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Abstract

Classical Additive Number Theory in Z investigates the existence of a finite integer 6 such
that for a given infinite sequence of increasing non-negative integers a, = f(v), v = 1,2, ...
the Diophantine equation

fl@r) + f(x) + ...+ flzg) =n

has solutions x; > 1 for any n > 0, and determines, if possible, their number, asymptotically
or otherwise (Goldbach, Waring, Hilbert, Hardy-Littlewood, Vinogradov, Erdos, ...). Our
approach is different.

We denote by A(n, N,0) = A(n.0) the number of solutions in integers z; > 0 of the Diophan-
tine system:

a1r1 +asze + ... FanTny =n (1)
140+ ... +zn=0 . (1)
A(n.0) expresses in how many ways n is a sum of 6 integers taken from the set {ai,...,an}.
The generating function for the A(n,0), n=0,1,..., §=0,1,..., is:
A
:ZOO A(n,0) = Vl;[l T2y

as seen by expanding all the (1 — 2%y)~! formally in power series and, after multiplication,
collecting terms with equal exponents in x and y, respectively.

Considering x and y as complex variables we have by Cauchy’s theorem for the coefficients
of power series of several complex variables:

1
A(n,0) dxd 2
)= gt et L=y @

where the integrals are taken over the circles || = ¢; < 1, |y| = ¢2 < 1, respectively.
The partial fraction expansion with regard to y of ijvzl(l —x%y)~! gives
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where L'(t) is the derivative of L(t) = Hf,vzl(t — ).
Inserting in (2) and expanding (1 — z%y)~!

successively:

in power series of y within the circle co we get
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Integrating over |y| = c2 we obtain by Cauchy’s theorem:
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In order to expand 1/L'(x*) in a power series of x we transform L'(z%) as follows:
L'(z™) = (2™ —z7) ... (2™ — 2% ) (2% — 2%*1) ... (z™ — 2°V)

= gttt (g ) (gt — ) (VT g Ty (1 — gt )

_ (_1)V71xa1+..-+ay—1+au(Nfl/)(1 — T (1 — g T (1 — g W) (1 — N T,

Inserting in (3) for L'(x™) their above expressions and after calculations in the exponents,
we obtain:
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where

1

P,(x)= .
(z) (1 —gw—a) . (1 —zwaw-1)(1—g@+i=a) (1—gN—w)

Since all exponents a, —a,, are positive, we can expand for |z| < ¢; the factors P,(x) in power
series of x:

Py(x) =) B, (A2
A=0

where B, (\) are respectively the number of non-negative integer solutions of the linear Dio-
phantine equations

(au - al)xl +...+ (au - aufl)xlffl + (ay+1 - au)xu +...+ ((IN - aN—l)xN—l =\



Substituting in (4) the P,(x) by their respective power series and using again Caushy’s
theorem we finally arrive at

N
A(n,0) =>  (=1)""'By(s,) , (5)
v=1
with s, =n+ Y. ;a; — (v + 0)a, and B, (s,) respectively, the number of solutions of each
of the following linear Diophantine equations

(ap —ar)x1+ ...+ (ap — ap—1)xp—1 + (ap+1 — @)z, + ...+ (any —ap—1)zNn—_1 =5, (6)

v=1,...,N .

This formula reduces the investigation of the number of solutions of the initial system to that
of the number of solutions of N linear Diophantine equations involving the difference sets
(positive) {a, — a,} and the numbers s,.

Geometrically speaking this means that the number of Gitterpunkte in the intersection of
the two N-dimensional planes (1) and (1’) in the positive quadrant x; > 0 is equal to the
alternate sum of the number of Gitterpunkte of the (N — 1)-dimensional planes (6) in the
same quadrant.

As standard examples, theorems and conjectures we may cite a,, = (v—1)2, § = 4 (Lagrange),
a, = (v — 1)¥ (Waring), a,, = v-th prime, § = 2, n even (Goldbach), a, = v*, § = 2, n = nf,
p > 3 (Fermat).

Obviously in order to attack the problem for a given sequence we havelto take into account
that N is linked to n by a function N(n) (ex.g. for Lagrange N(n) = [n2]). This complicates
the matter but still an ad hoc suggestion would be to approximate the B, (s,) as follows
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which is valid for n — oo but fixed N (Polya-Szegd, Aufgaben und Lehrsétze aus der Analysis
I; loosing no generality the differences a,, — a, can be assumed free of common divisors > 1).

Summing over v (we write N for short of N(n)) and reverting again to the polynomials L(t),
written now as Ly(t), we obtain from (5)
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(N —2)! ; Ly (ay)
as a plausible heuristic estimate of A(n, ) for n — oo.

The behaviour of the expressions involving n and 6:

n+> ja; — (v+0)a,

| | The cutting points of the planes (6) with the coordinate axes,
ay — ay
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The distances of the planes (6) from the origin,



would play, we believe, a decisive role in any such attempt.

As to its form the sum (7) bears a striking resemblance to the sums

v=

encountered in Lagrange interpolation with a, replaced by s, in the numerator. As known
these expressions considered as functions of the exponent ¢ are equal to:
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0 for 0<t<N-2
1 for t=N-1
Z all - aly for N<t
Si=t—N+1

Above facts may prove, eventually, useful in further developments.



