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Variance Maintained by Stochastic Forcing of Non-Normal Dynamical Systems
Associated with Linearly Stable Shear Flows
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The level of variance maintained in a stochastically forced asymptotically stable linear dynamical sys-
tem with a non-normal dynamical operator cannot be fully characterized by the decay rate of its normal
modes, unlike normal dynamical systems. The nonorthogonality of modes may lead to transient growth
which supports variance far in excess of that anticipated from the decay rate given by the eigenvalues of
the operator. As an example, the variance maintained by stochastic forcing in a canonical shear flow is
found to increase with a po~er of the Reynolds number between 1.5 and 3. This great amplification of
variance suggests a fundamentally linear mechanism underlying shear flow turbulence.

PACS numbers: 47. 10,+g, 47.20.Ft, 47.27.Cn

Consider the stochastically forced linear autonomous
dynamical system

xt =AtIxj'+ Qtj'ej,
dt

in which x is a complex vector of generalized coordinates
and e a random forcing taken to be a b-correlated Gauss-
ian white-noise process with zero mean so that

(e;) =0,
(et(t)ej(t')) -&bt)8(t t'), —

2oi

where () denotes ensemble averaging, and the asterisk

denotes complex conjugation. The random forcing ex-

cites with equal probability and independently each forc-

ing function, specified by the columns of the matrix 0;3.
We are interested in the variance (E ) =lim, (z;*(t)
xx;(t)) which exists for asymptotically stable systems in

which all the eigenvalues of the linear dynamical operator
A have negative real parts.

Relatively more consideration has been given in the

past to the stochastic dynamics of linear operators that

are normal (i.e., AtA =AALU, where g denotes the Her-

mitian transpose) while in this Letter we concentrate on

stochastic excitation of non-normal operators such as

govern the dynamics of perturbations in fluid shear flow

and for which AtA~AAt. In the case of a normal A
the motion can be resolved into the N distinct orthogonal
normal modes of A and each mode analyzed in isolation

with the total variance found as the sum of contributions
from each of the individual normal modes (%'ang and

Uhlehnbeck [ll). Furthermore, the variance contributed

by each mode is inversely proportional to the damping
rate of that mode so that the stationary state variance

supported is (see Ref. [1])
N

(E'„„,i) -g— (3)
i 1

dt
xt'xt =x;*(A(~j+A;, )x, . (4)

It is clear from (4) that it is necessary and suflicient for

transient growth that the largest eigenva1ue of the opera-
tor 2 (At+A) be positive, which is equivalent to the re-

quirement that sup Re[9(A)] be positive, where P(A) is

the numerical range of A, i.e., the set of the values x tAx
for )~x~) =1 (see Ref. [12]). For a normal operator
P(A) is the convex hull of the spectrum set of A, denot-

where 0; (0 is the real part of the ith distinct eigenvalue
of the normal operator A. In normal dynamical systems
the forcing is the only energy source for the normal

modes and the energy associated with the stochastically
maintained variance is accumulated from this forcing, re-

sulting in high variance if damping is small.
Consider now a fluid with a background flow field hav-

ing nonvanishing rate of strain but with suflicient dissipa-
tion so that all suSciently small perturbations impressed
on the flow eventually decay, Linearization of the
dynamical system about the background flow results in a
non-normal linear dynamical operator and associated set
of modes that individually decay but that are not mutual-

ly orthogonal. This mathematical property of nonortho-

gonality of modes is indicative of an important physical

property: The lack of mode orthogonality corresponds to
the potential for extraction of energy from the back-
ground flow field by a subspace of perturbations leading

to transient growth despite the absence of exponential in-

stability, a result known since the pioneering work of Orr
[2] (see Refs. [3-14]). However, it should be noted that
every asymptotically stable non-normal operator does not

necessarily support transient growth. The condition for
transient growth for an operator A is most transparently
derived from consideration of the equation for the evolu-

tion of the perturbation magnitude in the Lz norm, which

in the absence of forcing is
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ed by A(A), so that the condition for transient growth

can be identified with the occurrence of a positive real

part of A(A). The condition for growth in the case of a

non-normal operator depends on the positiveness of a

(necessarily real) eigenvalue of —,
' (At+A) and is not

equivalent to the requirement that A be asymptotically
unstable.

Recently a more complete understanding of the role of
3D time dependent perturbations in transferring energy
from the mean flow to the perturbation field has emerged
and the universality of this process in shear flows has

been recognized (see Ref. [11]). The original 2D growth

mechanism of Orr (in which transient upshear tilting per-

turbations grow by inducing down gradient Reynolds

stresses) and the streamwise roll mechanism of Landahl

(in which spanwise variations of cross-stream velocity al-

ternatively lift and depress material parcels in the sheared

background flow to produce perturbation velocity fields

dominated by streamwise streaks; see Ref. [13]) have

been found to occur in a characteristic combination
which are accompanied by rapid transfer of mean flow

energy to the perturbations and produce the ubiquitously
observed coherent structures (see Refs. [10,14]).

