Homogeneous Trees are Bilipschitz Equivalent

P. PAPASOGLU
Mathematics Institute, University of Warwick, Coventry CV4-7AL, England
e-mail address:pp@maths.warwick.ac.uk

(Received: 8 November 1993; revised version: 16 December 1993)

Abstract

We prove that any two locally finite homogeneous trees with valency greater than 3 are bilipschitz equivalent. This implies that the quotient $h^{1}(G) / h^{k}(G)$, where $h^{k}(G)$ is the k th L_{2}-Betti number of G, is not a quasi-isometry invariant.

Mathematics Subject Classification (1991): 05 C 05 .

0. Introduction

In geometric group theory one studies groups using the geometric properties of spaces on which these groups act. It is a classical result that if a finitely generated group acts properly, by isometries, on a proper geodesic metric space, with compact quotient, then the group is quasi-isometric to the space. Here the metric on the group is the word metric corresponding to a finite generating set. In this setting one tries on the one hand to extract algebraic information (e.g. subgroup theorems, solvability of the word problem, etc.) about the group from the large-scale geometry of the space on which the group acts and on the other hand one tries to understand the large-scale geometric invariants of the group as these are interesting for their own sake.

Of course when two groups are quasi-isometric one cannot distinguish them by their large-scale geometry but one can conclude that their large-scale geometric properties (isoperimetric inequalities, etc.) are the same. So one would like to know when two groups are quasi-isometric.

It is not known if quasi-isometry is preserved under free products, i.e. it is not known if, when G_{1} is quasi-isometric to G_{2} and H_{1} is quasi-isometric to $H_{2}, G_{1} * H_{1}$ is quasi-isometric to $G_{2} * H_{2}$ (we assume here that all the groups are infinite). This would follow easily if one knew that any two quasi-isometric groups were in fact bilipschitz equivalent.

In this paper we prove that any two homogeneous trees are bilipschitz equivalent. This implies that any two finitely generated non-abelian free groups are bilipschitz equivalent. This question has been raised by Gromov in [Gr] in connection with L_{2}-cohomology. It is known that vanishing of the L_{2}-Betti numbers is a quasiisometry invariant. As the L_{2}-Betti numbers behave multiplicatively with respect to subgroups of finite index it is natural to ask if the quotient of two L_{2}-Betti numbers is invariant under quasi-isometry. Gromov in [Gr] observes that a negative answer
would follow if one knew that any two non-abelian free groups were bilipschitz equivalent.

1. Notation

In this paper by a tree we mean what is usually taken to be the set of vertices of the tree. So we have the following:
DEFINITION. A tree is a metric space X which satisfies the following two conditions:
(1) $\forall x, y \in X$, there is a finite sequence x_{1}, \ldots, x_{n} such that $x_{1}=x, x_{n}=y$, $d\left(x_{i}, x_{i+1}\right)=1$ and $\Sigma_{i=1}^{n-1} d\left(x_{i}, x_{i+1}\right)=d(x, y)$.
(2) If x_{1}, \ldots, x_{n} is a finite sequence in X such that $x_{1}=x_{n}$ and $d\left(x_{i}, x_{i+1}\right)=1$, $\forall i$, then $x_{i}=x_{i+2}$ for some $i, 1 \leq i<n$.

In what follows X will be a tree. We think of X as a 'rooted tree', that is we pick a point $e \in X$ which we call the root of the tree.

A finite sequence x_{1}, \ldots, x_{n} in X with the properties $x_{i} \neq x_{i+1}$ and $d\left(x_{i}, X_{i+1}\right)=1, \forall i$, will be called a path from x_{1} to x_{n}. As it is determined by x_{1}, x_{n} it will be denoted by $\left[x_{1}, x_{n}\right]$.

For $x \in X$ we define the star of $x, \operatorname{St}(x)=\{y \in X \mid d(x, y)=1\}$.
We define: $|x|=d(e, x)$ for $x \in X$.
We define the n-ball and the n-sphere in X :

$$
B_{n}=\{x \in X| | x \mid \leq n\}, S_{n}=\{x \in X| | x \mid=n\}
$$

We define $p: X-\{e\} \rightarrow X$ by $p(x)=\operatorname{St}(x) \cap[e, x]$.
We define $N(x)=p^{-1} p x$.
We write $x \wedge y=z$ if $[e, x] \cap[e, y]=[e, z]$.
Note that $d(x, y)=d(x, x \wedge y)+d(x \wedge y, y)$.
The homogeneous tree of valency k, denoted by X_{k}, is the tree for which $\operatorname{Card}(\operatorname{St}(x))=k$ for every $x \in X_{k}$.

