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Abstract. We prove that any two locally finite hOmolgeneous trees with valency greater than 3 are 
bilipschitz equivalent. This implies that the quotient h (G)/h k (G), where h k (G) is the kth L2-Betti 
number of G, is not a quasi-isometry invariant. 
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O. Introduction 

In geometric group theory one studies groups using the geometric properties of 
spaces on which these groups act. It is a classical result that if a finitely generated 
group acts properly, by isometries, on a proper geodesic metric space, with compact 
quotient, then the group is quasi-isometric to the space. Here the metric on the group 
is the word metric corresponding to a finite generating set. In this setting one tries on 
the one hand to extract algebraic information (e.g. subgroup theorems, solvability 
of the word problem, etc.) about the group from the large-scale geometry of the 
space on which the group acts and on the other hand one tries to understand the 
large-scale geometric invariants of the group as these are interesting for their own 
sake. 

Of course when two groups are quasi-isometric one cannot distinguish them by 
their large-scale geometry but one can conclude that their large-scale geometric 
properties (isoperimetric inequalities, etc.) are the same. So one would like to know 
when two groups are quasi-isometric. 

It is not known if quasi-isometry is preserved under free products, i.e. it is 
not known if, when Gt is quasi-isometric to G2 and H1 is quasi-isometric to 
1t2, G1 * 111 is quasi-isometric to G2 * 112 (we assume here that all the groups are 
infinite). This would follow easily if one knew that any two quasi-isometric groups 
were in fact bilipschitz equivalent. 

In this paper we prove that any two homogeneous trees are bilipschitz equivalent. 
This implies that any two finitely generated non-abelian free groups are bilipschitz 
equivalent. This question has been raised by Gromov in [Gr] in connection with 
L2-cohomology. It is known that vanishing of the L2-Betti numbers is a quasi- 
isometry invariant. As the Le-Betti numbers behave multiplicatively with respect to 
subgroups of finite index it is natural to ask if the quotient of two L2-Betti numbers 
is invariant under quasi-isometry. Gromov in [Gr] observes that a negative answer 
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would fol low if one knew that any two non-abelian free groups were bilipschitz 
equivalent. 

1. Notation 

In this paper by a tree we mean what is usually taken to be the set o f  vertices of  the 
tree. So we have the following: 

DEFINITION. A tree is a metric space X which satisfies the following two 
conditions: 

(1) Vx, y E X ,  there is a finite sequence x l , . . . ,  xn such that xl = x, xn = y, 
d(xi, xi+l )  = 1 and Er~-lld(xi, Xi+l) = d(x, y). 

(2) If  x 1 , . . . ,  xn is a finite sequence in X such that x l = xn and d(xi, xi+l) = 1, 
Vi, then xi = xi+2 for some i, 1 _< i < n. 

In what fol lows X will be a tree. We think of  X as a 'rooted tree', that is we pick 
a point e C X which we call the root of  the tree. 

A finite sequence X l , . . . , x ~  in X with the properties xi 7 L Xi+l and 
d(xi, Xi+l)  = l ,  Vi, will be called a path from Xl to xn. As it is determined by 
Xl, xn it will be denoted by [Xl, xn]. 

For x C X we define the star of  x, St(x)  = {y E X ld(x,  y) = 1}. 
We define: = d(e,  ~) for x c X .  
We define the n-ball and the n-sphere in X :  

We define p :  X - {e} ~ X by p(x) = St(x)  N [e, x]. 
We define N ( x ) = p -  l px. 
We write x A y = z i f [e ,  x]M [e, y] = [e, z]. 
Note that d(x, y) = d(x, x A y) + d(x A y, y). 
The homogeneous  tree of  valency k, denoted by Xk,  is the tree for which 

Card(St (z) )  = k for every x C Xk. 
Two metric spaces M,  N are bilipschitz equivalent if there is a one-to-one and 

onto map f : M ~ N and a constant C > 0 such that: 

1 
Yx, y C M,  -~d(x, y) <_ d ( f ( x ) ,  f ( y ) )  < Cd(x,  y). 

2. Homogeneous Trees are Bilipschitz Equivalent 

We will prove that the homogeneous  tree Xk is bilipschitz equivalent to the homo- 
geneous tree Xk+l ,  for k >_ 4. It is obvious that bilipschitz equivalence is an 
equivalence relation so it follows that any two homogeneous trees Xk,  Xn are 
bilipschitz equivalent, where k, n _> 4. 
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The idea of the proof is to define a one-to-one map which will take the n-sphere 
of Xk to the n-sphere of Xk+l. This cannot be done because the n-sphere of  
Xk+l has more points than the n-sphere of Xk so we define instead the map from 
S~ U Sn+l to the sphere of Xk+ I. 