Tapping the mean flow energy in this way can lead to
levels of perturbation variance orders of magnitude larger
than would have been supported by an otherwise equiv-

alent damped normal system. The energy balance in such

a non-normal system is between the stochastic driving to-

gether with the induced extraction of energy from the
background flow, on the one hand, and the dissipation, on

the other hand. Under stochastic forcing the variance in

a non-normal system may be maintained primarily by the

stochastically induced transfer of background flow energy
to the perturbation field. While the potential for tran-

sient growth from specific initial conditions has been am-

ply demonstrated in previous work (see Refs. [2-9,
11-14]), it is not immediate that the existence of a sub-

space of growing perturbations is sufficient to produce
variance greatly enhanced in comparison with that main-
tained under stochastic excitation in any equivalently

damped normal system, such as that associated with an

unsheared fluid. For example, in 2D unbounded constant
shear flow with Rayleigh damping the maintained vari-

ance at any shear is identical to that obtained in the ab-

sence of shear (see Ref. [15]),despite the existence of a

subspace of transiently growing perturbations that in-

creases with shear (see Ref. [16]). One purpose of this
Letter is to examine whether transient growth of a subset
of perturbations can result in enhanced variance in a sto-
chastically forced flow.

The linearized 3D Navier-Stokes equations governing
evolution of disturbances in steady mean flow with

streamwise (x) velocity, U, varying only in the cross-
stream y direction (see Ref. [7]) are

0 i
C

(5)

in which

( iaUA+iaUyy+Att/R),

1= —iaU+5/R,

C = i—PUy,

(6a)

(6b)

(6c)

where K =a +P, h=d /dy —K, and R=UoL/v is

the Reynolds number, based on the maximum velocity,

Uo, occurring in a channel of half-width L in a fluid with

kinematic viscosity v. We consider the evolution of single

Fourier components of the cross-stream velocity v=i"
xexp(iax+ipz) and the cross-stream component of per-
turbation vorticity to=toexp(iax+iPz). No slip bound-

ary conditions are imposed at y= ~ 1 which require

v =8v/tly =to 0 at y =+ 1. Plane Poiseuille flow with

U I =y is chosen for the examples.
Consider now the discrete equivalent of (5). The state

vector for an N level discretization is y [i"
i i~

toy], and we denote with 'T the discretized
form of

X 0

by which the continuous dynamical system (5) is approxi-
mated as a finite dynamical system.

To determine the evolution of perturbation energy
E(a,p), we introduce the energy metric W given by

—h, 0
Af =

8K2 0 I (7)

A =~'"7W -'". (8)

In the energy metric the variance corresponds to the en-

semble average energy (E ). For plane Poiseuille flow A
is asymptotically stable for R (5772.22 (Orszag [17])
and we will limit our investigations to R ~ 5000, so that
the existence of stationary statistics is immediate.

The asymptotic ensemble energy (E ) is obtained with

the aid of the Fourier transform pair (for an alternative
procedure see Ref. [18]):

x(t) = x(to)e' 'dho,

p oo

x(to) = x(t)e ' 'dt.2x"—
The Fourier transform of (1) is

x(to) =%(to)Qf(to),

with resolvent

R(to) =(itoS —A)

(9a)

(9b)

(10)
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where I is the identity matrix. The perturbation energy is

E(a,p) = itttAtiit (see Ref. [7]). The dynamical
equation (5) can then be transformed into variables of
the generalized velocities x =Sf' y so that the operator
appearing in (I) becomes
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The ensemble average energy is
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(E")-~ %(,(ro')Q, k(ep(ro)e (co'))

x%;I(ru')gl e'I ~'dhodr0'. (i 2)

5.0

With white-noise excitation, (ek(co)e (ro')) (g/2z)bk
xb(ro —es') and for unitary forcing distributions Mt
we have

3.5
A

30
V

2.5
C)

2.0
O

1.5
&E")-, F(es)dru,

where the frequency response is given by

F(e) Tr[t(e)%(e)] .

(i3)
0.5

1.0 1.5 2.0
1og«(R)

2.5

Note that the energy response function F(ro) cannot be
simply characterized as a summation of individual contri-
butions from the poles of the resolvent as would be the
case if the operator were normal. Recent results (see
Ref. [l9]) underscore this point by noting that for a gen-
eral linear operator the norm of the resolvent is bounded

by

(is)

where the right inequality is valid for iro g P(A) and the
left inequality for i' g A(A) and dist denotes the dis-
tance function of a point from a set [recall that A(A) is

the spectrum set and P(A) is the numerical range of A].
For a normal operator P(A) becomes the convex hull of
A(A) and, consequently, the inequalities in (15) become

equalities, signifying that the system response at a given

frequency e is characterized solely by the proximity
of ie to the spectrum of A. However, for a non-normal
operator dist(irD, P(A)) may be much less than
dist(iI, A(A)) rendering the familiar estimate of the
response by the distance from the contour ie to the poles
inadequate.