Two metric spaces M, N are bilipschitz equivalent if there is a one-to-one and onto map $f: M \rightarrow N$ and a constant $C>0$ such that:

$$
\forall x, y \in M, \frac{1}{C} d(x, y) \leq d(f(x), f(y)) \leq C d(x, y)
$$

2. Homogeneous Trees are Bilipschitz Equivalent

We will prove that the homogeneous tree X_{k} is bilipschitz equivalent to the homogeneous tree X_{k+1}, for $k \geq 4$. It is obvious that bilipschitz equivalence is an equivalence relation so it follows that any two homogeneous trees X_{k}, X_{n} are bilipschitz equivalent, where $k, n \geq 4$.

Fig. 1.

The idea of the proof is to define a one-to-one map which will take the n-sphere of X_{k} to the n-sphere of X_{k+1}. This cannot be done because the n-sphere of X_{k+1} has more points than the n-sphere of X_{k} so we define instead the map from $S_{n} \cup S_{n+1}$ to the sphere of X_{k+1}.

It is a good idea for the reader to draw pictures of the trees and try to understand the map geometrically while reading the formal proof.

THEOREM. The trees X_{k}, X_{k+1} are bilipschitz equivalent for $k \geq 4$.
Proof. We will denote by S_{n}, B_{n} the n-sphere and n-ball of X_{k}. Let e, e^{\prime} be the roots of X_{k}, X_{k+1}. We will define inductively a one-to-one and onto map $f: X_{k} \rightarrow X_{k+1}$. We define: $f(e)=e^{\prime}$ and since $\operatorname{Card}\left(p^{-1}(e)\right)<\operatorname{Card}\left(p^{-1}\left(e^{\prime}\right)\right)$ we extend $f: p^{-1}(e) \rightarrow p^{-1}\left(e^{\prime}\right)$ so that f is one to one.

We define f on S_{2} as follows: We pick some $x_{1} \in S_{2}$ and define $f\left(x_{1}\right)=$ $p^{-1}\left(e^{\prime}\right)-f\left(S_{1}\right)$. We extend f on the rest of S_{2} in an one to one way so that for every $x \in S_{2}, x \neq x_{1}, p f(x)=f(p x)$. This is clearly possible. In Figure 1 we show one way to define $f: X_{4} \rightarrow X_{5}$ on $S_{2} \subset X_{4}$.

We define now f inductively so that for every $x \in S_{n}, n \geq 2$ either (1) or (2) holds:
(1) $p f(x)=f(p x)$ and $\operatorname{Card}(f(N(x)) \cap N(f(x))$ is either $k-1$ or $k-2$,
(2) $p f(x)=p f(p x)=f(p p x)$.

We remark that by our definition of f on S_{2}, for every $x \neq x_{1}(1)$ holds while for x_{1} (2) holds.

Assume that we have defined f on the ball or radius n so that the above condition is satisfied for all $x \in B_{n}$. We will extend f on B_{n+1}, i.e. we will define f on S_{n+1} so that the above condition is satisfied.
$S_{n+1}=Y_{1} \cup Y_{2}$ where

$$
\begin{aligned}
& Y_{1}=\left\{x \in S_{n+1}: p x \text { satisfies (1) }\right\} \\
& Y_{2}=\left\{x \in S_{n+1}: p x \text { satisfies (2) }\right\}
\end{aligned}
$$

