A general formula in Additive Number Theory

Constantin M. Petridi,
11 Apollonos Street, 151 24 Maroussi (Athens), Greece, cpetridi@hotmail.com
In part - collaboration with
Peter B. Krikelis, Mathematics Dep., Athens University,
e-mail pkrikel@math.uoa.gr

Abstract

Classical Additive Number Theory in \(\mathbb{Z} \) investigates the existence of a finite integer \(\theta \) such that for a given infinite sequence of increasing non-negative integers \(a_\nu = f(\nu), \nu = 1, 2, \ldots \) the Diophantine equation
\[
f(x_1) + f(x_2) + \ldots + f(x_\theta) = n
\]
has solutions \(x_i \geq 1 \) for any \(n \geq 0 \), and determines, if possible, their number, asymptotically or otherwise (Goldbach, Waring, Hilbert, Hardy-Littlewood, Vinogradov, Erdös, \ldots). Our approach is different.

We denote by \(A(n, N, \theta) = A(n, \theta) \) the number of solutions in integers \(x_i \geq 0 \) of the Diophantine system:
\[
a_1 x_1 + a_2 x_2 + \ldots + a_N x_N = n \quad (1)
x_1 + x_2 + \ldots + x_N = \theta \quad (1')
\]

\(A(n, \theta) \) expresses in how many ways \(n \) is a sum of \(\theta \) integers taken from the set \(\{a_1, \ldots, a_N\} \).

The generating function for the \(A(n, \theta) \), \(n = 0, 1, \ldots, \theta = 0, 1, \ldots \), is:
\[
\sum_{n=0}^{\infty} A(n, \theta) x^n y^\theta = \prod_{\nu=1}^{N} \frac{1}{1 - x^{a_\nu} y} ,
\]
as seen by expanding all the \((1 - x^{a_\nu} y)^{-1} \) formally in power series and, after multiplication, collecting terms with equal exponents in \(x \) and \(y \), respectively.

Considering \(x \) and \(y \) as complex variables we have by Cauchy’s theorem for the coefficients of power series of several complex variables:
\[
A(n, \theta) = \frac{1}{(2\pi i)^2} \oint_{c_1} \oint_{c_2} \frac{1}{x^{n+1} y^{\theta+1}} \prod_{\nu=1}^{N} \frac{1}{1 - x^{a_\nu} y} \, dx \, dy ,
\]
where the integrals are taken over the circles \(|x| = c_1 < 1, |y| = c_2 < 1 \), respectively.

The partial fraction expansion with regard to \(y \) of \(\prod_{\nu=1}^{N} (1 - x^{a_\nu} y)^{-1} \) gives
\[
\prod_{\nu=1}^{N} \frac{1}{1 - x^{a_\nu} y} = \sum_{\nu=1}^{N} \frac{1}{y^{N-1} L'(x^{a_\nu})(1 - x^{a_\nu} y)} ,
\]

1
where $L'(t)$ is the derivative of $L(t) = \prod_{v=1}^{N}(t - x^{a_v})$.

Inserting in (2) and expanding $(1 - x^{a_v}y)^{-1}$ in power series of y within the circle c_2 we get successively:

$$A(n, \theta) = \frac{1}{(2\pi i)^2} \int_{c_1} \int_{c_2} \frac{1}{x^{n+1}y^{\theta+1}} \left\{ \sum_{\nu=1}^{N} \frac{1}{y^{N-1} L'(x^{a_\nu})(1 - x^{a_\nu}y)} \right\} dx dy$$

$$= \frac{1}{2\pi i} \int_{c_1} \frac{1}{x^{n+1}} \left\{ \frac{1}{2\pi i} \int_{c_2} \frac{1}{y^{\theta+N} \sum_{\nu=1}^{N} L'(x^{a_\nu})(1 - x^{a_\nu}y)} dy \right\} dx$$

$$= \frac{1}{2\pi i} \int_{c_1} \frac{1}{x^{n+1}} \left\{ \sum_{\nu=1}^{N} \frac{1}{2\pi i} \int_{c_2} \frac{1}{y^{\theta+N} L'(x^{a_\nu})(1 + x^{a_\nu}y + \ldots)} dy \right\} dx$$