The increase of the variance of the stationary state as a
function of Reynolds number, R, is shown for spanwise
wave number P I and unit forcing in Fig. i. This wave

number was chosen for concreteness and is not exception-
al. In order to demonstrate clearly the role of non-

normality in increasing the response of the system we

have included in the same figure the variance that would

have resulted if the system were interpreted as an

equivalent normal system by applying Eq. (3). Note the
dramatic increase of variance vrith Reynolds number. As
R~ 0 the dynamical operator approaches the (normal)
diffusion operator leading to a linear dependence of vari-
ance on R, as is the case for all normal systems. For
higher R the variance of the streamvrise roll components,
a 0, grows as R . This is due to O(R) transient ampli-
tude growth over the time O(R) during which input ener-

gy accumulates before it dissipates (see Refs. [7,9]). For
oblique waves and for Reynolds numbers 800 & R & 5000

FIG. 1. Variation of ensemble average energy as a function
of Reynolds number R for plane Poiseuille flow. The full line
indicates the variance of the non-normal operator. The dashed
line represents the variance that ~ould result if the operator
were interpreted as a normal operator. Both cases are for span-
wise wave number P I. Curve I is for streamwise wave num-
ber a 0, and curve 2 for a l.

the variance grows approximately as R . These results
hold for a wide range of spanwise and streamwise wave
numbers.

The spectral response function F(ro) for the case of
streamwise rolls (a 0) is plotted for R 500 and 2000
in Fig. 2 and for comparison the variance supported by an
equivalent normal system is also shown. Over the pri-
mary passband of the response the variance supported by
the non-normal operator is substantially larger than that
supported by the equivalent normal system. Maximum
response is found in the neighborhood of zero frequency
which would characterize low-pass disturbances such as
those arising from boundary roughness. The normal and
non-normal responses converge at high frequencies as the
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FIG. 2. The frequency response function F(m) in the energy
norm for plane Poiseuille How with streamvrise wave number
a 0 and spanwise wave number P~ I. Curve I corresponds to
Reynolds number R 2000; curve 2 to R 500. The dashed
curves show the frequency response that would result if the
operator were interpreted as a normal operator.
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While we have chosen an example from the realm of
hydrodynamics, these results are also pertinent to other
physical systems governed by asymptotically stable non-
normal dynamical operators. We have shown in this
work that when a non-normal system supports transient
growth the stochastically maintained variance can greatly
exceed the variance anticipated from the decay rate of
the modes of the dynamical operator.
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Trefethen. B.F.F. was supported by the DOE though the
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92-16813. P.J.I. acknowledges the support of NSF
ATM-92-16189.

FIG. 3. The frequency response function F(ai) in the energy
norm for plane Poiseuille flow with streamwise wave number
a I and spanwise wave number P 2 for various Reynolds
numbers R.

dynamical operator becomes diagonal and consequently
normal [cf. Eq. (11)).

The typical growth of variance as a function of R for
an oblique plane wave perturbation is shown in Fig. 3.
The main contribution to the variance arises from fre-
quencies resulting in phase velocities lying within the
flow, i.e., 0 ~ tu/a ( 1. Note that the maximum response
for higher R shifts to lower frequencies corresponding to
disturbances with phase speeds nearer the boundary flow

speed.
We have demonstrated that the maintained variance in

shear flow may greatly exceed the variance anticipated
from the decay rate of the modes of the dynamical opera-
tor. Transient growth, which is possible because of the
nonorthogonality of the modes of a non-normal operator,
leads to enhanced levels of variance arising from transfer
of the energy of the mean flow to the perturbations. This
mechanism may provide the amplification of free stream
disturbances necessary to support turbulence for subcriti-
cal Reynolds numbers. For example, we calculate using
the above methods that a background noise level of 1%
rms in the velocity field sustains variance of typical tur-
bulent intensity ([0% rms) at R 1000 for Couette flow,
and R 2000 for Poiseuille flow. The centrality of the
linear growth mechanism retained in this analysis was
realized by Joseph [20) and recently underscored by Hen-
ningson and Reddy [21), who point out that in forced
shear flow the nonlinear terms make no contribution to
the transfer between mean flow energy and perturbation
energy. Taken together these results suggest that a linear
first order mean field approximation for turbulence in

shear Bows can be constructed in which the nonlinear
eff'ects are parametrized. These eff'ects are identified as
nonlinear spectral transfer, here parametrized as stochas-
tic forcing, and diffusive dissipation and disruption of per-
turbations, which may be parametrized using an eddy
viscosity. Some numerical results supporting this inter-
pretation have been obtained (see Refs. [4,22)).
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