We extend f on Y_{2} as follows: Y_{2} is a disjoint union of sets $N(x), x \in Y_{2}$. We define f from $N(x)$ to $p^{-1} f(p x)$ in a one-to-one way. This is clearly possible as
$\operatorname{Card}(N(x))=k-1$ and $\operatorname{Card}\left(p^{-1} f(p x)\right)=k$. It follows that every $x \in Y_{2}$ will satisfy condition (1). Y_{1} is a disjoint union of sets of the form:

$$
V(a)=\left\{x \in Y_{1}: p p x=a\right\}
$$

We will define f on each of these sets.
$V(a)$ is a disjoint union of sets $N(x), x \in V(a)$.
We define f on $V(a)$:
We observe that $p V(a)$ is equal to the set of vertices in $p^{-1} a$ which satisfy (1). If x satisfies (1) then $y \in N(x)$ satisfies (1) if and only if $f(y) \in f(N(x))$. Hence the set of vertices in $p^{-1} a$ satisfying (1) has cardinality $k-1$ or $k-2$. We conclude that $\operatorname{Card}(p V(a))=k-1$ or $\operatorname{Card}(p V(a))=k-2$.

Assume $\operatorname{Card}(p V(a))=k-2$.
Let $\left\{y_{1}, y_{2}\right\}=p^{-1} f(a)-f(p V(a))$.
Let $x_{1}, x_{2} \in V(a)$ be such that $p x_{1} \neq p x_{2}$. Such x_{1}, x_{2} exist by our hypothesis that $k \geq 4$.

We define $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$. We extend f on $V(a)-\left\{x_{1}, x_{2}\right\}$ by mapping each of the sets $N(x)-\left\{x_{1}, x_{2}\right\}$ to $p^{-1} f(p x)$ in a one-to-one way. This is clearly possible as $\operatorname{Card}\left(N(x)-\left\{x_{1}, x_{2}\right\}\right)=k-1$ or $\operatorname{Card}\left(N(x)-\left\{x_{1}, x_{2}\right\}\right)=$ $k-2$ (note that at most one of x_{1}, x_{2} is in $\left.N(x)\right)$ and $\operatorname{Card}\left(p^{-1} f(p x)\right)=k$.

We define f in the same way if $\operatorname{Card}(p V(a))=k-1$.
It is clear by this definition that every $x \in Y_{1}$ will satisfy either condition (1) or (2). This completes the definition of f. It is clear that f is one-to-one by definition. One can verify easily that

$$
f\left(B_{n}\right) \supset\left\{x \in X_{k+1} \mid d\left(x, f\left(B_{n-2}\right)\right) \leq 1\right\}
$$

which implies that f is onto. It is quite easy to see that f is a bilipschitz equivalence. In what follows we give a formal proof of this.
LEMMA 1. $d(f(x), f(y)) \leq 2 d(x, y)$ for every $x, y \in X_{k}$.
Proof. We will prove this by induction on $d(x, y)$. Suppose that $d(x, y)=1$. We can assume without restriction of generality that $x=p y$. Then by the definition of f either $p f(y)=f(p y)$ or $p f(y)=p f(p y)$. In the first case $d(f(x), f(y))=1$ and in the second $d(f(x), f(y))=2$ so the lemma is true when $d(x, y)=1$.

Suppose now that the lemma is true when $d(x, y) \leq n$. Let x, y be such that $d(x, y)=n+1$ and let z be such that $d(x, z)=1$ and $d(x, y)=d(x, z)+d(z, y)$. We have then

$$
\begin{aligned}
d(f(x), f(y)) & \leq d(f(x), f(z))+d(f(z), f(y)) \leq 2 d(x, z)+2 d(z, y) \\
& =2 d(x, y)
\end{aligned}
$$

LEMMA 2. If $y \in[e, x]$ then $d(f(x), f(y))>\frac{1}{3} d(x, y)$.
Proof. If $d(x, y)=1$ the assertion is obviously true as f is one-to-one. We assume therefore that $d(x, y)>1$.

Let x_{1}, x_{2}, x_{3} be consecutive vertices in $[y, x]$ (i.e. $\left|x_{1}\right|=\left|x_{2}\right|-1=\left|x_{3}\right|-$ 2). By the definition of $f,\left|f\left(x_{2}\right)\right|=\left|f\left(x_{1}\right)\right|$ or $\left|f\left(x_{2}\right)\right|=\left|f\left(x_{1}\right)\right|+1$. If $\left|f\left(x_{1}\right)\right|=\left|f\left(x_{2}\right)\right|$ then by the definition of $f,\left|f\left(x_{3}\right)\right|=\left|f\left(x_{2}\right)\right|+1$.