It is a good idea for the reader to draw pictures of the trees and try to understand 
the map geometrically while reading the formal proof. 

THEOREM. The trees Xk, Xk+l are bilipschitz equivalent for k >_ 4. 
Proof We will denote by Sn, Bn the n-sphere and n-ball of Xk. Let e, e ~ 

be the roots of Xk, Xk+l. We will define inductively a one-to-one and onto map 
f :  Xk --+ Xk+l.  We define: f (e)  = e' and since Card(p- l (e))  < Card(p- l (e ' ) )  
we extend f "  p - l ( e )  ~ p - l ( e ' )  so that f is one to one. 

We define f on $2 as follows: We pick some Zl E $2 and define f ( z l )  = 
p-l(e~) - f(S1). We extend f on the rest of 5'2 in an one to one way so that for 
every z E $2, X ~ Xl, p f (x )  = f (pz) .  This is clearly possible. In Figure 1 we 
show one way to define f • X4 ~ X5 on $2 C X4. 

We define now f inductively so that for every z E Sn, n _> 2 either (1) or (2) 
holds: 

(1) p f (x )  = f (px)  and Card(f(N(x))  N N ( f ( z ) )  is either k - 1 or k - 2, 
(2) p f ( z )  = p f (pz )  = f(ppx).  

We remark that by our definition of f on $2, for every z ¢ Zl (1) holds while for 
Xl (2) holds. 

Assume that we have defined f on the ball or radius n so that the above condition 
is satisfied for all z E Bn. We will extend f on Bn+l, i.e. we will define f on Sn+~ 
so that the above condition is satisfied. 

Sn+l = Y1 O Y2 where 

Y1 --- {z C Sn+l : pz satisfies (1)} 

](2 = {z E S~+I "pz satisfies (2)} 

We extend f on Y2 as follows: ]I2 is a disjoint union of sets N(x) ,  z E Y2. We 
define f from N(x)  to p - l f ( p x )  in a one-to-one way. This is clearly possible as 
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Card(N(x))  = k - 1 and Card(p-lf(px)) -- k. It follows that every x • Y2 will 
satisfy condition (1). YI is a disjoint union of sets of the form: 

V(a) = {x • Y1 " ppx = a). 

We will define f on each of these sets. 
V (a) is a disjoint union of sets N (x), x • V (a). 
We define f on V(a):  
We observe that pV(a) is equal to the set of vertices in p- la  which satisfy (1). 

I fx  satisfies (1) then y • N(x)  satisfies (1) if and only if f ( y )  fi f (N(x ) ) .  Hence 
the set of vertices in p- la  satisfying (1) has cardinality k - 1 or k - 2. We conclude 
that Card(pV(a))= k -  1 orCard(pV(a))= k -  2. 

Assume Card(pV(a) ) = k - 2. 
Let {Yl, Y2} = P - i f ( a ) -  f (pV(a)) .  
Let x 1, x2 • V(a) be such that px 1 7 ~ px2. Such x l, x2 exist by our hypothesis 

that k >_ 4. 
We define f ( x l )  = Yl, f(x2) = Y2. We extend f on V(a) - {xl, x2) by 

mapping each of the sets N(x)  - {Xl, x2) to p - l f ( p x )  in a one-to-one way. This 
isclearlypossibleasCard(N(x)-{xl,  x2)) = k - 1  o r C a r d ( N ( x ) - { x l ,  x2)) = 
k - 2 (note that at most one of Xl, x2 is in N(x))  and Card(p-lf(px)) = k. 

We define f in the same way if Card(pV(a)) = k - 1. 
It is clear by this definition that every x • Y1 will satisfy either condition (1) or 

(2). This completes the definition of f .  It is clear that f is one-to-one by definition. 
One can verify easily that 

f(B,~) 3 {x • Xk+ltd(x, f (Bn-2))  < 1) 

which implies that f is onto. It is quite easy to see that f is a bilipschitz equivalence. 
In what follows we give a formal proof of this. 