Integrating over $|y| = c_2$ we obtain by Cauchy’s theorem:

$$A(n, \theta) = \frac{1}{2\pi i} \int_{c_1} \frac{1}{x^{n+1}} \left\{ \sum_{\nu=1}^{N} \frac{x^{a_\nu(\theta+N-1)}}{L'(x^{a_\nu})} \right\} dx$$

$$= \sum_{\nu=1}^{N} \frac{1}{2\pi i} \int_{c_1} \frac{1}{x^{n+1-a_\nu(\theta+N-1)} L'(x^{a_\nu})} dx. \quad (3)$$

In order to expand $1/L'(x^{a_\nu})$ in a power series of x we transform $L'(x^{a_\nu})$ as follows:

$$L'(x^{a_\nu}) = (x^{a_\nu} - x^a) \ldots (x^{a_\nu} - x^{a_{\nu-1}})(x^{a_\nu} - x^{a_{\nu+1}}) \ldots (x^{a_\nu} - x^{a_N})$$

$$= x^{a_1 + \ldots + a_{\nu-1}}(x^{a_{\nu-1} - a_1} - 1) \ldots (x^{a_{\nu-1} - a_{\nu-2}} - 1)x^{a_{\nu-1}}(N-\nu)(1 - x^{a_{\nu+1} - a_{\nu}}) \ldots (1 - x^{a_N - a_{\nu}})$$

$$= (-1)^{\nu-1} x^{a_1 + \ldots + a_{\nu-1} + a_{\nu-1}(N-\nu)}(1 - x^{a_{\nu-1} - a_1}) \ldots (1 - x^{a_{\nu-1} - a_{\nu-2}})(1 - x^{a_{\nu+1} - a_{\nu}}) \ldots (1 - x^{a_N - a_{\nu}}).$$

Inserting in (3) for $L'(x^{a_\nu})$ their above expressions and after calculations in the exponents, we obtain:

$$A(n, \theta) = \sum_{\nu=1}^{N} \frac{(-1)^{\nu-1}}{2\pi i} \int_{c_1} \frac{1}{x^{n+1-a_\nu(\theta+N-1) + a_\nu}} P_\nu(x) dx \quad (4)$$

where

$$P_\nu(x) = \frac{1}{(1 - x^{a_{\nu-1} - a_1}) \ldots (1 - x^{a_{\nu-1} - a_{\nu-2}})(1 - x^{a_{\nu+1} - a_{\nu}}) \ldots (1 - x^{a_N - a_{\nu}})}.$$

Since all exponents $a_\nu - a_\mu$ are positive, we can expand for $|x| \leq c_1$ the factors $P_\nu(x)$ in power series of x:

$$P_\nu(x) = \sum_{\lambda=0}^{\infty} B_\nu(\lambda)x^\lambda$$

where $B_\nu(\lambda)$ are respectively the number of non-negative integer solutions of the linear Diophantine equations

$$(a_\nu - a_1)x_1 + \ldots + (a_\nu - a_{\nu-1})x_{\nu-1} + (a_{\nu+1} - a_\nu)x_\nu + \ldots + (a_N - a_{N-1})x_{N-1} = \lambda .$$
Substituting in (4) the $P_\nu(x)$ by their respective power series and using again Caushy’s theorem we finally arrive at:

$$A(n, \theta) = \sum_{\nu=1}^{N} (-1)^{\nu-1}B_\nu(s_\nu) ,$$

(5)

with $s_\nu = n + \sum_{i=1}^{\nu} a_i - (\nu + \theta) a_\nu$ and $B_\nu(s_\nu)$ respectively, the number of solutions of each of the following linear Diophantine equations

$$(a_\nu - a_1)x_1 + \ldots + (a_\nu - a_{\nu-1})x_{\nu-1} + (a_{\nu+1} - a_\nu)x_\nu + \ldots + (a_N - a_{\nu-1})x_{N-1} = s_\nu$$

(6)

$\nu = 1, \ldots, N$.