It follows that

$$
|f(x)|>|f(y)|+\frac{d(x, y)-1}{2} \Rightarrow d(f(x), f(y))>\frac{1}{3} d(x, y) .
$$

LEMMA 3. $d(f(x), f(y))>\frac{1}{3} d(x, y)$.
Proof. Let $x \wedge y=z$. We assume that $z \neq x, y$ otherwise we are done by Lemma 2. We claim that $f(x) \wedge f(y)=f(z)$ or $f(x) \wedge f(y)=p f(z)$. Indeed if $x_{1}=[z, x] \cap p^{-1}(z)$ and $y_{1}=[z, y] \cap p^{-1}(z)$ then one sees by the definition of f that $f\left(x_{1}\right) \wedge f\left(y_{1}\right)=f(x) \wedge f(y)$ and $f\left(x_{1}\right) \wedge f\left(y_{1}\right)=f(z)$ or $f\left(x_{1}\right) \wedge f\left(y_{1}\right)=p f(z)$. As $z, p z \in[e, x]$ and $d(x, z)<d(x, p z)$, applying Lemma 2 we have

$$
d(f(x), f(x) \wedge f(y)) \geq d(f(x), f(z)) \geq \frac{1}{3} d(x, z) .
$$

Similarly

$$
d(f(y), f(x) \wedge f(y)) \geq \frac{1}{3} d(y, z)
$$

Therefore

$$
d(f(x), f(y)) \geq \frac{1}{3} d(x, y) .
$$

From Lemmas 1 and 3 it follows that f is a bilipschitz equivalence.
Remark. X_{3} is also bilipschitz equivalent to X_{4}. One has to define the map f a bit more carefully in this case. In fact if $k>3$ and X, Y are trees such that for every $x \in X \cup Y$ one has $3 \leq \operatorname{Card}(\operatorname{St}(x)) \leq k$ then X, Y are bilipschitz equivalent.
COROLLARY 1. Any two free groups $\mathbb{F}_{r}, \mathbb{F}_{n}(r, n \geq 2)$ are bilipschitzequivalent.
COROLLARY 2. The quotients $h^{1}(G) / h^{k}(G)$ of L_{2}-Betti numbers are not invariant under quasi-isometry.

Proof. Let $\mathbb{F}_{r}, \mathbb{F}_{n}(r, n \geq 2)$ be free groups and let H be any group. Then $\mathbb{F}_{r} * H$ is quasi-isometric to $\mathbb{F}_{n} * H$.

Indeed, any element g of $\mathbb{F}_{r} * H$ has a unique reduced normal form $g=$ $a_{1} c_{1} \ldots a_{m} c_{m}$ where $a_{i} \in \mathbb{F}_{r}, c_{i} \in H(1 \leq i \leq m)$ and $a_{i} \neq e$ for $i>1, c_{i} \neq e$ for $i<m$.

If $f: \mathbb{F}_{r} \rightarrow \mathbb{F}_{n}$ is a bilipschitz equivalence we define $h: \mathbb{F}_{k} * H \rightarrow \mathbb{F}_{n} * H$ by

$$
h(g)=f\left(a_{1}\right) c_{1} \ldots f\left(a_{m}\right) c_{m}
$$

It is clear that h is a bilipschitz equivalence hence, in particular, a quasi-isometry. If we pick H now so that $h^{k}(H) \neq 0$ we have $h^{1}\left(\mathbb{F}_{r} * H\right)=k+h_{1}(H), h^{1}\left(\mathbb{F}_{n} * H\right)=$ $n+h_{1}(H)$ while $h^{k}\left(\mathbb{F}_{r} * H\right)=h^{k}\left(\mathbb{F}_{r} * H\right)=h^{k}(H)$. So $h^{1}\left(\mathbb{F}_{r} * H\right) / h^{k}\left(\mathbb{F}_{r} * H\right) \neq$ $h^{1}\left(\mathbb{F}_{n} * H\right) / h^{k}\left(\mathbb{F}_{n} * H\right)$.

Acknowledgement

I would like to thank D. Epstein and the referee for pointing out mistakes and suggesting improvements in this manuscript.

Reference

1. Gromov, M.: in G. Niblo and M. Roller (eds), Geometric Group Theory, London Math. Soc. Lecture Notes No. 181, Vol. 2, 1993.