LEMMA 1. d(f (x) ,  f (y) )  <_ 2d(x, y)forevery x, y • Xk. 
Proof We will prove this by induction on d(x, y). Suppose that d(x, y) = 1. 

We can assume without restriction of generality that x = py. Then by the definition 
of f either pf (y )  = f(py) or pf(y)  = pf(py).  In the first case d(f(x) ,  f (y) )  = 1 
and in the second d(f(x) ,  f (y) )  = 2 so the lemma is true when d(x, y) = 1. 

Suppose now that the lemma is true when d(x, y) < n. Let x, y be such that 
d(x, y) = n+ 1 andletzbesuchthatd(x, z) = 1 and d(x, y) = d(x, z)+d(z,  y). 
We have then 

d( f (x) ,  f (y ) )  < d( f (x) ,  f ( z ) )  + d(f(z) ,  f (y))  < 2d(x, z) + 2d(z, y) 
= 2d(x, y). 

LEMMA 2. I fy  • [e, x] then d( f (x) ,  f (y))  > ½d(x, y). 
Proof If d(x, y) = 1 the assertion is obviously true as f is one-to-one. We 

assume therefore that d(x, y) > 1. 
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Let x l ,  x2, x3 be consecutive vertices in [y, x] (i.e. Ix1[ = Ix2[ - 1 = Ix31 - 
2). By  the definition of  f ,  If(xz)l = If(xl)]  or If(xz)l = I f (z l ) l  + 1. If  
I f (xl ) l  = If(x2)l then by the definition of f ,  If(x3)l = If(z=)l + 1. 

It fol lows that 

I f(x)[  > If(Y)[ + d(x, y) - 1 d(f(x), f(y)) > ½d(x, y). 
2 

L E M M A 3 .  d(f(x) ,  f (y))  > ½d(x, y). 
Proof Let x A y = z. We assume that z ~ x, y otherwise we are done 

by L e m m a  2. We claim that f (x)  /X f(y)  = f (z )  or f (x)  h f (y)  = pf(z) .  
Indeed if xl = [z, x] f3 p-l (z)  and Yl = [z, y] n p - l ( z )  then one sees by the 
definition of  f that f ( x i )  A f (Yi)  = f (x)  A f(y)  and f ( x i )  A f(Yl)  = f ( z )  
or f (x l )  /X f(Yl)  = pf(z) .  As z, pz C [e, x] and d(x, z) < d(x, pz), applying 
Lemma 2 we have 

d(f(x) ,  f (x )  A f(y))  >_ d(f(x) ,  f (z))  )_ ld(x, z). 

Similarly 

d(f(y) ,  f (x )  A f(y))  )_ ½d(Y, z). 

Therefore 

d(f(x) ,  f (y))  )_ ½d(x, y). 

From Lemmas  1 and 3 it follows that f is a bilipschitz equivalence. 

Remark. X3 is also bilipschitz equivalent to X4. One has to define the map 
f a bit more carefully in this case. In fact if k > 3 and X ,  Y are trees such that 
for every x E X tO Y one has 3 _< Card(St(x))  < k then X ,  Y are bilipschitz 
equivalent. 

C O R O L L A R Y  1. Any two free groups ]F~, Fn (r,  n > 2) are bilipschitz equivalent. 

C O R O L L A R Y  2. The quotients h ~ ( G) / hk( G) of L2-Betti numbers are not invari- 
ant under quasi-isometry. 

Proof Let ]Fr, ]Fn (r,  n >_ 2) be free groups and let H be any group. Then 
]F~ • H is quasi-isometric to ] F n , / / .  

Indeed, any element g of  ]Fr * H has a unique reduced normal form g -- 
aicl...amCra where ai E IFr, ei E H (1 < i < m) and ai 7 ~ e for i > 1, ei # e 
f o r / <  m. 

If  f • 1FT --+ ]Fn is a bilipschitz equivalence we define h : IFk • H ~ IF=, H by 

h(g) = f (a l )c l . . ,  f(am)Cm. 

It is clear that h is a bilipschitz equivalence hence, in particular, a quasi-isometry. If  
we pick H now so that hk(H) ~ 0 we have h I(]FT , H )  = k + h i  ( H ) ,  h i (F,~ , H )  = 
n + h i ( H )  while hk(]Fr • H )  = hk(]Fr • H )  = h k ( H ) . S o  hl (Fr  * g)/hk(IFr • H) 
hl(]7~ * H)/hk(]F~ • H). 
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