length n + 1, where x E S. 
Suppose that wx is not shortest. Since we assume the language to be prefix 

closed we have that w belongs to the language. Since we assume that our 
language contains the shortlex language there is another accepted word w ~ 
with I wt] < Iwxl such that ~ = w'. 

The words w, w' are then accepted by some comparator automaton hence 
they fellow travel i.e. [w(t)w'(t)  -1 ] <= k for t < ]w'[. We denote by state(w(t))  
the state of  the word accepting automaton after it has read w(t).  

We note now that there are IS] k words of  length less or equal to k and that 
the word accepting automaton has m states. Since the length of  w is greater or 
equal to m2]S]k+l we conclude that there are tj < t2 such that w(tl )w~(tl)-I = 

w(tz)w'(t2) -1 and state(w(tl)) = state(w(t2)). Now if wx = w(t2)vx the word 
w(t l )vx  is also in the regular language since s t a t e (w( t l ) )=  state(w(t2)). Also 
Iw(tl)vxl <= n. 

On the other hand if w ~ = w~(t2)v ~ we have that 

= w' ~ w(t2)vx = w'(t2)v' ~ w(t~ )vx = w'(t~ )v' 
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But Iw'(t~)v'l < Iw(h )vxl which is a contradiction. 
Suppose now that there is a shortest word wx, x E S such that Iwxl = n + 1 

which is not in the language. By the inductive hypothesis w is in the language 
and as before we have that there is a shortest word w'  in the language such 
that ~X = w t. 

Now w, w ~ are accepted by some comparator automaton and we find as be- 
fore tl < t2 such that s t a t e ( w ( q ) )  = s t a t e ( w ( t z ) ) , s t a t e ( w ' ( h ) )  = s ta te (w ' ( t2) )  
and w ( h  )w ' (h  )-1 = w ( t z ) w , ( t 2 ) - l .  

Now if wx = w( t2)vx  the word w ( h ) v x  is not in the language since 

s t a t e ( w ( h ) ) =  s ta te (w( t2) ) .  Also IW(tl)VX I < n. 
On the other hand i f  w' = wt(t2)v  ' the word w~(h )v' is in the language 

since state(  w'  ( tl ))  = s ta te(  w' ( t2 ) ). 
We have now 

: w ~ ==~ w(t2)ux : wt(12)l) ' :=~ w( t  I )vx : w ' ( h  )v' 

So W(tl)VX is a shortest word of  length less than n which doesn' t  belong to 
the language and this is a contradiction. 
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