This formula reduces the investigation of the number of solutions of the initial system to that of the number of solutions of N linear Diophantine equations involving the difference sets (positive) $\{a_\nu - a_\mu\}$ and the numbers s_ν.

Geometrically speaking this means that the number of $Gitterpunkte$ in the intersection of the two N-dimensional planes (1) and (1’) in the positive quadrant $x_i \geq 0$ is equal to the alternate sum of the number of $Gitterpunkte$ of the $(N-1)$-dimensional planes (6) in the same quadrant.

As standard examples, theorems and conjectures we may cite $a_\nu = (\nu - 1)^2$, $\theta = 4$ (Lagrange), $a_\nu = (\nu - 1)^k$ (Waring), $a_\nu = \nu$-th prime, $\theta = 2$, n even (Goldbach), $a_\nu = \nu^p$, $\theta = 2$, $n = n_1^p$, $p \geq 3$ (Fermat).

Obviously in order to attack the problem for a given sequence we have to take into account that N is linked to n by a function $N(n)$ (ex.g. for Lagrange $N(n) = \lfloor n^{\frac{1}{2}} \rfloor$). This complicates the matter but still an ad hoc suggestion would be to approximate the $B_\nu(s_\nu)$ as follows

$$B_\nu(s_\nu) \sim \frac{s_\nu^{N-2}}{(N-2)! (a_\nu - a_1) \cdots (a_N - a_\nu)} ,$$

which is valid for $n \to \infty$ but fixed N (Polya-Szegö, Aufgaben und Lehrsätze aus der Analysis I: loosing no generality the differences $a_\nu - a_\mu$ can be assumed free of common divisors > 1).

Summing over ν (we write N for short of $N(n)$) and reverting again to the polynomials $L(t)$, written now as $L_N(t)$, we obtain from (5)

$$\frac{1}{(N-2)!} \sum_{\nu=1}^{N} \frac{s_\nu^{N-2}}{L_N(a_\nu)} ,$$

(7)

as a plausible heuristic estimate of $A(n, \theta)$ for $n \to \infty$.

The behaviour of the expressions involving n and θ:

$$\frac{n + \sum_{i=1}^{\nu} a_i - (\nu + \theta)a_\nu}{|a_\nu - a_\mu|} \quad \text{The cutting points of the planes (6) with the coordinate axes},$$

$$\frac{n + \sum_{i=1}^{\nu} a_i - (\nu + \theta)a_\nu}{\sqrt{\sum_{i=1}^{N} (a_\nu - a_\mu)^2}} \quad \text{The distances of the planes (6) from the origin},$$
would play, we believe, a decisive role in any such attempt.

As to its form the sum (7) bears a striking resemblance to the sums

\[\sum_{\nu=1}^{N} \frac{a'_{\nu}}{L_{N}(a_{\nu})} \]

encountered in Lagrange interpolation with \(a_{\nu} \) replaced by \(s_{\nu} \) in the numerator. As known these expressions considered as functions of the exponent \(t \) are equal to:

\[
\begin{cases}
(\frac{-1}{N-1}) \sum_{i=-t-1}^{a_{1} \cdots a_{N}} \frac{1}{a_{1}^{i_{1}} \cdots a_{N}^{i_{N}}} & \text{for } t \leq -1 \\
0 & \text{for } 0 \leq t \leq N - 2 \\
1 & \text{for } t = N - 1 \\
\sum_{i=t-N+1}^{a_{1}^{i_{1}} \cdots a_{N}^{i_{N}}} & \text{for } N \leq t
\end{cases}
\]

Above facts may prove, eventually, useful in further developments.